
Parallel Computational Fluid Dynamics '92R. Pelz, A. Ecer & J. Hauser, eds.Elsevier Press, NetherlandsDirect Numerical Simulation of Turbulence on the Connection MachineJ. Blair PerotDepartment of Mechanical Engineering, Stanford University, Stanford, CA 94305, USAAbstractDetailed performance measurements of the direct numerical simulation of turbu-lence on the Connection Machine 2 are presented. These are compared to similar sim-ulations being performed on the Cray Y-MP. The current and future utility of theConnection Machine as a tool in the direct numerical simulation of turbulence is dis-cussed.1. INTRODUCTIONThe aim of this paper is to evaluate the performance of the Connection Machine2 (CM-2) in the context of the direct numerical simulation (DNS) of turbulence. Thestudy of turbulence through the use of direct computer simulations has, from its incep-tion in the early 1980's, accounted for a signi�cant percentage of scienti�c supercomputerusage. The fundamental questions that can be answered about turbulence are closelyrelated to the current level of supercomputer performance. In fact, turbulence has beenidenti�ed as one of the Grand Challenge problems [1] that could bene�t signi�cantlyfrom increased supercomputer performance and, in particular, from massively parallelcomputers.However, the issue of whether massively parallel machines can actually ful�ll theirperformance expectations when it comes to turbulence simulation is still an open ques-tion. It is now fairly apparent that unlike vector supercomputers, the performance ofmassively parallel computers is not closely related to their peak performance. Instead,massively parallel computers are inevitably dominated by communication overhead.Their performance varies wildly from application to application, depending on how wellthe communication patterns of the application match the communication patterns im-plied by the particular architecture. For instance, the architectures of the CM-2 andIntel Hypercube are optimized for vastly di�erent communication patterns. As a result,stencil type operations work very well on the Connection Machine, and Fast FourierTransforms (FFT's) with large intermediate data rearrangement work well on the IntelHypercube, but not vice versa.Direct numerical simulation of anything more complicated than isotropic decayingturbulence typically involves a number of very di�erent communication patterns anddata structures. Whether these all can be mapped fairly e�ciently to the ConnectionMachine is an interesting question. Any single bottleneck could dramatically e�ect the



performance of the simulation as a whole. Possible bottlenecks that will be investigatedinclude the e�ect of implementing boundary conditions on a SIMD machine, and theimpact of regular but long distance communication. So, despite the fact that turbu-lence simulation involves massively parallel data (on the order of 106 to 107 nodes),has no load balancing problems, and involves only regular communication, it is not aforegone conclusion that the CM-2 is the the supercomputer of choice. Only throughthe actual testing of an existing DNS code, and comparison to current vector supercom-puter performance (as represented by the Cray Y-MP) can the potential of the CM-2for turbulence simulations be evaluated.2. NUMERICAL METHODThe purpose of this section is not to present a new numerical method, although themethod does di�er in some fundamental ways from classical DNS methods. Instead,the purpose is to reveal the variety of solution algorithms, communication patterns anddata structures that are used. An understanding of the basic numerical scheme will alsohelp to put the various performance timings into the proper context.2.1 Spatial DiscretizationThe spatial discretization of the incompressible Navier-Stokes equations is a prima-tive variable, �nite volume method on a staggered mesh. It is very much in the spiritof the discretization �rst introduced by Harlow and Welch [2]. The mesh is cartesianbut not necessarily uniform, and in the results that follow one of the three directionswill be non-uniform. A two dimensional representation of the spatial discretization isshown in Figure 1.
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Figure 1. Locations for the discrete velocity and pressure variables on a 2-D staggeredmesh.



The �nite volume discretization is a departure from the traditional use of spectralmethods in direct turbulence simulations. It is motivated by the desire to implementmore complicated boundary conditions (and eventually more complicated geometries).Fortuitously, this also makes the method far more amenable to implementation on theCM-2 (as the timing results will show). To date, there is still no convincing evidencethat the accuracy of spectral methods is far superior to that of second order methods,when the grid spacing is at the limit of resolving the 
ow. And in any case, this is asecondary issue in the context of this paper.2.2 Temporal DiscretizationThe temporal discretization advances the nonlinear convective terms with a sec-ond order Adams-Bashforth method. An explicit method considerably simpli�es theadvancement of the non-linear terms, but also imposes a stability limit on the CFLnumber. The stability limit is not overly restrictive and corresponds roughly to thecondition that the temporal accuracy match that of the spatial accuracy in a Tay-lor's hypothesis sense. The di�usive terms are advanced implicitly with the trapazoidal(Crank-Nicolson) method. An implicit method removes the very severe stability restric-tions that would otherwise be imposed by this term, and computationally only requiresa single matrix inversion, because the di�usive terms are linear in the velocity. Finally,the pressure is solved for by using a fractional step method [3]. Mathematically thetime discretization can be written as,v� � vn�t +�32(vn � r)vn � 12(vn�1 � r)vn�1� = 12Rer2(v� + vn); (1a)vn+1 � v��t = �rpn+1 (1b)where v� is a temporary intermediate variable. The pressure is found from a Poissonequation obtained by taking the divergence of equation (1b). Ultimately the procedurebreaks down into three fundamental parts,r = ��32(vn � r)vn � 12(vn�1 � r)vn�1�+ 1Rer2(vn) (2)�1� �t2Rer2� v� � vn�t = r (3)�tr2p = r � v� and vn+1 = v� ��trp: (4)The �rst part (Eqn. 2) involves stencil type, nearest neighbor communication to evaluatethe derivatives. All the communication is local and involves only the six neighbors of a3-D cartesian volume. In contrast, the second part (Eqn. 3) involves a matrix inversion,and will ultimately involve long distance communication. The matrix inversion can be



factored into a series of three tridiagonal inversions without any loss in the order ofaccuracy. The �nal part of the solution (Eqn. 4), the Poisson equation, is the mostcomputationally intensive. For a simple domain it can be solved explicitly using acombination of discrete Fourier transforms, cosine transforms and tridiagonal matrixinversion. So, even though this is not a spectral method, an opportunity exists in thisstage to evaluate the performance of FFT's on the CM-2.2.3 Problem Con�guration

7777777777777777777777777777777777777777
7777777777777777777777777777777777777777
7777777777777777777777777777777777777777
7777777777777777777777777777777777777777

7777777777777777777777777777777777777777
7777777777777777777777777777777777777777
7777777777777777777777777777777777777777
7777777777777777777777777777777777777777

INFLOW

homogeneous
isotropic
turbulence

WALL

OUTFLOW

WALLx

yFigure 2. Problem con�guration for the turbulent boundary layer with large free-stream turbulence.The problem con�guration used to test the computer performance is shown inFigure 2. It is a study of spatially decaying turbulence in the presence of a wall,or conversely, a boundary layer in the presence of high free-stream turbulence. Theisotropic, homogeneous turbulence, that enters the domain at the left, interacts withthe walls and decays as it is convected downstream. The domain is periodic in thespanwise (z) direction, and at the top and bottom faces of the domain no-slip boundaryconditions are imposed. The in
ow and out
ow boundary conditions are topics untothemselves, and will not be discussed here or included in any of the timing results. Thegrid is stretched in the wall normal (y) direction in order to resolve the boundary layer.A fairly complicated con�guration was chosen in view of the fact that future simulationswill require at least this degree of versatility.



To con�rm that the method is accurately resolving the turbulence a plot of thedecay of turbulent kinetic energy and dissipation is shown in Figure 3. The slopes ofthe curves are nearly linear and very close to the accepted values of (�1:2 to� 1:4) forthe kinetic energy, and (�2:2 to � 2:4) for the dissipation. This implies that both thelarge scales (responsible for the kinetic energy) and the small scales (responsible for thedissipation) are being adequately resolved.
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Figure 3. The decay of kinetic energy and dissipation as a function of downstreamlocation.3. GENERAL PERFORMANCE RESULTSA good measure of performance for turbulence simulations is the normalized CPU-time, or CPU-time per time-step per computational node. In this way, simulations withvastly di�erent numbers of grid points can be reasonably compared. Figure 4 shows aplot of the normalized CPU-time as a function of the the problem size (or number ofnodes), for the Cray Y-MP and three di�erent sized CM-2 con�gurations. For a 323grid (2x104 nodes) the single processor Y-MP takes 5 �s per time-step per node, whichcorresponds to 145 M
ops. As the problem size increases, the performance of the Y-MPincreases slightly due to the increased vector lengths. At problem sizes corresponding to6x105 nodes it has reached 175 M
ops or almost 4 �s per time-step per node. However,as the problem size increases further there is an abrupt decrease in performance. This isbecause the Y-MP runs out of core memory and data must now be swapped in and outof memory from disk. The CM-2 does not have this problem, because its core memoryis so much cheaper it can provide on the order of 100 times more memory to the user.The outstanding feature of the CM-2 timings is the dramatic increase in perfor-mance with increasing problem size, almost an order of magnitude for the 32k CM-2when the problem size is increased from 323 to 2563. This is in contrast to the Cray Y-
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32k CM-2Figure 4. CPU-time per time-step per node as a function of the problem size for theCray Y-MP and sections of the CM-2.MP which is fairly independent of the grid size. The reason for this behavior is becausethe CM-2 performance is communication limited. Only with very large problems doesthe amount of computation begin to amortize the communication overhead. The e�ectof communication can also be seen in the fact that the Cray obtains, at its worst, 44%of its peak processor speed, but the CM-2 never obtains better than 22% of its peak.In �gure 5 the M
ops ratings of the Y-MP have been used to calculate a Y-MPequivalent M
ops rating for the CM-2. The dependence on problem size is still clear.For larger problems (greater than 1283 nodes) the 16k CM-2 is roughly equivalent toone processor of the Y-MP. For smaller problem sizes, however, it is no longer clear thatthe CM-2 has great performance advantages over the Y-MP. This conclusion may beimportant to other types of turbulence simulation, such as large eddy simulation, whichtend to use smaller grid sizes.Finally, in �gure 6 the normalized CPU-time is given as a function of the machinesize. The slope (given in parentheses) of each line represents the speedup obtained forvarious problem sizes. Only the larger grid sizes manage to overwhelm the communica-tion overhead and obtain reasonable speedups. With the smallest grid of 323 almost nospeedup was obtained by adding more processors. Note that while the 1283 simulationonly takes about ten seconds per time-step, a single simulation takes on the order of ahundred time-steps, and reasonably converged turbulence statistics require on the orderof a hundred simulations. So, the 1283 problem actually requires about 30 CPU-hoursof computer time.It is important to mention some of the factors that may e�ect the CM-2 timings
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Figure 5. Cray Y-MP equivalent M
ops as a function of the problem size for varioussections of the CM-2.
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that are presented above. The number of grid points along each axis are a power of two.Many CM-2 subroutines run more e�ciently with power of two axes. 32-bit 
oatingpoint was used, as opposed to 64-bit on the Cray Y-MP, since 32-bit was deemed to besu�ciently accurate. The CM-2 actually has a 64-bit 
oating point unit, so 32-bit onlysaves about 25% on the computation time. Comparing 64-bit and 32-bit simulations islegitimate because the ultimate concern is the time it takes to arrive at a su�cientlyaccurate solution. Finally, the timings were performed on an unloaded Sun workstationfront end. The loading and type of front end were found to e�ect performance by asmuch as 50%.4. DETAILED TIMINGSThe code divides naturally into three parts each of which are fairly typical of DNS,(and computational 
uid dynamics, in general). By analyzing each of these parts indetail, it will become clear where bottlenecks lie, and how well individual algorithmsmap to the CM-2.4.1 First StageThe �rst stage of the algorithm involves explicit stencil type operations to calculatethe derivatives of the convective and di�usive terms. The operation is given by,r = ��32(vn � r)vn � 12(vn�1 � r)vn�1�+ 1Rer2(vn): (5)This involves nearest neighbor communication which is very e�ciently implemented onthe Connection Machine provided NEWS communication grid. For a 1283 grid only 25%of the total time was spent in this portion of the code (as opposed to 30% for the Y-MP),and a speedup of 96% was obtained (as opposed to 89% for the overall code) when thegrid was doubled. This excellent performance is not due to a lack of communication inthis portion of the code, fully 50% of the total time is spent in communication (withinthe CSHIFT function). It is due to the fact the CM-2 is well suited to cartesian nearestneighbor communication.In addition, this portion of the code is where the majority of boundary conditionsare implemented. Boundary conditions on a SIMD machine require that all interiorprocessors lie idle while the boundary nodes do something special. This can impact theoverall performance signi�cantly. For this stage of the algorithm it was found that thefour domain faces that require boundary conditions took on the order of 30% of thetime. For this reason, algorithms that can naturally incorporate boundary conditionsinto the solution procedure are very desirable on the CM-2.4.2 Second StageThe second stage of the algorithm requires the solution of a Helmholtz equation,�1� �t2Rer2� v� � vn�t = r: (6)



There are a number of techniques for the solution of this matrix equation. On the Cray,the matrix is factored into a set of three tridiagonal matrices and then Guass eliminationis used to solve the tridiagonals. On the CM-2 the same procedure can be used but aparallel tridiagonal algorithm such as cyclic reduction [4] must be substituted for serialGuass elimination. Or, on the CM-2, the matrix can be left unfactored and simplysolved using an iterative technique such as conjugate gradients [5]. In either case, thisportion of the code takes about 25% of the overall time, compared to about 30% for theY-MP.Cyclic reduction involves long distance communication. For the 1283 grid, 85%of the cyclic reduction algorithm was spent in communication and a speedup of only88% was obtained. In contrast, the conjugate gradient solution technique involves onlynearest neighbor communication, and had a very good speedup. However, the conjugategradient (CG) algorithm involves iteration. It was found that because the matrix ishighly diagonally dominant, only 2-4 iterations are required, and the conjugate gradientalgorithm is competitive with the more complicated matrix factorization and cyclicreduction technique. This is a useful fact for those cases, such as unstructured meshes,where the matrix can not be factored.4.3 Third StageThe �nal stage of the algorithm involves the solution of a Poisson equation for thepressure,�tr2p = r � v�: (7)This is the most computationally intensive portion of the algorithm. For the simplegeometry of this 
ow, this equation can be solved explicitly through the use of a Fouriertransform in the z-direction, a cosine transform in the x-direction, and a tridiagonalmatrix inversion in the y-direction [6]. Both the Fourier transform and cosine transforminvolve calls to the Connection Machine FFT subroutines.FFT's involve regular (butter
y), but long distance communication. The FFT'shave linear speedup and scale linearly in the number of data points but are very slow.Fully 50% of this portion of the code (and 25% of the total time) is spent in four FFTcalls. A simple diagonally preconditioned conjugate gradient solution of the Poissonequation was found to be only three times to ten times slower than the transformmethod. This is because 15 iterations of the CG method can be accomplished in aboutthe time it takes to do a single FFT. With better preconditioning, the CG methodwould be very competitive with the transform method.5. ADDITIONAL ISSUESIn an evaluation of the CM-2 as a tool for turbulence research there are other issuesbesides performance. For instance, the issue of memory has already been mentioned.Being able to perform simulations entirely in core memory not only saves time swappingout to disk, but considerably simpli�es the programming burden.In terms of programming, the CM-2 is very similar to the Y-MP. The SIMD archi-tecture allows a serial programing style, and similar programming environment. This



is a great advantage of SIMD machines that should not be overlooked by the applica-tion programmer when evaluating the utility of parallel architectures. Both machinescompile Fortran 90, and the CM-2 extensions to Fortran 90 are a very useful addition.Optimization on the Y-MP is much easier than on the CM-2, because the ConnectionMachine fortran compiler is still fairly unpredictable. But the debugging environmentof the CM-2 tends to make up for this de�ciency. And as we have seen, the lack ofversatility of the CM-2 is made up for by the fact that it performs many brute forcealgorithms very e�ciently.Another useful measure besides performance is performance per dollar, or M
opsper Mdollar. A Cray Y-MP, such as the one used in this study costs approximately25 million dollars ( 3.125 million per processor), and averages about 160 M
ops, orabout 50 M
ops/Mdollar. The CM-2 costs about 5 million dollars. If a performanceof 300 to 500 Cray equivalent M
ops is assumed (remembering, of course, that CM-2performance is very problem dependent), then the CM-2 gets from 60 M
ops/Mdollar to100 M
ops/Mdollar. These numbers are very approximate, and probably only accurateto within a factor of two. Nonetheless, they do indicate that the Connection Machineis already very competitive with vector architectures, not only in performance but interms of cost, as well.6. CONCLUSIONSThe results of this study indicate that the Connection Machine is a viable tool forthe direct numerical simulation of turbulence. Its performance and performance perdollar can be very comparable to similar generation vector supercomputers. However,unlike vector supercomputers the performance of the CM-2 is a strong function of theproblem size. Traditional performance measures need to be altered to account for thesetypes of communication e�ects which are common to all massively parallel computers.The architecture of the CM-2 limits its versatility. In short, it is a brute forcemachine, overwhelming problems with quantity rather than quality. As a result ittends to perform brute force algorithms, such as conjugate gradients or �nite volumediscretizations, just as e�ciently as more cleverly constructed algorithms. This fact, isnot entirely negative. It means that in those cases were tricks such as matrix factoringand variable transformation can not be applied (ie. general geometries), the CM-2 willnot experience any loss in performance. Therefore, despite its lack of versatility theCM-2 may actually be more useful for complicated problems, because these problemare only amenable to brute force methods.Direct numerical simulation of turbulence has always been closely tied to the per-formance of state of the art supercomputers. Many assumptions about turbulence simu-lation have been based on the vector nature of supercomputers. Many of these assump-tions, such as the superiority of spectral methods, will be challenged as the availabilityof massively parallel computing begins to open computational horizons. It appears thatthe CM-2 and its successors will be key partners in these new explorations of turbulencesimulation.



AcknowledgementsThis work was funded by a grant from the National Science Foundation. All com-puter time on the CM-2 and Cray Y-MP was provided courtesy of the NAS division ofNASA-Ames Research Center.References1. Committee on Physical, Mathematical, and Engineering Sciences, Grand Challenges:High Performance Computing and Communications, OSTP FCCSET report. NationalScience Foundation.2. F. H. Harlow and J. E. Welsh, Phys. Fluids 8, (1965) 2182-21893. J. B. Perot, An analysis of the fractional step method. Submitted to the Jour. Comp.Physics, (1992).4. R. W. Hockney and C. R. Jesshope, Parallel Computers 2 Bristol and Philadelphia:Adam Hilger, (1988). 475-489.5. W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, NumericalRecipes, Cambridge University Press, (1986). 70-73.6. B. L. Buzbee, G. H. Golub, and C. M. Nielson, On Direct Methods for SolvingPoisson's Equation, SIAM J. Numer. Anal. 7-4, (1970) 627-656.


