

Higher-Order Discrete Calculus Methods

J. Blair Perot

V. Subramanian

Practical, Cost-effective, Physically Accurate

Parallel, Moving Mesh, Complex Geometry, ...

DC Methods are a subset of many other classical approaches

Discretization:

Continuous PDE => Finite Dimensional Matrix Problem This Can Be Done Exactly

Solution:

Requires Approximations/Error

- But all approximation errors occur in the constitutive equations (in material properties).
- All numerical errors appear with the modeling errors.

Discretization \neq Approximation

Physical Equation (Heat Equation)

 $\frac{\partial \left(\rho cT\right)}{\partial t} = \nabla \cdot k \nabla T$

Components of the Physical Equation

	$\frac{\partial i}{\partial t} + \nabla \cdot \mathbf{q} = 0$	Conservat	Conservation of Energy		
	$\mathbf{g} = \nabla T$	Definition	Definition of Gradient		
Material Approximation		$\mathbf{q} = -k\mathbf{g}$ $i = \rho cT$	Fourier's Law Perfectly Caloric M	laterial	
	The Physical (Continuous) System				

Example

Exact Discretization of Physics and Calculus

$$\int_{\tilde{c}} i dV \, |^{n+1} - \int_{\tilde{c}} i dV \, |^n + \sum_{\tilde{f}} \int dt \int_{\tilde{f}} \mathbf{q} \cdot \mathbf{n} dA_{\tilde{f}} = 0 \qquad \Rightarrow \qquad I_{\tilde{c}}^{n+1} - I_{\tilde{c}}^n + \mathbf{D}Q_{\tilde{f}} = 0$$
$$\int_{e} \mathbf{g} \cdot d\mathbf{l} = T_{n2} - T_{n1} \qquad \Rightarrow \qquad g_e = \mathbf{G}T_n$$

Numerically Exact

Numerical Approximations

$$Q_{\tilde{f}} = -M_1 g_e \implies Q_{\tilde{f}} = -k \frac{A_{\tilde{f}}}{L_e} g_e$$
$$I_{\tilde{c}} = M_2 T_n \implies I_{\tilde{c}} = \rho c V_{\tilde{c}} T_n$$

Numerically Approximate

The Numerical (Discrete) System

Higher Order Exact Gradient

Same Mesh – More Unknowns

Higher Order Exact Divergence

•Need one equation for each edge.

•Integrate over the very thin CVs surrounding the dual faces.

•Take the 'thin' limit carefully – so thin elements align.

Basis Functions not Required

Good Cost/Accuracy for 'Smooth' Solutions

- Exact discretization of PDEs is possible and strongly encouraged.
- Excellent numerical/mathematical properties are NOT restricted to FE methods.
- Applicable to ANY polygon mesh (including meshless), no explicit basis functions, no need to build matrices.

- Subramanian, V., and Perot, J. B. *Higher Order Mimetic Methods for Unstructured Meshes*, J. Comput. Phys., 219, 68-85, 2006
- Perot, J. B., and Subramanian, V. *Discrete Calculus Methods for Diffusion*, J. Comput. Phys., 224 (1), 59-81, 2007.
- Subramanian, V., and Perot, J. B. A Discrete Calculus Analysis of the Keller-Box Scheme and a Generalization of the Method to Arbitrary Meshes, Accepted to J. Comput. Phys., 2007.

Discrete Calculus Operators

Gradient Operator	G	$(T_{\tilde{n}2} - T_{\tilde{n}1} \Longrightarrow \mathbf{G}$	$T_{\tilde{n}}$)	\mathbf{c} \mathbf{p}^{T}
Divergence Operator	D	$\left(\sum_{f} Q_{f} \Rightarrow \mathbf{D} Q_{f}\right) \qquad \mathbf{G} = -\mathbf{I}$		$\mathbf{G} = -\mathbf{D}^{T}$
Curl Operator	С	$\left(\sum_{e} s_{e} \Rightarrow \mathbf{C}s_{e}\right)$		$\mathbf{C} = \mathbf{R}^T$
Rotation Operator	R	$\left(\sum_{f} U_{f} \Rightarrow \mathbf{R} U_{f}\right)$	$\left(J_{f}\right)$	$\mathbf{C} = \mathbf{K}$
$\nabla \phi = 0 \Longrightarrow \phi = \text{constant}$	∇	$\bullet \nabla \times () = 0$	$\nabla \times \nabla () = 0$	
$\mathbf{G}T_{\tilde{n}} = 0 \Longrightarrow \{T_{\tilde{n}}\} = \{c\}$	$\mathbf{DC} = 0$		$\mathbf{C}\mathbf{G}=0$	

Discrete Calculus Operators *mimic* **Continuous Operators**

Physics		Numerics		
$\frac{\partial i}{\partial t} + \nabla \cdot \mathbf{q} = 0$ $\mathbf{g} = \nabla T$	Physically Exact	$I_{c}^{n+1} - I_{c}^{n} + \mathbf{D}Q_{f} = 0$ Numerically $g_{\tilde{e}} = \tilde{G}T_{\tilde{n}}$ Exact		
$\mathbf{q} = -k\mathbf{g}$ $i = \rho cT$	Physically Approximate	$Q_{f} = -k \frac{g_{\tilde{e}}}{L_{\tilde{e}}} A_{f}$ Numerically $I_{c} = \rho c V_{c} T_{\tilde{n}}$ Approximate		
$\frac{\partial(\rho cT)}{\partial t}$	$=\nabla \bullet k \nabla T$	$\frac{\partial \left(\rho c V_c \mathbf{I} T_{\tilde{n}}\right)}{\partial t} = \mathbf{D} \left(-k \frac{A_f}{L}\right) \mathbf{G} T_{\tilde{n}}$		
Continuous vs. Discrete System				

Discrete Calculus Methods

DC Approach is a methodology – not a particular method!

Discontinuous Diffusion: Heat Flow at an Angle

Linearly Complete as well as Physically Realistic

More Cost-Effective than Traditional Methods

Exact Discretization:

- Discrete Operators (Div, Grad, Curl) behave just like the continuous operators.
- Mimetic.
- Discrete de Rham Complex (algebraic topology).
- $\nabla \times \nabla(\) = 0$, etc
- Physics is always captured

(conservation, wave propagation, max principal, ...).

- No spurious modes.
- No surprises.

Methods that capture physics well

Incompressible Navier-Stokes Tests

06/28/2007

High Matrix Condition Numbers Adversely Impacts the Cost

Discrete Divergence Operator $(f \rightarrow c)$

$$\begin{aligned} DQ_f \Big|_{c1} &= Q_{f1} + Q_{f4} + Q_{f5} \\ DQ_f \Big|_{c2} &= -Q_{f1} + Q_{f2} + Q_{f3} \end{aligned} \Rightarrow D = \begin{bmatrix} 1 & 0 & 0 & 1 & 1 \\ -1 & 1 & 1 & 0 & 0 \end{bmatrix} \end{aligned}$$

$$\tilde{G} = -D^T$$

