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ABSTRACT
The effect of droplet oscill ation on internal heat transfer

was investigated using a transient, three-dimensional Navier-
Stokes solver for free-surface flows.  The code solves
conservation of momentum and energy on a three-dimensional
deforming domain.  The investigation sought to explore the
effect that oscill ations might have on temperature non-
uniformity within droplets.  Biot numbers of 0.1 and 0.25 were
investigated for three different degrees of distortion: no
perturbation, 13% and 35%.  The droplets were given an initial
perturbation and allowed to relax back to a spherical shape.
The results show that the effect of the oscill ation is minimal.
As expected, the effect was greatest at large distortion and large
Biot number.  However, it appears that distortion does not
contribute much to heat transfer within droplets.

INTRODUCTION
In diesel fuel injection, liquid drops initially start out cool

and heat up as they encounter hot surrounding gasses and
radiation heat transfer.  The rate of heat transfer is important,
because it helps to determine the rate of fuel evaporation.  Thus,
heat transfer to the droplets may be important to the mixture
preparation and combustion.

During an initial heating-up period, evaporation is very
slow, as shown in Fig. 1.  The early heat transfer goes mostly
into raising the temperature of the drop.  Eventually, the surface
reaches the wet-bulb temperature and the internal drop
temperature approaches equili brium.  Once the initial heating-
up period is completed, heat transfer proceeds much more
rapidly [1].

In many cases, this heat transfer process may be analyzed
by simply considering the droplet to be a lumped mass with a
uniform internal temperature profile.  However, in the case of
especially high heat transfer, the lumped mass assumption may
not be adequate.  The inabilit y to use the lumped mass

assumption is inconvenient, because the general case requires a
series solutions to the governing conduction equation.

Figure 1.  Drop size squared versus time for a typical
evaporating drop [1].

However, droplets are generally not spherical or stationary.
In the presence of external gas, the droplets may deform due to
aerodynamic forces.  Surface tension causes the drop shape to
oscill ate and viscosity damps the oscill ation.  This motion
causes convection inside the drop and may help to distribute
heat.  If significant heat redistribution occurs, then the lumped
mass assumption may be extended to higher rates of heat
transfer, simpli fying the modeling process.

The governing parameter is the Biot number, which
represents the ratio of the rate of convection to internal
conduction.  The Biot number is defined as
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The symbol h represents the convective heat transfer
coefficient, Lc represents the droplet’s characteristic length, and
kl is the liquid thermal conductivity.  For a sphere, Lc is one-
third the radius.  At low Biot numbers, generally less than 0.1,
the lumped mass assumption is adequate.  At higher Biot
numbers, the non-uniformity of the internal temperature profile
significantly affects the heat flux at the droplet surface.

A few experimental and numerical efforts have investigated
droplet internal heat transfer.  Hader and Jog modeled a droplet
suspended in a steady-state electric field [2].  The droplet
assumed either an oblate or prolate shape, depending on the
field and the surrounding fluid.  The shape was deformed, but
steady.  Hader and Jog calculated the internal streamlines and
heat transfer under these conditions.    Wong and Lin made
experimental measurements of internal drop temperatures [3].
They suspended 2mm diameter droplets in a high-temperature
gas flow.  By using 70 micron thermocouple junctions, they
were able to observe internal temperature variations.  They
noted significant internal temperature variations that were
dependent somewhat on the internal droplet circulation.
Megaridis solved the two-dimensional axisymmetric Navier-
Stokes equations and calculated internal droplet temperatures
[4].

One feature of these experiments and calculations was that
the drop shape did not change in time.  However, droplets in
real combustion applications are subjected to significant
turbulent dispersion.  Eddies accelerate droplets, likely causing
significant droplet distortion.  This distortion may have
implications for droplet heating-up.  The details of this
acceleration and the coupling with droplet distortion are
currently very difficult to calculate.  However, simpli fied
models are possible.

The present work will show if the lumped mass assumption
can be used at Biot numbers above 0.1 due to droplet
oscill ation.  Oscill ation creates a mixing effect of internal
convection.  Additionally, oscill ation temporarily increases the
surface area of the drop.  The spherical drop is a minimum
possible surface area.  This paper will calculate how internal
heat transfer is promoted in oscill ating droplets.

Temperature is modeled as a passive scalar that is
convected and conducted in a deforming droplet.  The
surrounding gas motion is not currently calculated, but rather a
uniform value of heat transfer coefficient is imposed on the
droplet boundary.  This simpli fication precludes the simulation
of internal vortices, which would further promote internal
temperature redistribution within the drop [5].  Instead, the
droplet is given an initial perturbation that causes the droplet to
oscill ate.  The results will i ndicate if the oscill atory motion is
sufficient to promote additional heat transfer.

NUMERICAL METHOD
The numerical method used in this work is based on a

stream-function formulation of the Navier-Stokes equations.
The complete Navier-Stokes equations were solved in three
dimensions on a deforming unstructured mesh. Though the
current problem could be rendered in two dimensions, the three-
dimensional approach avoids dealing with the mild singularity
that occurs at a line of axisymmetry.  The basic equations were
solved for a deforming, moving, control volume, avoiding the
interpolation errors inherent in global remeshing. The method
has some common features with Arbitrary Lagrangian-Eulerian
methods.  However, the current approach is not a fractional step
method.

       Dai et al. [6] have provided more extensive
information about this numerical scheme. The method uses an
unstructured mesh, which allows maximum flexibilit y in
matching mesh cells with the boundary surfaces.  In three
dimensions, the basic control volume is a tetrahedron.  The
basic parameter and real unknown is the stream function, which
is a vector in 3 dimensional calculations.

Momentum equations can be developed after the velocities
are obtained from the stream function. The procedure is
complex since the mesh has to be moved in order to track the
free surface. Beginning with the Reynolds transport theorem for
incompressible flow, we have:
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where f is the body force, v is the mesh velocity, and CV is the
control volume. Assuming the control volume is small enough,
and the velocity u is linear within each of them, the integral
form can be changed to:
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where the parameters u, p, and ρ are defined at the center of
each control volume, and n and n+1 represent different time
steps. The value of the cell volume at the n+1 time step is
predicted from the velocity at the n time step; therefore this is
still a linear equation.  Note that an implicit method, Crank-
Nicolson differencing, is applied to develop implicit schemes
for the diffusion terms.  The divergence operators in the
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convection and diffusion terms can be evaluated using Gauss'
Divergence Theorem:
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In the above equations, the gradient term in each cell can
be calculated by least squares data fitting if the velocity is
positioned at the cell ’s center of gravity.  As a final step, the
velocity u is expressed in terms of the stream function
component ts ⋅  defined on each cell edge. Then Eqn. (3) is
integrated on a closed path around the edges, producing the
discrete equivalent of a curl operation.  This results a set of
equations for the stream function on each cell edge.  These
equations are solved for the moving, deforming cells.

Surface curvature is evaluated by fitting a parabolic surface
to the neighborhood of a surface face.  This method produces a
second-order accurate estimate of the curvature.  The surface
tension force is included on the boundaries as an explicit term.
The only disadvantage of this scheme is that the surface tension
force integrated over the closed surface is not exactly zero due
to numerical error.  The center of mass drifts during the
calculations due to this numerical error.

Internal temperature was calculated using the Reynolds
transport theorem.  For a passive scalar with constant transport
properties, this is given by Eqn. (7).  The only transport
property of significance is the thermal diffusivity, α.
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This equation is solved consistently with the method used for
the momentum equations.  The boundary condition on the
transport equation is given by Eqn. (8).
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The temperatures are non-dimensionalized to range from zero
to unity.  The value of T�  is set to zero and the initial
temperature in the droplet is unity.

VALIDATION
In order to validate the numerical scheme, the oscill ation of

an initially spherical drop was calculated.  By using a very
small i nitial distortion, the results could be compared to the
theoretical small -perturbation solution from Lamb [7].  As an
initial condition, the following three-dimensional, axisymmetric
velocity field was used.

xvx =  (9)

yv y =  (10)

zv z 2−=  (11)

This perturbation causes the spherical drop to oscill ate
between an oblate and prolate spheroid shape.  According to
Lamb [7] the drop oscill ation period for an infinitesimal, mode
2 perturbation is:
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These preliminary calculations were performed using a
mesh of 4,500 cells.  The calculated ratio between the largest
diameter and the undisturbed drop diameter is shown in Figure
2.  Note that the shape is non-sinusoidal for two reasons.  As the
droplet passes from oblate to prolate, the direction of the largest
diameter switches from the z-axis to a plane perpendicular to
the z-axis.  In addition, due to conservation of mass and the
axisymmetric nature of the flowfield, the prolate distortion is
twice the oblate distortion.

The distortion can be used to judge the period of
oscill ation.  In Figure 2, the theoretical period as predicted by
Eqn. (12) is marked with a vertical li ne.  The agreement is
excellent.  The small amount of error is due to two sources:
numerical error and the finite amplitude of the imposed
disturbance.  Regardless, the accuracy of the method is
satisfactory for an oscill ating drop.

Figure 2.  Oscillation of a droplet subject to a small
disturbance.

For the heat transfer calculations, a much larger distortion was
used.  The shape of the deforming drop is shown in Figures 3
and 4.  This figure is taken from the prolate part of the
oscill ation.  The figure also shows the adaptation of the mesh to
the drop shape and the spatial variation in the z velocity.
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Figure 3.  The initial state of a droplet.  The droplet surface
is shaded by the z component of velocity.

Figure 4.  The distorted droplet.  The droplet surface is
shaded by the z component of velocity.

RESULTS
The drops in most combustion applications are rapidly

exposed to high temperatures.  The fuel may already be warmed
by the time it is injected.  As a reasonable approximation of
typical fuel conditions, the liquid properties were set according
to diesel fuel at a temperature of 500K.  The properties were
treated as constant for the sake of this investigation.

In order to validate the code’s heat transfer calculations, a
case was run with no fluid motion.  The stationary droplet case
is equivalent to conduction in a sphere.   For a sphere initially at
a uniform temperature and subject to a uniform convective heat
transfer boundary condition, the analytical solution is given by a
series solution [8].
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Figure 5 shows a comparison of the computed and
analytical solution of the internal temperature profile.  The data
are at a non-dimensional time of 0.08.  Time is non-
dimensionalized using the thermal diffusivity and characteristic
length to form the Fourier number.
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The temperature is scaled from zero to unity based on the
initial temperature, T0, and the ambient temperature, T � .  The
non-dimensional temperature is denoted as θ.
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For all the heat transfer calculations, ten thousand cells
were used.  Because the cells are tetrahedral, the radial
locations of nodes are not uniformly distributed from zero to the
drop radius, R.  For example, there are no nodes that lie exactly
at r=0.  To combine all the data into a two-dimensional plot,
nodes were grouped by radial location into “bins.”  The plots
that follow represent the average value for each bin versus the
radial location of the bin.  Because of this method of
compilation, the curves are not necessarily smooth.

Figure 5.  Validation of the calculations against analytical
solutions.  This is a plot of non-dimensional temperature
versus non-dimensional radius at a non-dimensional time of
0.08.
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Figure 5 shows the results for a stationary droplet.  The
Biot number in Fig. 5 is 0.1 and 0.25.  Note the significant
inhomogeneity in the temperature.   As expected, the larger the
Biot number, the greater the degree of inhomogeneity.  The
computed results agree well with the analytical solution, with a
tolerable amount of numerical error.  The temperature gradients
that occur at the drop interface are likely to be to blame: they
are initially very steep, and not easily resolved.

For oscill ating drops, two Biot numbers and three levels of
distortion were investigated. Distortion is quantified by
measuring the distance from the center of mass to the point on
the surface that is furthest away.   The distortion is non-
dimensionalized by the undisturbed drop radius.  The two Biot
numbers were 0.1 and 0.25.  The three levels of distortion were
0%, 13% and 35%.  Consequently, there are six cases (two Biot
numbers times three distortions) to be considered.  For the two
levels of distortion, the initial velocities are different.  These are
used to calculate the initial Reynolds number and Weber
number, as shown in Table 1.  The Prandtl number, which only
depends on fluid properties, was equal to 7.8 for all cases.

Initial Distortion
Velocity (m/s)

Weber Number Reynolds Number

0.10 0.0764 28.86

0.25 0.4775 72.15

Table 1.  Initial Weber number and Reynolds number based
on characteristic length and initial distortion velocity.

To quantify the effect of an initial disturbance, the droplet
was simulated until a significant amount of energy transfer had
occurred.  To compare the radial temperature distribution to that
of an undisturbed drop, the data needed to be taken from a
spherical drop.  Twice during each period of oscill ation, the
droplet passes through a spherical shape.  It was found that at a
non-dimensional time of (Fourier number) of 0.055, such a
spherical shape occurred.  This was used as a reference point
for the remaining plots.  Figure 6 shows the distortion versus
Fourier number for the low-distortion calculations.  Since the
properties were treated as constant, the oscill ations were
independent of Biot number.  Note that the oscill ations are of
the same form seen in Fig. 2.  The droplet alternates between an
oblate and prolate shape.  Since the maximum diameter is used,
regardless of direction, to quantify distortion, the distortion is
always greater than unity.  Figure 6 also clearly shows the effect
of viscous dissipation.    Similar results are plotted in Figure 7
for the large-distortion case.  After a Fourier number of 0.07,
the droplet is nearly spherical and stationary.

Figure 6.  The distortion versus non-dimensional time
(Fourier number) for an initial disturbance of 13%.

Figure 7.  The distortion versus non-dimensional time
(Fourier number) for an initial disturbance of 35%.

The temperature profiles were recorded for each of the six
cases at a Fourier number of 0.055.  The three cases of Biot
number of 0.1 were compared to each other and are plotted in
Figure 8.  As expected, at this Biot number the temperatures are
fairly uniform, regardless of the distortion magnitude.  One
interesting result is that the shape of the temperature profile is
not significantly altered by the convection in the distorting drop
or by its increased surface area.
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Figure 8.  Temperature profiles in a droplet at Fo=0.055.
All three cases are at a Biot number of 0.1.

Figure 9.  Temperature profiles in a droplet at Fo=0.055.
All three cases are at a Biot number of 0.25.

Figure 9 shows similar results, but for a higher Biot
number.  When the Biot number is higher, internal conduction is
slower and one expects greater temperature variations within
the drop.  This is indeed the case in Fig. 9.  The oscill ation of
the drop also produces slightly more of an effect than in the
lower Biot number case.  The increased sensitivity to the
oscill ation is expected, since internal resistance to conduction is
greater at larger Biot number, and convection is an
enhancement to heat transfer.  As expected, the large distortion
produces a more uniform temperature profile than occurs in the
stationary case.  Nevertheless, Fig. 9 shows that the impact of

the distortion is small .  The large distortion temperature profile
is very near that of the zero distortion profile.

CONCLUSIONS
A numerical model has been used to investigate the effect

of droplet oscill ation on internal heat transfer.  The working
hypothesis was that droplet oscill ation would make the
temperature within oscill ating droplets more uniform.  This
trend was observed, however the magnitude of the effect was
very small .  Consequently, the effect of droplet distortion on
internal heat transfer can be neglected for Biot number less than
0.25 and initial distortions less than 35%.  It should be noted
that the case investigated here was for a droplet subject to an
initial perturbation and then allowed to stabili ze.  The effect of
oscill ations might be greater in a drop subject to continuous
perturbations, such as in turbulent flow.  In addition, an
irrotational perturbation was used in this work.  Other types of
perturbation might promote greater mixing.
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