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Realistic

Parallel, Moving Mesh, Complex Geometry, …
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Practical,Practical, CostCost--effective, Physically Accurateeffective, Physically Accurate
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Context

DC Methods are a subset of many other classical approaches
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Finite Difference Finite Element

Finite Volume Meshless

Mimetic SOMMimetic SOM

StaggeredStaggered

Edge/FaceEdge/Face

Natural Natural 
NeighborsNeighbors

Discrete Calculus Methods
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Exact Discretization

Solution:Solution:
Requires Approximations/ErrorRequires Approximations/Error

Discretization       Approximation 
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•• But all approximation errors occur in the constitutive But all approximation errors occur in the constitutive 
equations (in material properties).equations (in material properties).

•• All numerical errors appear with the modeling errors.All numerical errors appear with the modeling errors.

Discretization:Discretization:
Continuous PDE  => Finite Dimensional Matrix ProblemContinuous PDE  => Finite Dimensional Matrix Problem

This Can Be Done ExactlyThis Can Be Done Exactly

≠
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Example

The Physical (Continuous) System

Physical Equation (Heat Equation)Physical Equation (Heat Equation)

Components of the Physical EquationComponents of the Physical Equation

( )cT
k T

t

ρ∂
= ∇ ⋅ ∇

∂

0
i
t

∂ + ∇ ⋅ =
∂

q Conservation of EnergyConservation of Energy

T= ∇g Definition of GradientDefinition of Gradient

PhysicsPhysics

MathMath

k= −q g Fourier’s LawFourier’s Law

i cTρ= Perfectly Caloric MaterialPerfectly Caloric Material
Material Material 
ApproximationApproximation
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The Numerical (Discrete) System

Example

Exact Discretization of Physics and CalculusExact Discretization of Physics and Calculus
1| | 0n n

fc c f
f

idV idV dt dA+ − + ⋅ =�� � � � q n ��� �
�

2 1n ne
d T T⋅ = −� g l

1 0n n
c c f

I I Q+ − + =D �� �
�

� e ng T= G

Numerically ExactNumerically Exact

Numerical ApproximationsNumerical Approximations

1 ef
Q M g= −�

2c nI M T=
�

�

�

f

e

A

eLf
Q k g= − �

�

c c nI cV Tρ=
� �

Numerically ApproximateNumerically Approximate
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Same Mesh – More Unknowns

Higher Order Discrete Calculus

Higher Order Exact GradientHigher Order Exact Gradient

2 1n nedge
d T T⋅ = −� g l

�

Applicable to Any Applicable to Any 
PolyhedronPolyhedron
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2

2 2 1 1 1
( ) ( )

n

e e n n n nedge n
d T T Tdl⋅ ⋅ = ⋅ − −� �t x g l t x x

eface
edges

dA Tdl× = �� �n g t

[2]( )

edge

n

eedge
e

face

d
T
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Tdl
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� �⋅
� �
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Higher Order Discrete Calculus

Higher Order Exact DivergenceHigher Order Exact Divergence

••Need one equation for each edge.Need one equation for each edge.

••Integrate over the very thin CVs surrounding the dual faces.Integrate over the very thin CVs surrounding the dual faces.

••Take the ‘thin’ limit carefully Take the ‘thin’ limit carefully –– so thin elements align.so thin elements align.
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( )
0f

f
fcnf e

edge
faces

dA dl
∂ ⋅

∂ + ⋅ =�� �
q n

n q�

�� �

c

dx

f

[ ] 0f ff l
edge edge
cells faces

dA dl
⊥ ⊥

⊥ ⊥∇ ⋅ + =� �� �q q n
�

�
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Basis Functions not Required

Reconstruction

HaveHave

Assume   qAssume   q==--kkg   is linear on g   is linear on 
primary mesh cells.primary mesh cells.
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Results

Good Cost/Accuracy for ‘Smooth’ Solutions
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Conclusions

•• Exact discretizationExact discretization of of PDEsPDEs is possible and is possible and 
stronglystrongly encouraged.encouraged.

• Excellent numerical/mathematical properties are 
NOT restricted to FE methods.NOT restricted to FE methods.

• Applicable to ANY polygon mesh (including ANY polygon mesh (including 
meshlessmeshless), no explicit basis functions, no need to ), no explicit basis functions, no need to 
build matrices.build matrices.

Slide 10Slide 10
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Discrete Calculus Operators

Gradient Operator        Gradient Operator        GG ( )2 1n n nT T T− �G
� � �

Divergence Operator   Divergence Operator   DD f f
f

Q Q

 �

�� 

� �
� D
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Curl Operator                Curl Operator                CC e e
e

s s

 �

�� 

� �
� C

Rotation Operator         Rotation Operator         RR f f
f

U U

 �

�� 

� �
� R

T= −G D

T=C R

0 constantφ φ∇ = � =

{ } { }0n nT T c= � =G
� �

( ) 0∇ ∇× =�

0=DC

( ) 0∇×∇ =

0=CG

Discrete Calculus Operators mimic Continuous Operators
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The Discrete Calculus Approach

Continuous vs. Discrete System

PhysicsPhysics NumericsNumerics

0
i
t

∂ + ∇ =
∂

q�

T= ∇g

PhysicallyPhysically

ExactExact

k= −q g

i cTρ=
PhysicallyPhysically

ApproximateApproximate

NumericallyNumerically

ApproximateApproximate

e
f f

e

g
Q k A

L
= − �

�

c c nI cV Tρ=
�

( )cT
k T

t

ρ∂
= ∇ ∇

∂
�

( )I fc n
n

AcV T
k T

t L

ρ∂ 
 �
= −� 
∂ � �

D G�

�

e ng GT=
� �

�

NumericallyNumerically

ExactExact

1 0+ − + =Dn n
c c fI I Q
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Discrete Calculus Methods

DC Approach is a methodology – not a particular method!

Slide 9Slide 9

FaceFace--Based MethodBased Method
,f fT Q(KB)(KB)

Higher Order MethodHigher Order Method
,n eT T

CellCell--Based MethodBased Method
,n fT Q
�(Mixed)(Mixed)

NodeNode--Based MethodBased Method
nT
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Physical Accuracy

Linearly Complete as well as Physically Realistic

Discontinuous Diffusion: Heat Flow at an AngleDiscontinuous Diffusion: Heat Flow at an Angle
4 0 0.5
1 0.5 1

x
k

x

< <�
= � < <�

1 0 0.5
4 0.5 0.5 1exact

x y x
T

x y x

+ + ≤ ≤�
= � + − ≤ ≤�
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Cost of DC Methods

More Cost-Effective than Traditional Methods

Slide 12Slide 12

For any accuracy For any accuracy 
level, DC is more level, DC is more 
costcost--effective than effective than 
Finite VolumeFinite Volume
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Implications

Methods that capture physics well 

Slide 3Slide 3

Exact Discretization:Exact Discretization:
•• Discrete Operators (Div, Grad, Curl) Discrete Operators (Div, Grad, Curl) 

behave just like the continuous operators.behave just like the continuous operators.
•• Mimetic.Mimetic.
•• Discrete de Discrete de RhamRham Complex (algebraic topology).Complex (algebraic topology).
•• , etc, etc
•• Physics is always captured Physics is always captured 

(conservation, wave propagation, max principal, …).(conservation, wave propagation, max principal, …).
•• No spurious modes.No spurious modes.
•• No surprises. No surprises. 

( ) 0∇ ×∇ =
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Incompressible Navier-Stokes Tests
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Total cost for a desired accuracy level

High Matrix Condition Numbers Adversely Impacts the Cost

Slide 8 / 16Slide 8 / 16

FaceFace--based DC based DC 
converges more converges more 
slowly than Finite slowly than Finite 
VolumeVolume
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Discrete Calculus Operators

Discrete Gradient OperatorDiscrete Gradient Operator ( )n e→� �

1 2 1e n ng T T= −
� � �

2 2 2
bc

e n fg T T= − +
� �

3 2 3
bc

e n fg T T= − +
� �

4 1 4
bc

e n fg T T= − +
� �

5 1 5
bc

e n fg T T= − +
� �

�

1 1
0 1
0 1
1 0
1 0

G

−� �
� �−� �
� �= −
� �−� �
� �−� 	

�

Discrete Divergence OperatorDiscrete Divergence Operator ( )f c→

1 4 51f f f fc
DQ Q Q Q= + +

1 2 32f f f fc
DQ Q Q Q= − + +

�
1 0 0 1 1
1 1 1 0 0

D
� �

= � �−� 	

TG D= −�
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More Discrete Calculus Operators

1 1 0 0
1 0 0 1
0 1 0 1
1 0 1 0

0 1 1 0

C

−� �
� �−� �
� �= −
� �−� �
� �−� 	

( )e f→ ��Discrete Rotation OperatorDiscrete Rotation Operator

Discrete Curl OperatorDiscrete Curl Operator ( )e f→

1 1 0 1 0
1 0 1 0 1

0 0 0 1 1
0 1 1 0 0

C

−� �
� �− −� �=
� �−
� �−� 	

�

TC C= �


