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Abstract

Reynolds Averaged Navier-Stokes (RANS) turbulenaalets are usually concerned with modeling the
Reynolds stress tensor. An alternative approacRA®IS turbulence modeling is described where the
primary modeled quantities are the scalar and vguitentials of the turbulent body force - the dgence

of the Reynolds stress tensor. This approach asvshto have a number of attractive properties, most
important of which is the ability to model non-élifiium turbulence situations accurately at a carsd
complexity comparable to the widely used two-eqrathodels such ass-

Like Reynolds stress transport equation models, pitepposed model does not require a hypothesized
constitutive relation between the turbulence arel itean flow variables. This allows non-equilibrium
turbulence to modeled effectively. However, unliReynolds stress transport equation models, the
proposed system of partial differential equaticsiich simpler to model and compute. It invohasdr
variables, no realizability conditions, and remottes strong coupling between the equations. Aildeta
analysis of the turbulent body force potentials Hradr physical significance reveals that they espnt the
relevant information contained in the Reynoldssstreensor and are fundamental turbulence quantities
their own right.

Model predictions for a number of basic turbuldotvs are presented including: channel flow at uasio
Reynolds numbers, mixing layer, rotating channeWfl adverse pressure gradient boundary layers, low
Reynolds number backward facing step, and tramsitdurbulence in channel flow.

PACS: 47.27.Ak, 47.27.Eq, 47.27.Jv



Introduction

Engineering predictions of turbulent flow rely hégwn the Reynolds Averaged Navier-
Stokes (RANS) equations. The RANS equations, whadk very similar to the original
governing Navier-Stokes equations, describe theawieh of the mean flow. This greatly
reduces the computational expense of solving th&tens since small temporal and spatial
scales associated with the turbulence are notwedol However, averaging the Navier-
Stokes equations to obtain the RANS equations resix@ome information from the system
and the RANS equations are not closed. RANS modmise in a wide variety of forms.
Each attempts to close the system in some phygiogdilistic way, with the more complex
models hopefully representing more of the undegyirbulence physics.

For incompressible, isothermal flow the Reynolderaged Navier-Stokes equations take the
form,

%tﬂ Ofuu) =-0p OV Ou- OR (1)
Olu=0 (1b)

where u is the mean velocity vectop is the mean pressure/density,is the kinematic

viscosity, andR =u u’ is the Reynolds stress tensor. The Reynoldssstesssor is the
correlation of the fluctuating velocity componeatsl represents the crucial unknown in these
equations. The fundamental goal of RANS model® isypothesize a relationship between
this tensor and the mean flow variables so thasE¢fta) and (1b) can be solved. The same
principals exist for the general (compressible) FBAMquations, but we will restrict our
attention to the incompressible case here and giwaut this document for the sake of
simplicity.

Many RANS models assume a constitutive algebrditiom between the Reynolds stress
tensor and the mean flow gradients. The most commatetion is the eddy viscosity

model,R =2kl —v_(Ou Ou"), wherek is the turbulent kinetic energy and is the eddy

viscosity. For incompressible flow can be absorbed into the pressure and is notreshui
explicitly. This relation is also called the Bsugesq hypothesis or the linear eddy viscosity
model. It forms the basis for a wide variety &N&S turbulence models which each differ in
how the eddy viscosity is calculated. More compbenstitutive relations are certainly
possiblé* and these nonlinear eddy viscosity relations fisumber of deficiencies of the
standard linear model, but they still assume thatttirbulence is close to equilibrium and has
had time to adjust to any changes in the mean fldynfortunately, many turbulent flows of
practical engineering significance are not closesdilibrium. A classic example is the
adverse pressure gradient boundary layer. Otrenpbes include rapidly strained flows and
three-dimensional boundary layers. In fact, LundN&vikov’ have shown (using direct
numerical simulation data) that, in general, areligic constitutive relation of arbitrary
complexity based on the mean velocity gradientsimslamentally incapable of representing
the Reynolds stresses. The equilibrium assumptidedded in any constitutive relation for
the Reynolds stress tensor is emphasized here d®dha proposed model avoids such a
relation and therefore has the potential to predizh-equilibrium turbulent flows more
accurately.

There is some prior evidence that models whichdraotonstitutive relation for the Reynolds
stress tensor outperform other models of the saemergl class. Both examples of this
phenomenon come from models developed for nearhallph shear flows (where the



Reynolds shear stress is the important Reynoldsstr For example, the zero-equation
model of Johnson & Kirfgsolves an ordinary differential equation for thaximum turbulent
shear stress. As a result it generally perforniebéhan other zero-equation models which
use the traditional approach of defining an eddgaesity. A similar result is also obtained
with two-equation models. The model of Bradshaerrigs & Atwell was widely accepted

to be the most accurate model of the 1968 Stardonapetitiof.  This model differed from
the competitors in that it solved an equation far shear stress directly, rather than using a
constitutive equation involving the mean shear. e Tgrincipal drawback of both these
methods (and probably the reason that they aremooé popular) is that they can only be
applied to nearly parallel shear flows. In somesse the proposed model can be viewed as a
way to generalize the two-equation model of Bradsét al.to arbitrary flows.

In the past, for arbitrary flows the only alternatito using a constitutive relation was to solve
modeled transport equations for the Reynolds stesssor itself (first proposed by Rolta
Reynolds stress transport mod&f8 can potentially contain more physics than eddgesity
based models, however the equations are signifjcanbre difficult to solve. In three
dimensions one must solve six highly coupled trartspquations for each Reynolds stress.
The equations are stiff, and none of the Reynotdssses are universally dominant, so
uncoupling the equations numerically is very diffic In addition, the Reynolds stress tensor
is a positive definite tensor but the modeled equatoften do not preserve this property.
The proposed model does not suffer from thesecdiffes. It involves fewer equations than a
Reynolds stress transport model. The equationsnarestrongly coupled and are not as
numerically stiff.

The key to developing a model which avoids theafseconstitutive relation and yet does not
involve the complexity of a full Reynolds stresansport closure is to note that the Reynolds
stresses contain more information than requirethbymean flow. Only the divergence of the
Reynolds stress tensor (a body force vector) isired to solve for the mean flow. With this
in mind, the potential turbulence model defines tweav turbulent quantities — the scalar and
vector potentials of the body force vedforThe advantages of a model that uses these
turbulent potentials, rather than the body forcetaeitself, are twofold. Firstly, this allows
the momentum equation to remain a conservativeteouaSecondly, and more importantly,
these potentials have a very clear physical inggpion which will facilitate the construction
of models for their evolution. Turbulence modelingsed on the force vector itself (or its
rotational component — the Lamb vector) have bempgsed by Wu, Zhou & W and
Marmanis®, but the author is not aware of any model resdtsed on these ideas.

The properties of the scalar and vector potentidigshe turbulent body force (turbulent
potentials) are derived in section 2. Exact transpquations for these potentials are derived
in section 3 and the unclosed source terms in thqeations are then modeled. Section 4 is a
short summary of the model and its theoretical erogs. Predictions for some basic
turbulent flows are presented in Section 5, andsaudsion of the major conclusions of this
work are found in section 6.

2. Turbulent Potentials

The scalar potentialgg, and vector potentialipy, of the turbulent body force are defined
mathematically by the following equations.

O¢+0OxyP=0[R (2a)

Oly=0 (2b)



The second equation is a constraint on the veattangtial. Other constraints are possible but
this is the simplest for the purposes of our anslysThese equations can be rewritten to
express the turbulent potentials individually.

= OO(OR) (39)
- Ofp= Ox(OR) (3b)

The boundary conditions on these elliptic equatiaresprescribed so that the potentials have
a real physical interpretation as turbulence qtiasti We therefore require that when
turbulence is absent, the potentials also vanidie result is that both potentials are required
to go to zero at infinity, at a wall, or at a freerface. The free-surface condition is less
intuitive but is consistent with the analysis afvils with a single inhomogeneous direction
described below.

Note that by its very definition (Egn. 2a) the scgdotential is that part of the turbulence that
contributes to the mean pressure but does notteffiecmean vorticity. Only the vector
potential has the ability to effect the mean vdgticand it only moves the vorticity around
(enhanced transport), it does not create or destiegn vorticity. Physically, we sometimes
find it useful to regard the scalar potential ameasure of the average pressure drop in the
cores of turbulent vortices, and the vector poédrds a measure of the average vorticity
magnitude of the turbulent vortices.

In flows with a single inhomogeneous direction ($hg y-direction), Eqns. (3a) and (3b)
simplify to ¢=R,,, Y, =-R_,, ¥, =0,y, =R, . For this reason, it is also reasonable to

view the vector potential as a conceptual genextidin of the shear stress’y’) to arbitrary
geometries and three dimensions. In nominally tiwoesisional flows the vector potential is
aligned perpendicular to the flow (like the vortyyiand has only a single nonzero component
(W,). The scalar potential (in combination with tlhebulent kinetic energy) gives a good

indication of the anisotropy of the turbulence &fundamental to modeling the presence of
walls and/or surfaces without using wall functioriBhese relations will be used later, when
evaluating the model predictions against experialeand DNS data for the Reynolds

stresses.

In three-dimensional flows the presence of the rdigace free constraint on the vector
potential means that only two components of theéorgootential need to updated. The third
can be obtained from the divergence constraintfadti in the 3D numerical method recently
developed by the author the vector potential isatgd at roughly the same computational
cost as the scalar potential. Since khand € transport equations are also solved with the
model, the overall complexity and cost of solvihg potential model is a maximum of five
transport equations (four in 2D). Coupled with thet that these equations can solved in an
uncoupled fashion and are not particularly stifg turrent model is an order of magnitude
faster than Reynolds stress transport equatiorui@sswhich require updating at least seven
coupled equations (five in 2D). However, this retittn in cost sacrifices little, if any, loss in
the potential predictive capacity of the model canal to Reynolds stress transport models.

3. Transport Equations for the Turbulent Potentials

Like the Reynolds stress transport equations thectegquations for the evolution of the
turbulent potentials can be derived analyticallyfhe connection with Reynolds stress
transport models is most clearly understood if tlegivation proceeds directly from the
Reynolds stress transport equations. In compaatioo these equations are written as,
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where P is the production termg is the dissipation tensor1 is the pressure-velocity
gradient correlation tensor afdis the velocity fluctuation triple correlation. h& definition

of the last three source terms is not unique, licumulative effects of these last three terms
must somehow be modeled in order to solve the emsat The corresponding equations for
the evolution of the turbulent potentials are,

L9 00 v DP9 =R, 000G+ 0) ®2)
0 (gtzw)"'lDD(DzllJ)'V DZ(DZLIJ):PJ Ox O-e+M= OL) (5b)

The production terms are no longer directly relateanly the turbulent potentials and the
velocity gradients. So in flows with more than adieection of inhomogeneity, part of the
production terms must be modeled. In turbulent fowith a single direction of

inhomogeneity,P,is zero andP,= [0°(qw), where « is the mean vorticity.  In addition,
when only one direction of inhomogeneity is preséntlO0{M) 0*M,, and

- Ox OQME 0O*(-M,,0,M,,) for any symmetric tensorM. So when one

inhomogeneous direction is present the transpartitéans for the turbulent potentials are
identical to the transport equations for the middiéumn (or row) of the Reynolds stress
tensor. The other Reynolds stress componeRisR.,,R,,) do not directly influence the

mean flow. However, it should be noted that theaiming Reynolds stress can, and probably
do, influence the source terms in the transportiggus for the turbulent potentials in Egn. 5.
These more subtle effects on the mean flow evailudice accounted for in the model by
carrying a transport equation for the turbulenekimenergy and also the dissipation rate.

While the model includes transport equations Kand ¢ it should be emphasized that the
proposed model is a significant departure fromdaiath two-equation models. These auxiliary
gquantities are only used to help model the souzcmd in the turbulent potential evolution
equations. They are not used to determine thedéy stress tensor and the resulting mean
flow. The dissipation rate was chosen for thigigtbecause some of the test cases have this
quantity available for comparison, but the choideth® particular ‘scale’ equation is not
thought to have a profound effect on the overalfqgenance of the model, since it no longer
appears directly in an expression for the Reynsidsses.

The elimination of the constitutive equation forettiReynolds stresses is an important
departure from two-equation models that removesairtee weaker modeling assumptions.
In flows with a single inhomogeneous direction gii@t shear flows), the similarity with a
Reynolds stress transport model is very clear.e @iy significant departure is a lumping of
the “secondary” Reynolds stresses (those whoseaegrtaddo not directly influence the mean
flow evolution), into a single quantity — the tukent kinetic energy.  This approach
effectively reduces the number of equations in § which is least likely to impact the mean
flow predictions. In addition, it separates theesses in a meaningful way, allowing the
solution of the turbulent transport equations tonbenerically uncoupled.  As mentioned
earlier, this idea of isolating the important Relgsostresses has been used previously for
models restricted to parallel shear flows. Hesve the turbulent potentials and their
evolution equations are well defined in any flowwation and allow one to effectively isolate
the most influential parts of the Reynolds stressor in any flow geometry.

The general modeling philosophy of this project bagn to use existing Reynolds stress
transport models, and the assumption of a sing®nmgeneous direction, to guide the
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construction of the turbulent potential source trmOther guiding factors have been the
construction of a model that naturally obtains ¢berect asymptotic behavior near walls and
free surfaces, and a model which responds correxghearing, both initially (rapid distortion
theory - RDT) and in the long time limit.  Obtaigi the correct rapid response for shear
flows is important because this situation is clpsditained by many engineering applications.
Examples are, free-stream turbulence which suddamtpunters an obstacle (such as a blade
in a turbine), and the initial development of tepidboundary layers and free shear layers.

Three principal terms need to be modeled: dissipatpressure coupling, and turbulent
transport. There is some ambiguity in how thesmseare defined, but this is of little concern
here, since the goal is only to model the respeqilwsical effects. In addition, the effects of
system rotation, and transition have also beenuded. The modeling of each term is
described below.

3.1 Dissipation

In Reynolds stress transport models the dissipagasor is often modeled as an isotropic
tensor; the theory being that at high Reynolds remntsmall scales should be isotropic.
Recent experiments at NASA-Ames by Saddotightlicate that this hypothesis is probably
correct at high enough Reynolds numbers. Howekierdissipation rate used in the model is
actually an integral over all scales not just snsathles. While small scales dominate this
integral, recent work™® suggests that the large-scale components canenneglected in a
wide class of flows. Therefore we move to the dexel of approximation, where a portion
of the dissipation is isotropic and the rest ispgomional to the Reynolds stress tensor. Rotta
proposed that the dissipation tensor was propatiém the Reynolds stress tensor. It is
thought that the Rotta model is the low Reynoldsiber limit and it has been shown to work
quite well near wallS. Most dissipation tensor models can be writtenthie form
e=(l-a)ze +a<R, whereeis the dissipation rate of turbulent kinetic engrggpda is
some blending parameter. Hanjalic & Laurfdersed a blending factor that was a function of
the turbulent Reynolds number. More recently theree been proposals to use a function of
a two-componentality factor (which requires theusioh of an additional PDEY} In this

work we advocatea =1/(1+22). Such a model has the right near wall and isatrop

turbulence limits. In addition it implies that thaisotropy of the dissipation tensor is one half
the anisotropy of the Reynolds stress tensor f@irstd isotropic turbulence, which is the
correct rapid distortion limit for both irrotatiohand rotational mean flok%s

Assuming either that the inverse turbulent timelesaaries slowly or that the flow has a
single direction of inhomogeneity gives the follogidissipation models, ¢, =2a ¢ and

€, =0fy,. These models show very good agreement with tN& Bata for turbulent
channel flow. However, they do not have the cdresmymptotic behavior near a wall or a
free surface (wher@ — 1). At a wall the scalar and vector dissipationudti@o like 4£¢

and 2£¢ , respectively. At a free-surface they should lige %(; and O(y). The
asymptotic order is correct in each case, but tivestants are not correct. These constants
(along with the pressure redistribution constards® critical to obtaining the correct
asymptotic behavior of the turbulent potentialssaNa wall the potentials go like*and y°.

Obtaining this sort of asymptotic behavior withimgée boundary condition (zero potential at
the wall) is not a trivial task, and requires thia¢ modeled source terms be exact at the
boundary.

Fortunately, a dissipation model that is exact altsrand free-surfaces has been proposed and
tested by Perot & Mofi. We use this model to motivate the near boundamns. The
resulting dissipation terms are,
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where g = (saurzrmire)? -y = 154 /k , and Re=k?/(ve). The gradient terms make the
model exact at walls and free surfaces. The pasnfe turns the standard part of the model

off at very low Reynolds numbers. Both these miodifons are significant only well within
the laminar sublayer but can not be neglected wals or surfaces are present.

The model would be more elegant without the indgif £, but this does not seem possible

for a model that integrates the equations up tovihl. All low Reynolds number models
damp the dissipation term near the wall. The &umental problem appears to be thdk is

not the correct inverse time scale in highly amigat regions such as near a wall or surface.
The current form forf is ad hocand is essentially borrowed from Parneix, Laure&ce

Durbir?®. However, the exact form is not important, and hveee not investigated simpler
alternatives at this time. Note that the only madastants which enter the dissipation model
appear in the parametér, which is effective only very close to a wall arface.

3.2 Pressure Coupling

Coupling between the pressure gradient and veligione of the important physical effects
that can be captured by Reynolds stress transpmatels This correlation produces counter-
gradient transport (a reduction of the turbuleahgport term), as well as a redistribution of
turbulent energy among the various Reynolds stcessponents. The development of the
pressure coupling terms is motivated by the exaclution equation for the Reynolds stress
anisotropy tensora=(R —2kl)/k. This evolution equation contains the pressurgliog
term as one of the source terms. The model asstinasthe pressure coupling term is
proportional to the other source terms in the drogy evolution equation. This assumption
gives, N =Cpl(e -£R)-Cp2 (P-£R), where N is the pressure coupling term,is the
Reynolds stress production tensor, &1d the production of turbulent kinetic energy.

When the previously proposed dissipation modehtiwduced into this equation (without the
near wall corrections) the pressure coupling term ecomes,
M=Cpll-a)£(2kl -R)-Cp2(P-£R). This bears considerable resemblance to classic

pressure coupling models. The second term idagitiai the Isotropization of Production (1P)
model of Launder, Reece & Rd¥iwhich is Cp2(P—-2Pl)). To obtain the correct initial

behavior of the shear-stress in rapidly distorteinbgeneous shear flows a value of
Cp2=3/5is required.

The first term is a return-to-isotropy term muligal by (1ea). In isotropic turbulence (&) =

%, and near walls and surfaceso(l= 0. This is in qualitative agreement with the
simulations of Perot & Mofft and predictions of Lumléy which indicate that return-to-
isotropy is a good approximation for nearly isotoofurbulence and is not present at low
Reynolds numbers and near boundaries. The valubeofRotta constant’ for the classic
return to isotropy model is commonly taken in th@ge 1.5 to almost 3.0. The value of
Cpl=4.2used in this work gives an equivalent Rotta constdri.6 for shear flows and 2.1
for isotropic turbulence. In order to obtain ndure-to-isotropy effect at low turbulent
Reynolds numbers the return-to-isotropy term isiddig by (1+25/Re)where Re is the
turbulent Reynolds number. This near wall modifma is similar to the near wall
modification of the dissipation model and it toolyorromes into effect in the laminar
sublayer. Its actual form (or the value of 25)ds particularly critical to the model.



This basic pressure coupling model (as well amise classic variations) produces too much
production of the turbulent potentials in the neall region. Durbif® approached the
problem of too much production near the wall byngsan additional elliptic equation to damp
the pressure coupling term near the wall. This ties added benefit of allowing the
imposition of an additional boundary condition tlatuld then be used to force the correct
asymptotic behavior of the potentials. This is Eagant solution but was not found necessary
in this modeling framework. Interestingly, the saeifect can be obtained with the following
near wall pressure coupling term;+—c&-77€. This term has the correct asymptotic

behavior near both walls and free-surfaces, anapgisars at high Reynolds numbers. Direct
numerical simulations of Perot & Mdihindicate that the pressure coupling term is styong
influenced by viscous dissipation near walls andases. A value ofCp3= 012 is used in

the subsequent calculations.

The final enhancement to the pressure coupling terformulated to allow the scalar
potential to obtain the correct behavior for rapidistorted shear flow. The scalar potential
has the interesting property that it decreases vtherflow is suddenly sheared.  For this

reason we add the following terr(Cp2 + Cp4) #m - P)(2aR /k) . The constant is set

by Rapid Distortion Theory (RDT) to l@&p4 =6/7. When the eddy viscosity hypothesis is
an accurate approximation this term is small opzelt only becomes significant when the

flow is in a strong non-equilibrium situation (suak RDT). If one assumes that Cp2 and
Cp4 must be set to obtain the correct RDT respoties the only free constants in the

modeling of pressure coupling term are Cpl andhéa-wall/low Re corrections.

3.3 Turbulent Transport

The enhanced transport which turbulence invarigdrtyduces is modeled using a gradient
transport hypothesis. This results in the follogvisource terms for the scalar and vector
potentialsJ [ (v, /0,)d¢ and Ol(v./0,)0¢ . In flows with a single inhomogeneous
direction these models are equivalent to the DalyH&low'* model for Reynolds stress

turbulent transport, where the eddy viscosity iingel asv, =C %, with C, =21 The

wE
constant,o, = 079, is the same for both the potentials and the teriiukinetic energy
transport term. It was obtained by solving khequation in turbulent channel flow, using the
exact production and dissipation (from DNS datay] abtaining a best fit. Note that this is
somewhat lower than the conventional value of IHawever, the conventional value is set
S0 as to counteract some inadequacies of trguation and the current value agrees well with
other DNS simulatiof& The value ofo, = 079gives an equivalent Daly & Harlow

constant which is well within the range [.20 to].26mmonly used for that model.

3.4 Rotation

The principal effects of system rotation appearlieily in the Reynolds stress transport
equations via the term2(QxR +[QxR]"), where Q is the system rotation vector. The
trace of this term is zero so rotation has no ekpéffect on the turbulent kinetic energy.
This is one reason why thée model and its variants often represent rotatidaces fairly
poorly. For a constant (in space) rotation rtite,corresponding scalar potential source term
is —4Q [¢ . For fully three-dimensional flows the vector @atial rotation term is complex

and is given byRp+ OZ{20O[0O(F¥ Ox(OxR)']} wheref is the turbulent body force.
For a two-dimensional flow the term involvirigs zero. The last term must be modeled in
any dimension since the full Reynolds stress teissoo longer calculated. Assuming that the
Reynolds stress tensor is isotropic and the flow2Ds gives —2Q(£k — ¢) for the vector
potential rotation term. Both rotation terms halke important property of breaking system
symmetries under the influence of rotation. Besidetroducing an addition explicit



production term rotation has secondary effectshenttirbulence evolution. These secondary
effects have not been included in the model attiims.

3.5 Transition

Transition is a complex phenomenon that is depenbdetih on the flow configuration and
initial disturbance spectrum. Many low Reynolds memtwo equations models have been
shown to be able to predict at least the qualigabehavior of relaminarization and bypass
transitiort”*~ Predictions of transition using Reynolds streasgport models have had less
succes¥. In this model we introduce a term which allowasnsition to be controlled, but
which does not otherwise influence the turbulencedistions. The following term is
included in the scalar potential equatiof,P1-%2). C, can be taken anywhere in the
range 0.01 to 1.0e-5. The smaller values delayttamsition process and increase the
transition time by an order of magnitude. Theigbiio tune this constant gives the model
considerable flexibility in predicting differentpgs of transition processes.

3.6 Turbulent Kinetic Energy and Dissipation Equations

The turbulent potential transport equations arepkupented by transport equations for the
turbulent kinetic energy and the dissipation. Ehegquations where chosen because they are
widely used for engineering solutions, and becalaga for bottk ande are widely available.
These equations enable the system to behave dgriactime developing or convection
dominated situations, and help to make the equasgstem more robust in situations where
the mean flow gradients are small.

If computational time is a serious issue, algebnaiclels for either or both of these variables
can be used. In particular, for shear dominateowd] k=2(¢ +E¢ (¢ /¢)and

- ak ; ; ; @ ;
¢ = C Py are good approximations. The latter expressioegisivalent to the linear eddy

viscosity hypothesis (though used in a differemtest). Computations of turbulent channel
flow with these algebraic expressions akd- 1.1showed a reasonable agreement with the
DNS data of Kim, Moin & Mosér.

Thek ande transport equations used in this study are thedara implementation with a few
exceptions. As mentioned previousty, has been reduced from 1.0 to 0.79 after careful
comparisons with the DNS data of turbulent chaffiogl. In addition, following the example
of Durbirf®, the inverse time scale in theequation is modified by5 . Finally, an additional
transport term has been added toglegjuation to reduce the dissipation in regionstiaig
turbulent kinetic energy diffusion. Itis given,b§ ,(1-a)2e0F 0k andC,, = 017. This

term has the property that it allows both the ngxiayer and the boundary layer to be
modeled without any adjustments to the other madeistants. In addition, the center of
turbulent channel flow is represented more acclyratken this term is present.

The constants in thi'e model (specificallyC_, = 1.5and C,, = 183) determine the growth

rate of the turbulence in homogeneous shear flawsrey times. The standatde model
predicts a growth rate of 0.243. The differentimigbn of the eddy viscosity used in this
model leads to a much more accurate growth rated.©#3, which is very close to
experimental measuremetits

4. Turbulent Body Force Potential Model

4.1 Model Summary
The transport equations that constitute the turiiygdetential model are summarized below.
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Initially these equations appear daunting. In taety represent a fairly simple extension of
the classick/e equation system, and are relatively simple comgpare Reynolds stress
transport equation models. The second sourceitethe potential equations (in parentheses)
is a dissipation-like term. This term is a staddalissipation model with two near-
wall/surface modifications, one for the dissipatiand one for the near wall pressure
correlation term. These modifications are activéhie laminar sublayer and allow the model
to obtain the correct asymptotic behavior in thelayer. The source terms involving the
constants Cpl and Cp2 are pressure-strain redistnibterms. The slow pressure-strain is
based on return-to-isotropy and the fast pressua@isis based on isotropization of the
production model. The constants are set to comwadues for these models. The effect of
system rotation has been explicitly included, dreldcalar transport equation has a transition
term involving the constan€,. The transition term does not effect model restdr fully

developed turbulence, but does allow control afgitton to turbulence.

5. Potential Model Predictions

In this section the predictions of the turbulentgmtial model are presented for a number of
different turbulent flows. These predictions arenpared to experimental or direct numerical
simulation data, and other RANS turbulence modeiengver possible. Results will be
presented for channel flow at two different Reysoltumbers, rotating channel flow at
moderate rotation rates, a mixing layer, two advgmessure gradient boundary layers, and
preliminary results of turbulent flow over a backdidacing step. In addition, the ability to
control the transition rate in channel flow will dHemonstrated.
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5.1 Channel Flow

The geometric simplicity of turbulent channel flomakes it a very attractive candidate for the
testing of turbulence models. Due to the fact thatconvective derivative is identically zero
in this flow (and the viscous term is small evergndbut close to the wall), this flow is very
sensitive to the modeled source terms and is amah$y difficult test case of a turbulence
model. This is particularly true if the model doest use ‘law of the wall' boundary
conditions and integrates up to the wall.

Most low Reynolds number models which are capalbléntegrating to the wall, use an
abundance of damping functions and other near matlifications to capture the near wall
region. Functions of the wall normal vector or M@brmal distance are poorly defined in
complex geometries. Damping functions that usettineulent Reynolds are more general,
but can also lead to instability in low turbulenoegions far from walls and must be
implemented carefully.

The channel flow calculations presented in Figurkefhonstrate the potential model’s ability
to represent near wall behavior without the usdarhping functions. This figure shows the
mean velocity «10™), turbulent kinetic energy, dissipation rate10™), normal Reynolds
stress R,,) and shear stressR(,) in one half of the symmetric channel. The Regsol
number based on the mean velocity and channelhdth is 7900 and the pressure gradient

is equal to 1.0. The Reynolds number based oshbar velocity (') is 395. The DNS data
of Kim **is given by the dashed lines, and solid linesdat the model predictions.

Note that these calculations were performed wiftxed pressure gradient not a fixed mass
flux, and therefore the mean velocity predictiome emuch more sensitive to the model (a
fixed mass essentially renormalizes the velocitfifg so that the integral is always correct).
Nevertheless, the agreement with the DNS data feemely good. In part, this good
agreement is a result of the fact that some ohtrer-wall model constants were tuned using
this flow. However, the model is not particularlgnsitive to these constants, and the good
predictions for all the turbulence quantities sigggahat the agreement is due to more than
just model tuning.

A reasonable criticism of model comparisons with®data is that the Reynolds numbers are
fairly low. (The attraction of DNS data is thak talrbulence quantities are usually available).
A test of the model at higher Reynolds numberf@awvn in Figure 2. This figure shows the
mean velocity &10™), turbulent kinetic energy, and normal Reynoltisss in one half of
the symmetric channel. The Reynolds number baseithed mean velocity and channel half
width is over ten times higher than the previoggife, 90660, and the pressure gradient is
equal to 1.0. The Reynolds number based on thar sieéocity (U") is 3951. The Large-eddy
simulation data of Kravchencko & Mdfhis given by the dashed lines, and solid lines
indicate the model predictions.

At the low end of the Reynolds number spectrumgeirgents indicate that turbulent channel
flow can not be sustained at Reynolds numbers bebout 2000. Viscosity causes the
turbulence to dissipate and the flow relaminariz8he potential model predicts
relaminarization at a Reynolds number of 2100 (@5 based oru’). The ability of the

model to correctly predict relaminarization could tlosely related to its ability to predict
laminar to turbulent transition.

5.2 Rotating Channel Flow

Rotation is an integral part of many engineeringli@ptions (propellers, turbines, pumps, etc)
and can not be ignored when developing a generdulence model. As mentioned
previously, rotation has complex effects on turbhoke Rotation produces a Coriolis force
which, like the pressure gradient force, can coupih the turbulence and influence its
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evolution. The coupling of the Coriolis force witle Reynolds stresses is explicitly captured
in Reynolds stress transport equations models,cancbe reasonably well approximated by
the turbulent potential model. However, thereaatditional secondary effects due to rotation.
At a first level of approximation turbulent eddiast like gyroscopes with individual angular
momentum. When rotation is imposed turbulent eslgieecess to try and maintain their
angular momentum.  This precession randomizes ttidy eorientations and alters
conventional turbulence structures leading to aictdn of the turbulent dissipation rate, and
an increased return to isotropy rate.

The scope of this initial work has not allowed floe implementation of models for secondary
rotation effects. Nevertheless the potential matteds show the correct qualitative features
due to system rotation. Figure 3 shows model ptiedis for rotating channel flow. The
Reynolds number is 7900, and the Rossby numBsar=QL/U__ ) is equal to 0.07. The

entire channel is now displayed since the flowaslanger symmetric about the centerline.
The model correctly predicts the qualitative effeof stabilization on the upper wall and
enhanced turbulence production on the lower wadim@arison with experimerifsindicate
that the model prediction is over stabilized on tipper wall. Both the secondary rotation
effects described earlier (reduced dissipation &mdeased return to isotropy) would
counteract this tendency of the model.

5.3 Mixing Layer

The mixing layer demonstrates the performance efgbtential model for free shear layers.
The mixing layer was chosen because it is generatlye difficult to predict than jets and
wakes. The mixing layer that was calculated ingsltwo parallel streams, the upper stream
moving at a speed twice that of the lower stredrhe Reynolds number at the downstream

location where the profiles are presented is on dhder of 10° based on the velocity

difference and the downstream distance (or roudbfybased on the mixing layer thickness).
Figure 4a shows the mean velocity profile, and fE@gdb shows the kinetic energy
distribution. The figures are normalized with restp® the mean velocity difference and the
mixing layer vorticity thickness (defined bg =(U, -U,)/|«, ., |). Symbols indicate the

experimental data of Plesniak & JohndforDash-dotted lines are the predictions of a
standardk/e model using the boundary layer approximation. Qibtires are the predictions
of the potential model using the boundary layerrapipnation, and solid lines are the
predictions of the potential model using a Navitsk®s code.

The edges of the experimental data of Plesniaki&sion display the presence of high levels
of free-stream turbulence. Similar DNS simulatidnsuggest that the turbulent kinetic
energy falls off more rapidly at the edges whee-steam turbulence is not present. In those
experiments the turbulence is essentially zeroyh¢ =1.1. In any case, thé&/e model

predicts an abrupt edge to the mixing layer at abalif that distance. The tendency for the
k/e model and other models to form sharp fronts is wlekumented and is a result of the

nonlinear nature of the turbulent transport f8fth The boundary layer solution of the

potential model shows smoother behavior at the £dgad an improved kinetic energy

distribution. Full solutions using the turbulerdtential model show even better agreement
with the experimental data, and a behavior at theng layer edge that is close to the DNS

simulations of Rogers & Mos&r

The strong asymmetry of the modeled turbulent kiretergy profile versus the experimental
data is probably a result of the scaling of theegixpental data. The experiments were
actually performed in a configuration where the tiod streams had velocities that were
close in magnitude. The data were then scaled@welocity difference. While the physics

of the mixing layer core is dominated by the velpdiifference, the decay of turbulence at the
layer edges is a strong function of the actualeigfanagnitude.
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Experiments and DNS simulations indicate that thiedmensional peak value of the normal
Reynolds stressR,,) should be in the range 0.016 to 0.0017, and #ak palue of the shear

stress R,) should be in the range -0.010 to -0.0011. Theem@l model predicts a peak

value of 0.015 for the normal Reynolds stress @h@0642 for the peak shear stress. Plesniak
et al. reported a spreading ratg Y of 0.061, but experiments vary from 0.054 to 6.06

k/e models typically under predict the spreading rateabout 15% and produce spreading
rates of about 0.052. The spreading rate predizyatie potential model is 0.063, which is in
close agreement with experimental norms.

5.4 Adverse Pressure-Gradient Boundary Layer

Adverse pressure-gradient boundary layers repressitiiation where the classic assumptions
of turbulence modeling are not well approximatelsh particular, the turbulence is not in
equilibrium with the mean flow, and the eddy visop$iypothesis is a poor approximation.
Two equation models (even the more elegant modelsh as Durbin'slliptic relation
model) sometimes have problems predicting adverssspre boundary layéfs However,
models which predict the shear stress directly {doh & King, and Bradshaw, Ferriss &
Atwell, and full Reynolds stress closures) gengralhow considerable success with these
types of flows. Since the potential model als@dily predicts a quantity akin to the shear
stress, it is expected to perform well in theseadibns.

A common adverse pressure-gradient flow for tebtarbulence models is the experiment of
Samuel & Joubeft. The friction coefficient as a function of thevastream distance for this
flow is shown in Figure 5. Circles indicate thgpeximental data and the solid line shows the
model prediction. In addition, the experimentald atcomputed velocity profiles at two
downstream locations (Samuel & Joubert’s staticam@ station 12) are shown in Figure 6.
The agreement is very satisfactory.

A more difficult test of the model’'s ability to cape separating flows is given by the

experiments of Schubauer & SpangenbergThis experiment has a very strong adverse
pressure-gradient and presents data very closéetoseéparation point.  Figure 7 shows
velocity profiles for three downstream locationstlait flow compared with the experiments.

The agreement continues to be reasonable.

5.5 Backward Facing Step

The backward facing step displays a number of cermpiteracting flow phenomena, such as
a detached shear layer, boundary layers, reattathmecirculation, and boundary layer
recovery. Two-equation models which use wall fiomt have had some success predicting
this flow, but models which integrate up to the IWeve more difficulty since the damping
functions are usually ill-defined at the cornersl aften unstable at the reattachment point.
Those models which do predict the reattachmenttpdithe backstep correctly, tend to under
predict the recovery of the boundary layer at higheynolds numbers.

The computed streamlines for the backward faciag at a Reynolds number of 5100 (based
on the step height, h) and an expansion ratio &#fate shown in Figure 8. This geometry
corresponds to the DNS simulations of Le & M8iand the experimental results of Jovic &
Driver”. The step is located at y/h=1 and x/h=0. Theutalion domain extends from —3h
upstream of the step to 27h downstream and 6heirvéhtical direction. The mesh consisted
of 120x120 quadrilateral cells stretched so assolve the boundary layers, shear layer, and
the reattachment zone. The computed reattachnuemt was found to be 6.36 step-heights
downstream of the step. This corresponds veryr&blg with the value of 6.28h found by
the DNS simulations and 6.1h found by the experimeA standard k/e formulation typically
predicts premature reattachment at around 5.4hugthoenhanced models predict the
reattachment point correctly.
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DNS data and model predictions for the mean velaié shown for a number of downstream
positions in Figure 9. Squares indicate the DN&iltesand solid lines indicate the model
predictions. The magnitude of the velocity in ttezirculation bubble is slightly under
predicted, but the overall agreement is very reallenfor this initial formulation of the

model.

5.6 Transition

The ability to predict transition is an importargngponent of many engineering problems.
However, transition is usually an afterthought lve development of turbulence models. It
may be impossible to accurately predict all thefedént types of transition with a single
RANS model. In this work, a pragmatic approactalen, where the user is able to control
the transition development. It is hypothesized tis approach will allow fairly broad
classes of transition problems (such as naturalsiian in boundary layers, or bypass
transition in mixing layers) to be calculated usiagsingle parameter value and without
explicit user intervention (such as tripping).

A demonstration of natural transition control hag performed for transition in the channel
flow. The mean velocity is initially uniform ancktsto a value of 10. The initial turbulent
kinetic energy is 0.01% and the initial eddy visgos equal to 0.2. The channel Reynolds
number based on the channel half height is 330Qur& 10 shows the development of the
maximum turbulent kinetic energy as a functioniofet for various values of the transition
constantC,. The model correctly shows exponential growthhef turbulent kinetic energy

during the transition process, with the rate ofwglocontrolled by the transition constant.
The other turbulence quantities behave similatfythe viscosity is increased significantly so
that the channel Reynolds number is 1600, thefidlnedoes not transition even for values of
C, as high as 0.001.

Most RANS turbulence models that display transHi@a behavior require relatively high
levels of free-stream turbulence to trigger the@didon event (essentially by-pass transition).
Usually, the transition time is dictated by how doit takes the free-stream turbulence to
diffuse into the boundary layer and is difficult@ontrol. The potential model does not rely
on free-stream turbulence to trigger transitiorhisTmeans that it can predict transition when
the free-stream turbulence is very small, and nimngortantly, that the transition behavior
can be explicitly controlled.

6. Conclusion

A new approach to RANS turbulence modeling has lpresented based on the scalar and
vector potentials of the turbulent body force vectathe divergence of the Reynolds stress
tensor. This approach lies somewhere between guatmn models and full Reynolds stress
transport equations models. It shares with Reynalrless transport equation models the
ability to accurately predict strongly non-equilion flows, but it has a cost and complexity

comparable to enhanced two-equation models.

Analysis of the ‘turbulent potentials’ indicatestithey are not just mathematical constructs,
but physically relevant turbulence quantities clpgelated to the Reynolds stresses. The
scalar potential can be thought of as a ‘turbulgneissure’, and is a valuable indicator of
turbulence anisotropy. The vector potential canhoeight of as a ‘turbulent vorticity’. In
fact the linear eddy-viscosity hypothesis is eqgl@mtto the expressio =v. w if second
derivatives of the eddy viscosity are assumed teiball. Like the vorticity, only one
component of the vector potential is non-zero im-tlimensional and axisymmetric mean
flows.
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Transport equations for the turbulent potentialgehlaeen derived, and models for the source
terms in those equations were proposed based yangeinethods and models developed for
the Reynolds stress transport equations. Theadlation has been demonstrated to be
computationally tractable, and robust convergencstd¢ady-state was achieved for all the test
cases even though all the transport equations weceupled numerically. The proposed
transport equations can be integrated up to a wmlsurface; they do not require wall
functions. In addition, no functions of the watrmal coordinate have been used, so the
model can be implemented easily into existing femvers and complex geometries.

The channel flow simulations showed good agreemétht DNS data at both high and low
Reynolds numbers. Relaminarization was predictedectly, and the ability to transition to
full turbulence from very small free-stream turtnde levels (‘natural transition’) was
demonstrated. In addition, the model was showhatee the ability to control the transition
rate and transition point. Simulations of rotatoitgannel flow showed the models ability to
capture the qualitative effects of rotation, namehanced production on the unstable side,
and turbulence suppression on the stable side. eMew additional modification are
necessary to capture secondary rotation effectobtain good quantitative agreement.

Calculations of a developing mixing layer captutbd mean velocity and kinetic energy
profiles well. The mixing layer edge was bettesalged than standard two equation models.
The simulation of two adverse pressure gradienhtary layers gave the correct boundary
layer growth and velocity profiles as separatiors @wpproached. Simulations of a backward
facing step captured the reattachment length cilyrend produced reasonable agreement
with DNS data for the mean velocity. However, thehavior of the turbulence in the
attachment zone could be improved. It seemsylilk®t the model requires additional terms
that appear only when the flow has more than ohermogeneous direction.
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Figure 1. Model predictions of turbulent channel flow aRaynolds number of 7900 compared with the direct
numerical simulation data of Kim.

Figure 2. Model predictions of turbulent channel flow aRaynolds number of 90,660 compared with the Ladgke
simulation data of Kravchenko & Moin. Dashed line® the LES calculations and solid lines are thedei
predictions.

Figure 3. Model predictions of rotating channel flow at ayRolds number of 7900 and Rossby number of 0.07.

Figure 4. Model predictions of a high Reynolds number tlgbumixing layer. (a) mean velocity profile, a (
turbulent kinetic energy distribution.

Figure5. Friction Coefficent versus downstream distarmretie adverse pressure-gradient boundary laye®arhuel
& Joubert. Circles are experimental data, and tbédsline indicates the turbulent potential mogegdiction.

Figure 6. Experimental (symbols) and calculated (linedpei¢y profiles at station 9 and station 12 of themuel &
Joubert adverse pressure gradient boundary layer.

Figure 7. Experimental (symbols) and calculated (linespeiy profiles for the adverse pressure gradienitary
layer of Schubauer & Spangenberg.

Figure 8. Computed streamlines for a backward facing stith a/Reynolds number of 5100 and expansion rdtio o
1.2.

Figure 9. Mean velocity profiles downstream of a backwiaking step at a Reynolds number of 5100. Synabvels
the DNS data of Le, Moin & Kim. Solid lines are thodel predictions.

Figure 10. Transition of a uniform channel flow for diffetaralues of the transition constant.
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