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ABSTRACT 
A two-equation transport model is used to model 
turbulence at any mesh resolution, from RANS to 
LES, to DNS. The two-equation model used is a 
slight variation of the standard /k ε  model that 
allows the backscatter of energy to the resolved 
scales. The model automatically adapts to the mesh 
resolution provided and no user interaction is 
necessary. This model is tested against moderately 
high Reynolds number isotropic decaying turbulence 
and gives very good predictions at any mesh 
resolution. A detailed analysis shows that at LES 
resolutions the solution remains fully unsteady and 
three-dimensional and the solution does not approach 
a RANS like solution. At DNS resolutions, it is 
shown that the model automatically becomes 
negligible.   

1. INTRODUCTION 
Recent technological advances in supercomputing are 
paving the way for large eddy simulations (LES) to 
becoming an increasingly useful tool for engineering 
predictions of many turbulent flows.  However, 
classical LES modeling requires advanced knowledge 
of the turbulence (the integral length scale must lie in 
the inertial range) that is usually unavailable.  In 
addition LES models are not really necessary in large 
portions of the flow domain and therefore waste 
resources considerably.  Because of this, there has 
been considerable interest in hybrid turbulence 
models that can perform either RANS modeling or 
LES.  With such a model, one can obtain initial 
predictions with coarse meshes (RANS) or more 
accuracy can be obtained with finer meshes (LES).  
In theory one can even perform LES and RANS 
within the same problem domain.  The self-adapting 
model proposed in this paper is fundamentally 
different from prior LES models and current hybrid 
models in that it achieves a completely natural 

evolution from RANS to LES, and with enough mesh 
resolution to DNS. 
 
The transition of how much turbulent kinetic energy 
is represented by the model compared to how much 
turbulent kinetic energy is computed via first 
principles is how most turbulence models are 
classified. The range of applicable turbulence models 
are shown in Figure 1 in relation to a turbulent 
energy spectrum. Each model tries to represent the 
energy in the spectrum to the right of the model’s 
name. 
 
 

 
Figure 1. Illustration of Energy Spectra 

 
RANS models contain most of the turbulent energy 
in the model. LES computes considerably more of the 
turbulent energy via first principles and DNS resolves 
all of the turbulence directly and models none. To 
introduce a more detailed terminology, in between 
RANS and LES lies URANS (unsteady RANS) and 
VLES (very large eddy simulation).  
 
Recent developments in hybrid modeling approaches 
try to transition from URANS to LES depending on 
the situation.  However many of these models require 
user intervention and usually some form of a 



  

“blending function” to compute the turbulent 
viscosity. The self-adapting modeling approach 
proposed will be shown to work at any mesh 
resolution and over the entire spectrum. It can 
therefore do, RANS, URANS, VLES, LES and even 
DNS. Most importantly, the character of the model is 
not set by the user (or the geometric location), but 
adapts to whatever the mesh can support. The 
proposed approach therefore models only as much 
turbulent kinetic energy as necessary (for that mesh) 
and resolves as much of the energy using first 
principals as possible. It is probably not correct to 
consider the proposed approach to be a hybrid model 
in the classic sense (though it has many similarities to 
those models) because it does not blend an LES and a 
RANS model together. The proposed model is closer 
to DES in that it is a single set of transport equations 
that changes its character (RANS, LES or DNS) 
depending on the flow situation.  However, in 
contrast with other models, this change does not 
depend on geometric considerations but rather on the 
available mesh resolution. 

2. MATHEMATICAL BACKGROUND 
The classic mathematical theory behind RANS and 
LES makes these two modeling approaches look 
fundamentally different. RANS is based on ensemble 
averages and LES on filtering. However, a closer 
examination by Germano [1] revealed some very 
important insights. Most importantly, the exact but 
unclosed governing equations for RANS and LES are 
mathematically identical. While the RANS equations 
can be derived from the assumption of ensemble 
averaging and the LES equations from filtering 
operations, these assumptions are overly restrictive 
and neither system must be derived with those 
assumptions. The only required assumption is that the 
velocity field can be split into two parts and that this 
splitting operation commutes with differentiation. 
With this assumption the equations for turbulence 
evolution are 
 , , , , ,( )i t i j j i i jj ij ju u u p u Rν+ = − + −         (1a) 

where iu  and p and the computed velocity and 

pressure and 
ij i j i jR u u u u≡ −  is the unknown 

turbulent stress tensor.   The exact (but unclosed) 
evolution equation for this stress tensor is 
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where the double bracket is given by 
,i j i j i ja b a b a b< > ≡ −   and the turbulent transport is 

ijk i j k i jk j ik k ij i j kT u u u u R u R u R u u u≡ − − − − .  

 
The bracketed terms require a model to close the 
system. In RANS the overbar might denote an 
ensemble average, for LES it might be an explicit 
filtering operation. However, it can also be an 
implicit operation because, in practice, the overbar 
operation is never actually performed.  In this paper, 
it is assumed that an overbar represents whatever the 
calculation computes. It is not possible to prove that 
an implicit filter commutes with differentiation, but it 
is a fairly reasonable assumption to make (at least to 
first order).  
 
Starting from these exact equations numerous 
modeling approaches are possible. The familiar two 
equation RANS models are a simplification of Eqn 
(1b) from a tensor equation to a scalar equation. The 
primary unknown, 

ijR  must then be reconstructed 

from this scalar kinetic energy, k, using a 
hypothesized algebraic relation such as the eddy 
viscosity hypothesis. As the mathematical analysis of 
Germano [1] makes clear, there is no fundamental 
reason why more complex modeling approaches 
(currently used by RANS models) can not be applied 
to LES. The apparent natural evolution of turbulence 
models from simplest to more complex, suggests that 
two-equation transport models for LES are in fact the 
next logical step.   

3. A TWO-EQUATION LES MODEL 
The unclosed equations (1a) and (1b) can be modeled 
using the follow transport equations, 

2
, , , , , ,3( ) ( ) [( )( )]i t i j j i T i j j i ju uu p k u uν ν α+ =− + + + +     (2a) 

, , , ,( ) [( / ) ]t j j T k j jk ku k Pν ν σ α ε+ = + + −        (2b)  

, , , , 1 2( ) [( / ) ] [ ]t j j T j j ku C P Cε
ε ε εε ε ν ν σ ε ε+ = + + −     (2c) 

where the overbar on the velocity and pressure have 
been dropped for convenience. The production is 
given by , , ,( )T i j j i i jP u u uν= +   and eddy viscosity is 

given by 2
( )

r

k k
T k kC µ εν += .  The constants are fairly 

standard /k ε  constants, 1 1.55Cε = , 1.2εσ = , 

1.0kσ = , 0.18Cµ = . The parameter 22511
2 6 ReT

C f fε = +  

is sensitive to the local turbulent Reynolds number 
2Re k

T νε=  of the modeled turbulence via the function 
Re 60
30 Re1 1T

T
f � �= + −� �

 as per the analysis of Perot & de 

Bryn Kops [2]. This varies 
2Cε  from its theoretical 

limits of 11/6 at high Reynolds numbers to 3/2 at low 
Reynolds numbers. For incompressible flow, the 



  

pressure in Eqn (2a) is determined from the 
constraint 

, 0j ju = .   

 
If 1α = , this system is the same as a classic /k ε  
model. The /k ε  system was chosen in this work in 
order to reach the largest audience possible. There are 
very good reasons to prefer other transport equation 
model systems. The proposed modeling ideas can be 
easily generalized to these other frameworks as well. 
The proposed formulation assumes that the turbulent 
stress tensor is reconstructed using the eddy viscosity 
hypothesis, 2

, ,3 ( )ij ij T i j j iR k u uδ ν α= − + . The 

simplest model possible is used in this work in order 
to focus as directly as possible on the key idea - it is 
possible to develop models that automatically work at 
any mesh resolution.  
 
One key component of a self-adaptive turbulence 
model is that it must be able to backscatter energy 
from the unresolved (modeled) turbulence to the 
calculated (resolved) velocity field. A classic /k ε  
model is too simplified and can not backscatter 
energy. The additional parameter α  has been added 
to the /k ε  model above to correct this important 
flaw and control the energy flow.  Usually α  is 
positive (and order 1), but it can become small or 
negative (as will be shown shortly).   

4. BACKSCATTER OF ENERGY 
Figure 2 graphically shows the concept of backscatter 
and normal forward scatter shown on a 1D energy 
spectra. 
 

 

Figure 2. Illustration of backscatter and normal 
forward scatter. 

 
Here the resolved turbulence is illustrated on the left 
and the modeled turbulence is to the right (shaded), 
the arrows indicate the direction of energy transfer. 
To further clarify the benefits of backscatter, let’s 
assume a 3128  isotropic turbulence simulation is 

performed. Because of the large mesh size, most of 
the turbulence would be resolved and only a small 
percentage would need to be modeled.  However, if 
the simulation was set up incorrectly and most of the 
energy was defined to be included in the modeled and 
very little resolved (i.e. RANS initial condition on an 
LES mesh) the adaptive turbulence model should 
displace energy from the model and energize the 
resolved velocity field to correct for this error.  With 
a feature such as backscatter to control the flow of 
energy, a turbulence model could indeed give 
accurate flow predictions, correct errors in the initial 
conditions and (most importantly) perform these 
functions without any user intervention.  
 
The idea of allowing backscatter in a turbulence 
model is not a new one. It has been shown by 
Chasnov [3] and Carati et.al. [4] that a -5/3 power 
law in isotropic decay is better predicted by LES 
(dynamic) models that account for backscatter. Along 
similar lines, Piomelli [5] has recently shown that a 
crude form of energy backscatter (noise) to the DES 
model improved channel flow results. 

5. ENERGY TRANSFER FUNCTION 
The proposed equation for the energy transfer is 

* 2 2 11.5*(1.0 ( ) [( ) 0.11] )ri

r r i

kxk
k k k xCα ∂∆ −

+ ∂= − +        (3) 

where rk is the resolved turbulent kinetic energy (at a 

certain location and time), k is the modeled turbulent 
kinetic energy, and * 0.28C = . The quantity 

2 2 2 2( ) / {( ) ( ) ( ) }/r r r r

i

k k k k
i r rx x y zx k x y z k∂ ∂ ∂ ∂

∂ ∂ ∂ ∂∆ = ∆ + ∆ + ∆  

is a dimensionless measure of the error (similar to 
what is sometimes used in mesh adaptation).    In this 
formulation the resolved turbulent kinetic energy 

2 2 21
1 2 32 ( )rk u u u= + +  is the indicator function that is 

being used to estimate the mesh resolution. If the 
flow is DNS or over-resolved (such as a RANS initial 
condition on a LES mesh) then this quantity is small, 
its inverse is large (but limited away from infinity by 
the empirically determined 0.11 term) and the model 
tends to backscatter energy. In contrast, normal 
energy transfer (from resolved scales to the modeled 
scales) occurs in the regions of the flow where the 
gradient length scales are comparable to the mesh 
size.  On very coarse meshes, RANS like behavior 
should be recovered. In this limit, rk , is expected to 
be small. This means that 1.5 0.42/(0.8 0.11) 1.04α → − + ≈  
and the standard RANS model is very closely 
recovered in the RANS limit.  
 
When 1α < , the eddy viscosity in Eqn (2a) is 
essentially negative. Negative viscosity amplifies 



  

existing resolved velocity fluctuations and amplifies 
small wavelength modes (those closest to the mesh 
resolution) the most rapidly. This is a very reasonable 
model for backscatter. It is not injecting energy via 
some random forcing of the resolved flow, rather it 
works to enhance the existing instabilities and modes. 
Moreover, the energy transfer is local in spectral 
space. It tends to take energy from the model (which 
has most of its energy at scales just below the mesh 
resolution) and preferentially delivers it to the 
resolved flow at almost the same length scale (but 
just above the mesh resolution).  
 
When 0α < , the model is backscattering energy.  
The parameter α  is not a model constant, rather it is 
a field that varies in space. α  also appears in Eqn 
(2b), the k-equation, so that the total kinetic energy is 
a conserved quantity and can only disappear via 
dissipation to heat.  Its presence is not necessary in 
the scale equation, Eqn (2c).  
 
The particular form of the energy transfer function 
was developed and tuned solely to obtain the correct 
limits. Many other functional expressions and/or 
indicator quantities are certainly possible. The goal of 
this paper is not to advocate for this particular 
function but to demonstrate that self-adaptive 
turbulence models are possible, and this particularly 
function serves this purpose adequately.     

6. HIGH RE ISOTROPIC DECAY RESULTS 
The initial turbulent Reynolds number, 2Re k νε= , 
for this test case is 640. The DNS data was performed 
on a 3768  mesh using a Fourier spectral method and 
is given by the large circles. Simulations were 
performed using mesh resolutions from 31  to 3256 . In 
each case the model is identical and only the mesh size 
is changed. The simulations show that at any mesh 
resolution, the model predicts the decay of the 
turbulence well. The lowest mesh resolution is clearly a 
RANS or URANS simulation and the largest mesh, 

3256 , is an LES simulation. 

The intermediate resolutions might be considered 
URANS, VLES, or LES. It might be hypothesized that 
all these solutions give the same result because the 
resolved flow is damped to zero rapidly and all the 
solutions give essentially the RANS decay result. This is 
shown not to be the case. The ratio of the modeled 
kinetic energy to the total kinetic energy is shown in 
Figure 3 with one curve for each of the mesh 
resolutions.   The 31 solution is the top curve, with all its 
energy contained in the model (giving a ratio of 1.0) and 
the 3256  simulation is the bottom line, with the smallest 
ratio of modeled kinetic energy (< 10%). Note that these 

curves are relatively constant and decrease slightly in 
time (as the simulation proceeds). 
 

 

Figure 3. Total kinetic energy predictions for 
isotropic decay (Re = 640).  

 
 

 
Figure 4. Ratio of modeled kinetic energy to total 

kinetic energy (Re = 640). 

 

Even though, the equation system looks like a classic 
RANS model – it is not. The analysis of Germano [1] 
shows that this two-equation model is actually a 
‘universal’ turbulence model applicable at any mesh 
resolution. There is no tendency for the solutions to 
move towards the RANS solution (a ratio of 1.0).  The 
LES solutions stay entirely unsteady and three-
dimensional. The slight decrease in this ratio over time 
is the correct behavior. It is due to the fact that over time 
the Reynolds number of the flow is slowly decreasing 
and the mesh can (and does) resolve a larger percentage 
of the turbulent fluctuations.  
 



  

7. INITIAL CONDITION PERTURBATIONS 
A truly adaptive model should be able to obtain the 
correct behavior from incorrect initial conditions.  For 
example, it is of considerable interest to see if a 364  
mesh initialized with a RANS solution can, over time, 
develop into a full LES simulation. In order to test the 
model in this way, the initial conditions were either 
smoothed or sharpened using a filtering operation. The 
filter used to alter the initial conditions was a nearest 
neighbor averaging procedure, 

1
1 1 1 1 1 1 6(1 )( )filtered

ijk ijk i jk i jk ij k ij k ijk ijku u u u u u u uβ β + − + − + −= + − + + + + + .  
For smoothing 0.0β =  was used. This replaces the 
value at a mesh point by the average of its nearest 
neighbors. This type of filter removes energy primarily 
from the highly oscillatory modes with wavelengths 
close to the mesh size. In spectral terms it damps the 
spectra in the region just above the cutoff wave number. 
The affect is shown in Figure 5, which shows the 
original initial spectra for the 364  simulation (normal), 
and the spectra for the smoothed and sharpened initial 
conditions.  Sharpening is performed by using 1.5β = .  
This adds energy to the existing high frequency modes.   

 

Figure 5: 1D energy spectra for 364 simulation, 
Re=640 (Sharp, Normal, Smooth) . 

Figure 6 shows the affect of smoothing and sharpening 
the initial conditions on the kinetic energy ratio. When 
smoothing is used, energy is removed from the resolved 
modes. In order to keep the total kinetic energy the 
same, the model now must start with more energy. The 
ratio therefore starts higher than before.   

 

Figure 6: Ratio of modeled kinetic energy to total 
kinetic energy, Re=640 (perturbed initial conditions). 

 

As time proceeds the model achieves the same ratio 
irrespective of the initial conditions.  At early times, the 
smoothed solution has less error and therefore 
backscatters somewhat more than the unperturbed initial 
condition.  This removes energy from the model and 
makes the ratio decrease faster, so that it approaches its 
original state. A similar (but opposite) process happens 
when the spectra is sharpened.   In this case, the model 
senses that the mesh can not support the input resolved 
fluctuations, the eddy viscosity is increased by α  ,and 
damping of the resolved modes occurs with the resulting 
energy transfer to the model.  Note that the rate at which 
the model  adjusts to incorrect initial conditions depends 
on the mesh resolution.  The higher mesh resolutions 
adjust much more quickly. It is hypothesized that the 
time it takes to transfer the energy scales on the 
timescale of the turbulence at the cutoff (transfer) 
lengthscale ( /k ε ).   

 

Figure 7. Histogram of energy transfer function (α ) 
positive values.  



  

 

Figure 8. Histogram of energy transfer function (α ) 
negative values.  

 

It had been stated earlier that the energy transfer 
function (α ) was usually positive and order 1.  In order 
to visualize exactly what happens during a simulation 
with correct initial conditions and with perturbed initial 
conditions (sharp, smooth) Figure 7 shows a histogram 
of alpha (positive values) and Figure 8 shows a 
histogram of alpha (negative values). Figure 7 shows 
that with the correct initial conditions (solid line) alpha 
obtains an average value of around 0.87 for this mesh 
resolution.  Figure 8 is an enlarged view of the negative 
alpha values from negative one to zero. The histograms 
also include values of alpha for the smooth (squares) 
and sharpened (diamonds) initial conditions whose 
spectra were shown in Figure 5. As mentioned 
previously, smoothing the velocity field removes energy 
from the resolved flow and places too much energy into 
the model.  To compensate for this error Figure 7 shows 
that alpha takes on a smaller average value and Figure 8 
shows a drastic increase in negative values (more 
backscatter). By having more negative values alpha is 
correctly displacing energy from the model to the 
resolved field to correct for the wrong initial condition.  

The opposite effect is shown for the sharpened case. The 
simulation has been started incorrectly with too much 
energy in the resolved field.  Here it is seen that alpha 
obtains a slightly larger value than 0.87 to ensure more 
normal forward transfer of energy.  Because of this shift 
to the right, there is considerably less (almost non-
existent) negative values.  This guarantees almost no 
backscatter and has an increase in forward scatter to 
correct the initial conditions. 

 

8. SCALING 
In classic LES models the lengthscale is assumed to be 
proportional to the mesh size, ∆ , and the gradients 

scale like 1/ 3 2 / 3
,i ju ε −∆�  .     Figure 9 looks at this 

scaling behavior (in log scale) at a fixed time t=0.5 The 
modeled lengthscale is given by 

3/ 2

=m

k
L

ε
.  At very 

small values of x∆ (large numbers of mesh points) it is 
obvious that the lengthscale is proportional to the grid 
spacing as would be expected with classic LES.  Mesh 
resolutions smaller than 364 exhibit a more interesting 
behavior because now the lengthscale is no longer 
proportional to the mesh. 
 

 

Figure 9: Modeled lengthscale vs. grid size. 

 

This is a transition region that one could call VLES, but 
not full LES. Carati et. al. [4] ran LES experiments for 
isotropic decaying turbulence and determined that the 
smallest mesh size for a LES simulation was 348 , this is 
in excellent agreement with Figure 4. 

 

9. DISCUSSION 
A turbulence model has been shown to incorporate 
RANS equations to model the subgrid scale stresses 
for a LES simulation.  The model automatically 
adjusts to the mesh, and without user intervention 
performs RANS, LES, or DNS. The model gives 
good predictions for isotropic decaying turbulence at 
any mesh resolution. While a slightly modified two-
equation model was utilized it is important to note 
that any RANS transport equation could be used in 
this manner. 
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