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Abstract
Direct interface tracking computes spray behavior based only on first principles. It is an advanced form of direct

numerical simulation, but with the emphasis shifted from resolving details of turbulence to details of multiphase
flow. The moving interface requires special treatment and advanced numerical methods. A code which is capable of
accurate resolution of three-dimensional free-surface deformation has been constructed. The Navier-Stokes
equations for the liquid phase are solved on a deforming unstructured mesh. This technique tracks the boundary
precisely, similar to marker-and-cell methods. However the adaptive mesh follows the interface. Furthermore, this
new method avoids the surface reconstruction required in volume of fluid methods.  A numerical method for
calculating free surface distortion has been described, examined, and the surface tension force is shown to be
second-order accurate in space. By locally fitting the free surface to a parabola when evaluating curvature, problems
with numerical noise in the solution are avoided.  A new time step criterion is introduced based on free surface
numerical stability. The results for a deforming drop and collapsing ligament are presented. The code is validated by
comparing to the theoretical period for drop deformation.

Introduction
      The complexities of spray behavior are often very
difficult to observe directly. Sprays usually evolve over
small time and space scales. Furthermore, high number
densities of droplets can impede optical access. For
understanding basic spray physics, simulation based on
first principles may be helpful.  In a model that relies
only on the Navier-Stokes equations, the simulation can
generate trustworthy results that would provide
complete detail about droplet behavior.
     There are significant difficulties inherent in
multiphase flow calculations. Interface tracking codes
require several hundred percent more CPU time than
single-phase codes, making such simulations expensive.
Also, it has proven difficult to attain reasonable
accuracy in interface tracking [1].  These issues have
hindered the development of high-performance three-
dimensional interface tracking codes. Helenbrook has
developed a very accurate spectral method, but this
code is currently limited to two-dimensional,
axisymmetric droplet simulations [2]. Cristini et al.
have a three-dimensional multiphase flow code that is
based on the boundary element method [3]. There have
been only a few major attempts to apply interface
tracking to primary atomization [4,5]. The current work
attempts to advance the numerical methods so that a
wide range of drop sizes can be resolved.
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Governing Equations and Numerical Scheme
       The numerical method used in this work is based
on a stream-function formulation of the Navier-Stokes
equations. The complete Navier-Stokes equations were
solved in two and three dimensions on a deforming
unstructured mesh. The basic equations were solved for
a deforming, moving, control volume, avoiding the
interpolation errors inherent in global remeshing. The
method has some common features with Arbitrary
Lagrangian-Eulerian methods.  However the current
approach is not a fractional step method.
       Nallapati and Perot[6] have provided some
information about the numerical scheme that will be
used. The method uses an unstructured mesh, which
allows maximum flexibility in matching mesh cells
with the boundary surfaces. For a two-dimensional
mesh, each triangle will be a control volume. In three
dimensions, the basic control volume is a tetrahedra.
The basic parameter and real unknown is the stream
function, which is a scalar in 2 dimensions and a vector
in 3 dimensions.
       Momentum equations can be developed after the
velocities are obtained. The procedure is complex since
the mesh has to be moved in order to track the free
surface. Beginning with the Reynolds transport theorem
for incompressible flow, we have:
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where f is the body force, v is the mesh velocity, and
CV is the control volume. Assuming the control
volume is small enough and the velocity u is linear
within each of them, the integral form can be changed
to:
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where the parameters u, p, and ρ  are defined at the
center of each control volume, and n and n+1 represent
different time steps. The value of the cell volume at the
n+1 time step 1+∆ nv  is predicted from velocity at the n
time step; therefore this is still a linear equation.  Note
that an implicit method, Crank-Nicolson differencing, is
applied to develop implicit schemes for the diffusion
terms.  The divergence operators in the convection and
diffusion terms can be evaluated using Gauss'
Divergence Theorem:
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In the above equations the gradient term in each
cell can be calculated by least squares data fitting, if the
center of gravity is used as the cell center where the
velocity is positioned. As a final step, the velocity u is
expressed in terms of the stream function component

ts ⋅  defined on each cell edge. Then Eqn.3 is integrated
on a closed path around the edges, producing the
discrete equivalent of a curl operation.  These equations
are solved for the moving, deforming cells.

Surface Tension Evaluation
A constant pressure boundary condition is used for

the free surface, and surface tension is treated as an
additional term in the boundary cells' pressure.

          





++=

21

0

11

RR
pp σ                            (6)

Here the problem is how to evaluate the boundary
curvature. The values of 1R and 2R are the radii of

curvature in two orthogonal directions along the
interface.  The sum of the reciprocals of 1R and 2R  will

be denoted as effectiveR1 , so that the equations may be

generally represented for two or three dimensions.  In
this work curvature in three dimensions is calculated on
each boundary face by a new surface fitting method.
Though Zinchenko et al. [7] first used a parabolic fit for
surface tension, they calculated curvature at nodes
rather than faces.  Zinchenko et al.’s algorithm was
necessarily very complicated. The current
implementation is much simpler, because the force is
defined at the face center.  In three dimensions, the
local surface of a cell face is fitted by:

   1234
2

5
2

6),(),( ayaxaxyayaxayxfyxz +++++==     (7)

and coeff icients 1a  through 6a are obtained from

coordinates of six nodes. Three nodes are from the
triangular face itself and three nodes are from the three
neighboring faces, producing a six by six linear system.
This dependence is ideal, because it produces a
template that is centered around the face of interest.
Since the curvature is independent of the coordinate
system, one can also apply transformations to set up a
local coordinate system whose z axis coincides with the
face normal vector. This step is necessary to avoid an ill
conditioned matrix. Then the local curvature is:
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Figure 1. Numerical Curvature Scheme: The surface
tension evaluation method is checked for convergence
and accuracy.

Fig. 1 shows the numerical results of surface
tension calculation for a perfect sphere of diameter
2mm, using the parabolic fitting scheme. It shows that
the curve fitting method has roughly second order



precision, which is expected from the fact that a
quadratic function is used to fit the surface.

Mesh Moving Methods
This work uses the adaptive mesh approach to

track the free surface. The mesh nodes on the free
surface are moved in a Lagrangian manner, and when
the mesh evolution produces some poorly shaped or
distorted cells, mesh improvement methods are used to
adjust the interior nodes to achieve high mesh quali ty.
Here Delaunay triangulation is used as the quali ty
measure. A Delaunay triangulation may be
characterized in several ways. One way is by the easily
shown property that the circumcircle of any triangle
(circumsphere of any tetrahedron in three dimensions)
contains no nodes other than the ones on its boundary.
Two kinds of methods are used to transform the non-
Delaunay cells: mesh smoothing and mesh flipping.

In a two-dimensional mesh, mesh smoothing
simply treats each cell face as if it were under tension
proportional to its length.  This is analogous to a spring,
except that this "spring" has zero equili brium length.
The resultant forces at each node are computed from
the tensions to adjust its position. Mesh flipping turns
out to be more complicated than smoothing. The two-
dimensional case is relatively simple. When two
neighboring cells lose their Delaunay property, one can
just flip their common face to the other two nodes as
shown in Fig. 2:

Figure 2. Mesh flipping in two dimensions.

This technique has proved effective in two
dimensions, but it is not straightforward in three
dimensions. Unfortunately, in three dimensions, the
Delaunay criteria is not always sufficient to guarantee
good cells.  Flipping occasionally produces cells that
are very flat, with their four vertices nearly coplanar.
These cells, called “sliver cells” are a known defect of
using the Delaunay criteria [8,9]. For three dimensional
flipping the minimum dihedral angle is the criterion in
the current work. Flipping proceeds only where it
increases the minimum dihedral angle present in a set
of cells.

Stability
In addition to the CFL limit, a criterion of free

surface numerical stabili ty is required. The mixed
character of the flow at the surface makes this difficult.
To derive a stabili ty relation, the momentum normal to
the interface was considered. For simplicity, the viscous

and convective acceleration terms were dropped.
Viscosity is treated implicitly in this work, and the
convective terms would give rise to the CFL limit. The
simplified situation is potential flow driven by surface
tension.  This is the well-known case of the propagation
of small waves in deep water with negligible gravity,
also known as capill ary waves.  Sinusoidal capill ary
waves travel at a speed, c, that depends on the
wavelength of the disturbance λ�

���������

                   
ρλ
πσ2

=c                                    (9)

The value of λ would be approximately the same
as the mesh resolution, assuming that the instabili ty
manifests itself at the highest resolvable frequency.
This assumption results in propagation with a wave

speed of
x∆ρ

πσ2
.  Thus by the CFL criterion, the surface

will be stable for an appropriate explicit scheme when:
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Figure 3. Evaluation of the largest stable time step.The
analytical result is Eqn. (10) with the constant set to the
theoretical value of 2.0.  The liquid properties are
varied and the mesh resolution is held constant.

The constant C in Eqn. (10) is of order unity and
depends on the numerical method.  Equation (10)
provides a way of predicting a constraint on the time
step in free surface calculations.  A test of this stabili ty
criterion with a third-order Runge-Kutta scheme is
shown in Fig. 3.  For purely hyperbolic problems, this
discretization method has a theoretical value of 2.0 for
C.



σ / ρ ( 23 sm ) 10-8 10-7 10-6 10-5 7.56x10-5

T (s): Theoretical value 0.702 0.222 0.0702 0.0222 0.00808

T (s): Test value 0.715 0.228 0.0705 0.0223 0.00800

Percentage Error 1.8519% 2.7027% 0.4274% 0.4505% -0.9901%

              Table 1. Liquid drop oscillation period value.  Initial parameters are: r0=0.001m, ν =1.781x10-6 m2/s.
A fine mesh of 4,500 cells was used.

 

Figure 4. Liquid drop oscillation subject to a large disturbance.  A coarse mesh of 1,300 cells was used.

Figure 5. A ligament collapsing under the effect of surface tension.



Results
As a three-dimensional test case, an oscill ating

droplet was calculated using 4,500 cells.  The initial
stream function is:

                     kji� yxxzyz 5.05.05.1 +−=                    (11)

And the initial velocity field is:

                                       xvx =                                 (12)

                                       yvy =                                 (13)
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According to Lamb [11] the drop oscill ation period
for a small , mode 2 perturbation is:

    T = π2  

3
0 

2)1)(-(

1

r
nnn

ρ
σ+

 = π2

3
0 

8

1

rρ
σ

        (15)

Table 1 shows the numerical results of the liquid
drop oscill ation calculation. They show good accuracy
and help to confirm the validity of the current approach.
For larger deformation, mesh smoothing and flipping
are critical.  The results for an oscill ating droplet with a
large perturbation are shown in Fig. 4.  The droplet on
the left is in its initial state with its initial mesh.  The
droplet is given an initial velocity field that is similar to
the previous accuracy test, except that the magnitude is
greater.  The right side of Fig. 4 shows the deformed
drop and the corresponding shape of the mesh.

This method is not unique to droplets.  The value
of this code is that it can be applied to any shape of
liquid interface.  Thus one can study droplets,
ligaments, and films.  The results shown in Fig. 5 are
for a collapsing ligament with a small initial velocity.
For this case, a surface-mesh redistribution algorithm
was used to maintain adequate mesh resolution as the
ligament began to pinch.

The equili brium state of a ligament is various
numbers of droplets, depending on the initial state.  In
this case, the middle of the ligament pinches and the
ends swell.  The ligament is on its way to forming two
droplets.  However, the code is not yet capable of
handling the separation of the liquid into multiple parts.
This capabili ty is planned for the near future.
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