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Abstract

The mathematical concept of a graph can be
used to model many real-world problems. Graph
theory has applications in the fields of computer
science, sociology, engineering and transportation,
to name a few. This research aims to not
only develop graph analysis algorithms, but to
run them in parallel using commodity graphics
hardware; a low-cost tool readily available to
the computing community. The first part of
this study focuses on navigating the graph’s data
structure, as well as finding an efficient algorithm
to evaluate nodal connectivity. In addition, this
work examines the application of these general
algorithms in the engineering and CFD fields.
Parallel versions of mesh smoothing (r-refinement)
and partitioning algorithms are explored, drawing
on key concepts and techniques developed for the
graph analysis software. Both the graph analysis
and mesh adaptation algorithms are shown to
yield considerable speedups over comparable CPU
code. Finally, the use of Message Passing Interface
(MPI) is examined in an effort to obtain further
performance improvements by running the code
simultaneously on multiple graphics processors.

1 Background

For some time, the computing world has been
shifting paradigms, moving from serial to parallel
processing. Many modern commercial PCs now
come equipped with multi-core processors, and
the scientific community has used parallel clusters
and supercomputers for many years. However,
one of the newest venues for parallel computing
has come from an unexpected source; the graphics
community. Commodity graphics cards have

recently proven to be an inexpensive and effective
way to provide parallelization to the scientific
programmer. Due to their non-standard processor
architecture and superior memory bandwidth [14],
graphics processing units, or GPUs, are quickly
emerging as some of the best processors available
today in terms of floating point operations per
dollar. General purpose computing on graphics
processing units (GPGPU), is a new field which is
beginning to draw attention from the engineering
community as a way to improve the performance
of costly CFD simulations [13, 15].

The mathematical concept of a graph is not much
different from that of a mesh; a commonly used
tool in engineering applications. A graph consists
of a set of nodes, or vertices, and a set of edges that
connect them. Not only are these two structures
physically similar, but the concept of topology
is central to both. The fundamental difference
is that graphs are more general since they deal
strictly with connectivity. Nodes in a graph can
be connected to any other node, and edge overlap
is not an issue. On the other hand, meshes are
restricted by the physical location of constituent
nodes, which can only be connected to those which
are nearby.

Mesh smoothing, or r-refinement, is a simple yet
effective mesh adaptation technique. It involves
moving existing mesh points to areas where
higher resolution is needed, essentially stretching
and compressing the existing mesh. While cell
volumes and node locations change in r-refinement
methods, an important benefit is that mesh
topology does not [4, 5]. In a parallel architecture,
this means load balancing is a one-time cost.
A significant disadvantage of smoothing can be
the creation of low-quality (small cell volume) or



invalid (zero or negative volume) elements. A
great deal of effort has been spent in an attempt
to prevent the formation of these elements, with
solution methods proposed by Farhat and Degand
[7, 9], Zeng and Either [19], and most recently
Bottaso and Agickoz [5, 1].

Finally, the idea of partitioning is essential in
the parallelization of mesh-based algorithms. To
work with large meshes on a parallel system, the
data structure must be split up and distributed
to the system’s processors. To run efficiently,
it is crucial to break up the workload evenly,
and minimize connections between partitions [8,
10]. There are several popular methods for
achieving an appropriate partition for a given
mesh, and they vary in their complexity and
effectiveness. Multilevel partitioning has been
researched extensively by Walshaw et al. [16,
17, 18], and are also the basis for the popular
METIS and ParMETIS programs [11, 12]. A more
simplistic method proposed by Farhat [8] involves
building Voronoi subdomains, and is the basis for
the algorithm used for this research.

2 Algorithms

2.1 Graph Analysis

The Scalable Synthetic Compact Applications
(SSCA) benchmarks developed by the High
Productivity Computer Systems program (HPCS)
are tasks intended to test the performance of
parallel machines [2]. The SSCA 2 benchmark is a
program designed to analyze very large graphs. In
the case of SSCA 2, the graphs are directed and
weighted, meaning edges have specific start and
end nodes, as well as a cost or weight value.

2.1.1 Scalable Data Generator

The untimed Scalable Data Generator, or SDG,
produces the initial list of edges. Given a
parameter ‘SCALE’ as input, the number of nodes
in the graph is set as 2SCALE , and the number of
edges is eight times the number of nodes.

Each edge entry contains three values; start (or
parent) node, end (or child) node, and weight.
Lists of start and end nodes are created using a
random number generator, and are then tested
for "bad" entries. Self-loops and multiple edges
- seen in Fig. 1 - are removed from the list during
a filtering process. The creation-filtering loop

Figure 1: Three-noded graph illustrating (a) a
self-loop, and (b) multiple edges.

continues until the desired number of valid edges
has been reached. Building the list of weights is
trivial, and it is constructed once the start and
end arrays have been built.

2.1.2 Kernel 1 - Graph Construction

The purpose of the first timed kernel is to convert
the original edge list data structure into a useable
format for the remaining kernels. The graph
may be represented in any format, but cannot be
altered after its construction in Kernel 1.

Both the HPCS code and our GPU implemen-
tation use a node-to-node (N2N) data structure.
The N2N structure uses two arrays - a shorter list
of pointers, and a longer list of children. In the
pointer list, the entry at position p is a location
q in the child array; the location where parent p’s
children are stored. The pointer list is ‘number of
nodes’ long, since each node in the graph can be
treated as a parent, and the child list is ‘edges’
long, because it stores all the end nodes from
the original edge list. A simple way to think
of building N2N, is by sorting the original list
according to start node. In this case, the list of
start nodes consists of large groups of 1’s, 2’s, 3’s,
etc. This array is condensed into a list of where

the 1’s, 2’s and 3’s - and hence, their children -
begin. An illustration of this conversion is shown
in Fig. 2.

Both versions of the code perform this conversion
in three steps. First, the number of children
for each node is counted - this is known as a
node’s degree. A simple loop increments counters
corresponding to edge start nodes. Next, this
list of degrees is converted into the pointer list,
using an operation known as a parallel scan. The
scanned pointer value for a node is the sum of
degree values for all preceding nodes. The final
step builds the child list using the newly created



Figure 2: Illustration of conversion from (a) the
original edge list, to (b) list sorted by start node,
and finally to (c) N2N.

pointer list. A loop finds each edge’s start node
and the corresponding pointer, and inserts the
edge’s end node at that location. Care must
be taken to offset individual end node entries
from their start node’s pointer to ensure unique
locations in the child list.

It is also worth nothing that Kernel 1 not only
builds the standard N2N structure, which follows
the true direction of the edges (N2Nout), but it also
builds a second N2N structure that goes "against
the grain" (N2Nin). This second version has
proven useful for the parallel implementations of
Kernels 2 and 4.

2.1.3 Kernel 2 - Classify Large Sets

Kernel 2 searches through edge weights and picks
out those with the largest possible value. This
max-weight value is known a priori. In the case
of Kernel 2, using the N2N data structure has
actually made this task more challenging. In the
original edge list, weights are paired with data for
both nodes. In the N2N structure, weights are
only tied to one node, and finding the second node
is non-trivial.

For the Kernel 2 algorithm, threads search the
weight list in the N2Nin structure for max-weight
values. When one is found, the corresponding
node (the edge’s start node) is saved. Using this
start node and the N2Nout pointer list, the GPU
finds the location of that node’s children, and
quickly searches that limited region for a max-
weight edge. When the weight is found, the
corresponding node (the edge’s end node) is paired
with its start node.

Due to the benchmark’s specifications regarding

Figure 3: Illustration of queue construction
showing (a) the first node, its number of children,
and the location where they will be inserted. Part
(b) shows the second generation and the scanned
count array. Part (c) shows a portion of the third
generation.

number of edges and edge weight distribution,
there are on average only eight max-weight edges
in a graph, regardless of SCALE. As a result, this
kernel has relatively little work to do, and is easily
the fastest of the four timed tasks.

2.1.4 Kernel 3 - Graph Extraction

The third kernel of SSCA 2 is designed to
construct subsets (or subgraphs) of the original
graph, using the edges found by Kernel 2 as
starting points. Kernel 3 starts at a max-weight
edge, and moves out a user-specified number of
levels from it.

Kernel 3 produces a list of nodes which represent
the members of the subgraph. This queue is
built in sections, which are filled as the code
steps out to each new level of the subgraph. The
code reads parent nodes from the current level,
and fills in their children in the next level. The
most challenging part of parallelizing this code
is determining where to insert children into the
queue. Each thread needs its own dedicated space
in the queue, and must know where that space
begins. This is achieved is by keeping count

and point arrays which correspond to the queue.
When a node is added to the queue, its number
of children is recorded in the count array. After
each level is filled, the count array is scanned into
the point array, which then contains the queue
locations for the children of corresponding nodes.
This process is illustrated in Fig. 3.

An important feature of the queuing algorithm
is its ability to discern whether or not a node



is already in the subgraph. Before children are
added, the code checks an array of nodal flags to
make sure they have not previously been added
to the queue. If a node has already been visited,
its reserved spot in the queue is left empty, and a
zero is entered in the count array. This eliminates
extra queue entries, and therefore extra work in
the next queue level.

2.1.5 Kernel 4 - Betweenness Centrality

The goal of Kernel 4 is to determine which nodes
have the highest connectivity, or betweenness
centrality (BC). Given a particular starting node,
partial BC scores are calculated for all other nodes.
This process is repeated using a subset of nodes
as starting points. A node’s final BC value is the
sum of all its partial scores. This is easily the
most computationally-taxing portion of the SSCA
2 code.

As proposed by Brandes [6], and Bader and
Madduri [3], the BC algorithm consists of two
main steps. The outsweep assigns nodal values
of distance to and number of shortest paths back
to the start node. This process is conducted in the
same manner as Kernel 3, moving out visiting new
generations, level by level. The only differences are
nodal values now need to be assigned in addition
to just filling the queue, and the algorithm must
continue for as long as it takes to visit all nodes.
Assigning the depth and shortest path values is a
trivial addition to the queuing code, and since the
algorithm only permits each node to appear in the
queue once, the last level of children will be empty,
and the algorithm will stop on its own.

The insweep works through the queue backwards,
level by level. As the code moves in along shortest
paths (from child to parent), the child’s BC and
shortest paths values are used to update the BC
score for the parent. The N2Nin data structure
- carefully marked during the outsweep - is used
to determine if parents lie along shortest paths.
In equation 1, ν and ω represent parent and
child nodes, respectively. A node’s temporary BC
score (reset after each outsweep/insweep pair) is
represented by δ, while σ is a node’s shortest path
value.

δ[ν]← δ[ν] +
σ[ν]

σ[ω]
· (1 + δ[ν]) (1)

Figure 4: Illustration of face area and cell volume
calculations. The face and cell are defined by the
black and red lines.

2.2 Mesh Smoothing

The bulk of the smoothing algorithm involves
finding the movement, or residual, for each node in
an unstructured tetrahedral mesh. To find a cell’s
contribution to its nodes’ residuals, we minimize
the derivative of a cellular deformation function
with respect to the position of node n, represented
by

⇀
xn. The deformation statistic used in the code

is a cell’s average edge length squared, divided by
cell volume. The function and its derivative are
shown below in equations 2 and 3, respectively. In

the equation 3, the
⇀

Li’s represent lengths of edges
touching node n, and

⇀
n represents the outward-

facing normal for the face opposite node n. The
outer summation is over all cells touching the
node.
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This optimization procedure attempts to minimize
edge lengths while maximizing cell volume. Cross
products of specific edge pairs yield values two
times the face normals (2

⇀
n). The dot product

of these normals with a third edge is analogous
to cell volume, but produces a quantity six times
the true value (6V ). Graphical representations of
these "oversized" values can be seen in Fig. 4.



2.3 Mesh Partitioning

The current serial and parallel algorithms build
partitions using a size-weighted Voronoi-type
method. Partitions are assigned starting points
within the mesh. For a particular node, a loop over
partitions finds the distances between the node
and each partition point. When all partitions have
been checked, nodes are assigned to the closest
one. Each partition essentially grows outward
from its starting point, "collecting" nodes along
the way. This process is iterative, and adjustments
are made to partition positions and weights until
the partitions are well-balanced in terms of size
(number of constituent nodes). Starting points
are re-set at each iteration step, as the average
location of all nodes currently in the partition.
Similarly, at each step, large-size partitions are
given higher weights to lower their maximum
radius, and vice versa.

2.4 Parallel Programming Chal-

lenges

One of the problems frequently encountered
during the parallelization of these programs is
when multiple GPU threads attempt simultaneous
reads or writes to the same memory location.
This never occurs in serial code since only a
single core is active, working on a single data
element. However, in parallel, this happens quite
often. For example, in the smoothing code, even
though all threads work on unique cells, many
share common nodes. Trying to update these
residuals simultaneously can lead to overwriting,
and incorrect results.

The simplest solution to this problem is atomic
functions, which are built into the CUDA API.
These perform a simple locking procedure to seri-
alize threads attempting concurrent reads/writes.
These were critical in SSCA 2 - particularly for
finding nodal degrees in Kernel 1. However, these
only work with integer values, and are therefore,
somewhat limited.

In Kernel 4, to attain the same level of control
adding floating point values to BC scores, we
multiplied decimal values by large powers of ten,
and typecast them as integers. These integers were
added atomically, and the sum was divided by the
same power of ten. This too is imperfect, since
some precision is lost in the conversion.

In the smoothing and partitioning codes, in
some cases we store sums on a per-thread basis,
then add thread sums later. For residuals, we
calculate and store contributions by cell, then
retrieve and add them from a nodal perspective
later. This is equivalent to recasting all scatter
operations into gather operations. It requires
additional connectivity pointers, and reduces
the code performance by necessitating additional
memory reads/writes.

3 Results

3.1 SSCA 2

Work on SSCA 2 has been completed, and the
parallel code uses MPI to run on up to four
graphics cards simultaneously. All comparisons to
serial or CPU versions refer to the HPCS code as
the optimized benchmark. Fig. 5 show speedups
relative to the CPU, for SCALE sizes of 16 through
21. A speedup of 10 indicates the GPU code
ran ten times faster than the CPU. Plots include
data for the CPU, a single GPU, two GPUs and
four GPUs (CPU, GPU x1, GPU x2 and GPU
x4, respectively). All trials were run on Orion,
a machine with an AMD Phenom II Quad-Core
CPU (3.2 GHz) with 8 GB of RAM, and four
NVIDIA GeForce GTX 295 GPUs.

Several important conclusions can be drawn from
this data. First and foremost, GPU performance

is better for larger problem sizes. Throughout this
project, the GPU has only been able to outperform
the CPU consistently for very large SCALEs. As
noted, the codes were tested on a machine with
state of the art CPU components. Even with
some of the best commercial GPUs available, it
was difficult to match the output of a highly
optimized serial processor. Still, it is clear that
there exists a point where problems become so
large that the CPU cannot compete, and the GPU
wins. As problem sizes progress farther beyond
this point, the performance gap continues to grow.
The expectation is that this trend would continue
beyond the current testing limit of SCALE 21.

A second conclusion is that MPI carries a high

cost. While MPI is extremely useful, it can also
slow down a program considerably. This was
particularly evident in the results for Kernel 1.
On a single GPU, the code achieved a modest
speedup of around 2-3x. When a second GPU
was introduced - making MPI communication



Figure 5: Parallel speedups over serial code for
Kernels 1 - 4.

necessary - speedups went from three times faster,
to three times slower. Going to four GPUs
decreased performance by another factor of three.
Compared to the other kernels, Kernel 1 requires
the most MPI communication by far. At the end
of this kernel, the N2N structure is distributed
to all processes, and each uses its own full copy
for the remainder of the program. A way around
this issue is to attempt to "hide" MPI and CUDA
communication using non-blocking MPI sends
and receives and asynchronous CUDA memory
copies. These operations are then performed in
the background while other tasks are worked on
at the same time.

Third, the eye-popping speedups from Kernel 2
highlight a simple yet important fact. These
results showcase the tremendous memory band-

width of the GPU. This is by far the simplest
kernel, since it is composed almost entirely of
memory reads. Because there are so few max-
weight edges, the vast majority of threads will
read a weight from memory, test it, and move
on. Only in extremely rare cases will the code
need to take further action. The simplicity of this
kernel makes for an excellent comparison between
the CPU and GPU at the hardware level. For
computationally-sparse tasks, the GPU is capable
of impressive performance gains, like the 20-60x
that were regularly seen from this portion of the
code.

Finally, the results for Kernels 3 and 4 show code

performance scales with number of processors used.
While this may seem to be obvious, it is not
always an easy relationship to attain. Inefficient
algorithms, overhead for memory copies and kernel
invocations, and restrictions on problem size can
all erode the expected computational efficiency
for the GPU. These results show that with large
SCALE sizes, doubling processing power does
indeed halve the required time almost exactly. It
is not surprising that this trend is apparent on the
two most computationally-intense kernels. Often,
the biggest obstacle in reaching this relationship
is the amount of work per processor. Without
enough work, the GPU simply cannot reach its full
potential. In the case of the last two kernels, even
when additional graphics cards are introduced,
there is so much work to be done, there is still
plenty to go around.



Figure 6: Parallel speedups over serial code for
smoothing and partitioning.

3.2 Smoothing and Partitioning

At present, the parallel smoothing and partition-
ing codes are functioning on a single GPU, and
some preliminary testing has been completed. Fig.
6 shows speedups of the parallel codes over the
serial versions for four test meshes (60k, 154k,
257k, 357k cells, respectively).

In the case of smoothing, all test cases were
non-trivial (node positions were altered by the
smoothing algorithm), and maximum errors in
the parallel solutions never exceeded 0.5%. For
the vast majority of nodes, smoothed GPU nodal
coordinates were identical to the CPU solution to
six digits. The parallel partitioning results were
also highly accurate for all test cases. Maximum
errors in partition sizes did not exceed 0.002%,
and partition coordinates were accurate to four
digits. As seen with the SSCA 2 results, GPU
performance shows a strong correlation to problem
size.

4 Future Work

4.1 SSCA 2

Currently, the parallel code requires all GPUs to
have access to the entire graph data structure,
meaning the whole N2N list must be loaded into
each card’s memory. This means problem size is
bound by the amount of memory on each GPU
(hence, our SCALE limit of 21). Using more
GPUs does not decrease the amount of required
memory per card. This problem is most apparent
for Kernels 3 and 4, since they require the most
memory.

To enhance the scalability of the code, the plan
is to give each process a portion of the N2N list,
and use MPI to cooperatively build the subgraph
or queue. Now, the addition of more GPUs will
reduce the required memory per card, meaning
problem size will only be limited by the number
of cards used.

Implementing this new distributed N2N list
requires making modifications to all the kernels.
Currently, these changes have been finished for
Kernels 1 and 2, but have not been put into place
in other parts of the code. The reduced amount of
MPI communication in Kernel 1 has translated to
better speedups, yet the addition of only a few
MPI commands to Kernel 2 has caused drastic
reductions in performance. The expectation is
that the large amounts of communication required
for Kernels 3 and 4 will lead to very poor results
relative to the current CPU implementation.
However, it is important to keep in mind that
using the same distributed data structure and
algorithm in a CPU code would likely perform
equally poorly. The next step for SSCA 2 is to
get the new data structure working in both the
CPU and GPU codes.

4.2 Smoothing and Partitioning

The main priority for both the parallel smoothing
and partitioning codes is to run more robust
test cases. Ideally, the codes should be tested
on larger meshes, with more complex geometries.
With the largest test case containing only about
360k cells, the codes should really be tested
on meshes containing closer to one million cells.
Furthermore, the current test meshes are all
geometrically simple, as they are either solid
cubes, or rectangular prisms. In the future, the
intent is to run tests on meshes of more complex -
and perhaps more practical - structures.

Another goal for this project is to run the code
on multiple GPUs using MPI. With up to four
cards, the parallel graph analysis code showed
impressive performance gains over the single-GPU
implementation. The expectation is that this same
trend can be demonstrated with the smoothing
and partitioning algorithms.
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