

The Utility of Mimetic Methods for Computing Geophysical Flows

Flow Problems in Oil & Gas Industry March 21, 2013

Blair Perot

Theoretical and Computational Fluid Dynamics Laboratory

Mimetic Methods

Mimetic Description

All Methods: Accuracy, Stability, Convergence

Mimetic Methods: Also have: Secondary conservation statements Wave propagation properties Satisfy constraints (incompressibility) Don't have modes. They mimic the PDE properties.

Get the Physics and Mathematics of PDES right by using Exact Discretization

Why it Matters

- Very large jumps in material properties
- Very high aspect ratio meshes
- Complex physics

Often nobody will notice (quickly) if the computational solution is wrong.

Mimetic Advection $\frac{\partial T}{\partial t} + \mathbf{u} \cdot \nabla T = 0$

Jason Frank, CWI/University of Amsterdam Change in mesh size (3x)

Central

Box Method

Very small timestep.

Mimetic Eigenvalues

Costabel/Dauge, Arnold*, Gerritsma

$$\nabla \times \nabla \times \mathbf{v} - \nabla (\nabla \cdot \mathbf{v}) = \lambda \mathbf{v} \qquad \lambda = m^2 + n^2$$

1,1,2,4,4,5,5,8,...

*Finite Element Exterior Calculus: From Hodge Theory to Numerical Stability

Linear FE

V_{node}

Raviart-Thomas FE $u = \mathbf{v} \cdot \mathbf{t}_{edge}$ 6

Mimetic Vector Fields

 $\nabla \times \nabla \times \mathbf{v} - \nabla (\nabla \cdot \mathbf{v}) = \overline{f}$

Linear FE Raviart-Thomas FE

Mimetic Physics

Discrete Calculus Approach How to always construct a mimetic method.

Separate DiscretizationPDE -> LAfromApproximationLA -> square LA

- Do ALL discretization exactly.
- This means that the calculus and the physics remain exact.

All approximations = interpolation problems.
Numerical approximation only in material laws (which are engineering approximations already)

Example PDE

Physical Equation (Heat Equation)

$$\frac{\partial \left(\rho cT\right)}{\partial t} = \nabla \cdot k \nabla T$$

Components of the Physical Equation

Mimetic Discretization

Exact Discretization of Physics and Calculus.

$$\int_{\tilde{c}} i dV |^{n+1} - \int_{\tilde{c}} i dV |^n + \sum_{\tilde{f}} \int dt \int_{\tilde{f}} \mathbf{q} \cdot \mathbf{n} dA_{\tilde{f}} = 0 \qquad \Rightarrow \qquad I_{\tilde{c}}^{n+1} - I_{\tilde{c}}^n + \mathbf{D}Q_{\tilde{f}} = 0$$
$$\int_{e} \mathbf{g} \cdot d\mathbf{l} = T_{n2} - T_{n1} \qquad \Rightarrow \qquad g_e = \mathbf{G}T_n$$

Numerically Exact

Numerical Approximation of Constitutive Eqns.

$$Q_{\tilde{f}} = -M_1 g_e \implies Q_{\tilde{f}} = -k \frac{A_{\tilde{f}}}{L_e} g_e$$
$$I_{\tilde{c}} = M_2 T_n \implies I_{\tilde{c}} = \rho c V_{\tilde{c}} T_n$$

Numerically Approximate

Dual Mesh Viewpoint

Results

Log scale

-50

 Interesting Developments in Numerical Methods.

 Some of it happening here in the Netherlands

 These methods are very useful for complex physics.

