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Abstract

Reynolds Averaged Navier-Stokes (RANS) turbulence models are usually concerned with modeling the
Reynolds stress tensor. An alternative approach to RANS turbulence modeling is described where the
primary modeled quantities are the scalar and vector potentials of the turbulent body force - the divergence
of the Reynolds stress tensor.  This approach is shown to have a number of attractive properties, most
important of which is the ability to model non-equilibrium turbulence situations accurately at a cost and
complexity comparable to the widely used two-equation models such as k-ε.

Like Reynolds stress transport equation models, the proposed model does not require a hypothesized
constitutive relation between the turbulence and the mean flow variables.  This allows non-equilibrium
turbulence to modeled effectively.  However, unlike Reynolds stress transport equation models, the
proposed system of partial differential equations is much simpler to model and compute.  It involves fewer
variables, no realizability conditions, and removes the strong coupling between the equations.  A detailed
analysis of the turbulent body force potentials and their physical significance reveals that they represent the
relevant information contained in the Reynolds stress tensor and are fundamental turbulence quantities in
their own right.

Model predictions for a number of basic turbulent flows are presented including: channel flow at various
Reynolds numbers, mixing layer, rotating channel flow, adverse pressure gradient boundary layers, low
Reynolds number backward facing step, and transition to turbulence in channel flow.
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Introduction

Engineering predictions of turbulent flow rely heavily on the Reynolds Averaged Navier-
Stokes (RANS) equations.  The RANS equations, which look very similar to the original
governing Navier-Stokes equations, describe the behavior of the mean flow. This greatly
reduces the computational expense of solving the equations since small temporal and spatial
scales associated with the turbulence are not resolved.   However, averaging the Navier-
Stokes equations to obtain the RANS equations removes some information from the system
and the RANS equations are not closed.  RANS models come in a wide variety of forms.
Each attempts to close the system in some physically realistic way, with the more complex
models hopefully representing more of the underlying turbulence physics.

For incompressible, isothermal flow the Reynolds Averaged Navier-Stokes equations take the
form,
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∂

p)(
t

   (1a)

 0=⋅∇ u   (1b)

where u is the mean velocity vector, p is the mean pressure/density, ν is the kinematic

viscosity, and ’’ uuR =  is the Reynolds stress tensor.  The Reynolds stress tensor is the
correlation of the fluctuating velocity components and represents the crucial unknown in these
equations.  The fundamental goal of RANS models is to hypothesize a relationship between
this tensor and the mean flow variables so that Eqns. (1a) and (1b) can be solved.   The same
principals exist for the general (compressible) RANS equations, but we will restrict our
attention to the incompressible case here and throughout this document for the sake of
simplicity.

Many RANS models assume a constitutive algebraic relation between the Reynolds stress
tensor and the mean flow gradients. The most common relation is the eddy viscosity
model, )(k T

T3
2 uuIR ∇+∇ν−= , where k is the turbulent kinetic energy and Tν  is the eddy

viscosity. For incompressible flow k can be absorbed into the pressure and is not required
explicitly.   This relation is also called the Boussinesq hypothesis or the linear eddy viscosity
model.   It forms the basis for a wide variety of RANS turbulence models which each differ in
how the eddy viscosity is calculated.   More complex constitutive relations are certainly
possible1-4 and these nonlinear eddy viscosity relations fix a number of deficiencies of the
standard linear model, but they still assume that the turbulence is close to equilibrium and has
had time to adjust to any changes in the mean flow.   Unfortunately, many turbulent flows of
practical engineering significance are not close to equilibrium.  A classic example is the
adverse pressure gradient boundary layer.  Other examples include rapidly strained flows and
three-dimensional boundary layers. In fact, Lund & Novikov5 have shown (using direct
numerical simulation data) that, in general, an algebraic constitutive relation of arbitrary
complexity based on the mean velocity gradients is fundamentally incapable of representing
the Reynolds stresses. The equilibrium assumption imbedded in any constitutive relation for
the Reynolds stress tensor is emphasized here because the proposed model avoids such a
relation and therefore has the potential to predict non-equilibrium turbulent flows more
accurately.

There is some prior evidence that models which avoid a constitutive relation for the Reynolds
stress tensor outperform other models of the same general class.  Both examples of this
phenomenon come from models developed for nearly parallel shear flows (where the
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Reynolds shear stress is the important Reynolds stress).   For example, the zero-equation
model of Johnson & King6 solves an ordinary differential equation for the maximum turbulent
shear stress.  As a result it generally performs better than other zero-equation models which
use the traditional approach of defining an eddy viscosity.   A similar result is also obtained
with two-equation models.  The model of Bradshaw, Ferriss & Atwell7 was widely accepted
to be the most accurate model of the 1968 Stanford competition8.    This model differed from
the competitors in that it solved an equation for the shear stress directly, rather than using a
constitutive equation involving the mean shear.  The principal drawback of both these
methods (and probably the reason that they are not more popular) is that they can only be
applied to nearly parallel shear flows.  In some sense, the proposed model can be viewed as a
way to generalize the two-equation model of Bradshaw et. al. to arbitrary flows.

In the past, for arbitrary flows the only alternative to using a constitutive relation was to solve
modeled transport equations for the Reynolds stress tensor itself (first proposed by Rotta9).
Reynolds stress transport models10-12 can potentially contain more physics than eddy-viscosity
based models, however the equations are significantly more difficult to solve.   In three
dimensions one must solve six highly coupled transport equations for each Reynolds stress.
The equations are stiff, and none of the Reynolds stresses are universally dominant, so
uncoupling the equations numerically is very difficult.  In addition, the Reynolds stress tensor
is a positive definite tensor but the modeled equations often do not preserve this property.
The proposed model does not suffer from these difficulties.  It involves fewer equations than a
Reynolds stress transport model.  The equations are not strongly coupled and are not as
numerically stiff.

The key to developing a model which avoids the use of a constitutive relation and yet does not
involve the complexity of a full Reynolds stress transport closure is to note that the Reynolds
stresses contain more information than required by the mean flow.  Only the divergence of the
Reynolds stress tensor (a body force vector) is required to solve for the mean flow.   With this
in mind, the potential turbulence model defines two new turbulent quantities – the scalar and
vector potentials of the body force vector13. The advantages of a model that uses these
turbulent potentials, rather than the body force vector itself, are twofold.  Firstly, this allows
the momentum equation to remain a conservative equation.  Secondly, and more importantly,
these potentials have a very clear physical interpretation which will facilitate the construction
of models for their evolution.  Turbulence modeling based on the force vector itself (or its
rotational component – the Lamb vector) have been proposed by Wu, Zhou & Wu14, and
Marmanis15, but the author is not aware of any model results based on these ideas.

The properties of the scalar and vector potentials of the turbulent body force (turbulent
potentials) are derived in section 2.  Exact transport equations for these potentials are derived
in section 3 and the unclosed source terms in those equations are then modeled.  Section 4 is a
short summary of the model and its theoretical properties.  Predictions for some basic
turbulent flows are presented in Section 5, and a discussion of the major conclusions of this
work are found in section 6.

2. Turbulent Potentials

The scalar potential, φ, and vector potential, ψ , of the turbulent body force are defined

mathematically by the following equations.

R⋅∇=×∇+φ∇ ψ (2a)

0=⋅∇ ψ (2b)
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The second equation is a constraint on the vector potential.  Other constraints are possible but
this is the simplest for the purposes of our analysis.  These equations can be rewritten to
express the turbulent potentials individually.

)(2 R⋅∇⋅∇=φ∇ (3a)

)(2 R⋅∇×∇=∇− ψ (3b)

The boundary conditions on these elliptic equations are prescribed so that the potentials have
a real physical interpretation as turbulence quantities.  We therefore require that when
turbulence is absent, the potentials also vanish.  The result is that both potentials are required
to go to zero at infinity, at a wall, or at a free surface.   The free-surface condition is less
intuitive but is consistent with the analysis of flows with a single inhomogeneous direction
described below.

Note that by its very definition (Eqn. 2a) the scalar potential is that part of the turbulence that
contributes to the mean pressure but does not effect the mean vorticity.  Only the vector
potential has the ability to effect the mean vorticity, and it only moves the vorticity around
(enhanced transport), it does not create or destroy mean vorticity.  Physically, we sometimes
find it useful to regard the scalar potential as a measure of the average pressure drop in the
cores of turbulent vortices, and the vector potential as a measure of the average vorticity
magnitude of the turbulent vortices.

In flows with a single inhomogeneous direction (say the y-direction), Eqns. (3a) and (3b)
simplify to 22R=φ , 231 R−=ψ , 02 =ψ , 123 R=ψ . For this reason, it is also reasonable to

view the vector potential as a conceptual generalization of the shear stress ( ’v’u ) to arbitrary
geometries and three dimensions. In nominally two-dimensional flows the vector potential is
aligned perpendicular to the flow (like the vorticity) and has only a single nonzero component
( 3ψ ).  The scalar potential (in combination with the turbulent kinetic energy) gives a good

indication of the anisotropy of the turbulence and is fundamental to modeling the presence of
walls and/or surfaces without using wall functions.  These relations will be used later, when
evaluating the model predictions against experimental and DNS data for the Reynolds
stresses.

In three-dimensional flows the presence of the divergence free constraint on the vector
potential means that only two components of the vector potential need to updated.  The third
can be obtained from the divergence constraint.  In fact, in the 3D numerical method recently
developed by the author the vector potential is updated at roughly the same computational
cost as the scalar potential.  Since the k and ε transport equations are also solved with the
model, the overall complexity and cost of solving the potential model is a maximum of five
transport equations (four in 2D).  Coupled with the fact that these equations can solved in an
uncoupled fashion and are not particularly stiff, the current model is an order of magnitude
faster than Reynolds stress transport equation closures which require updating at least seven
coupled equations (five in 2D).  However, this reduction in cost sacrifices little, if any, loss in
the potential predictive capacity of the model compared to Reynolds stress transport models.

3. Transport Equations for the Turbulent Potentials

Like the Reynolds stress transport equations the exact equations for the evolution of the
turbulent potentials can be derived analytically.  The connection with Reynolds stress
transport models is most clearly understood if the derivation proceeds directly from the
Reynolds stress transport equations.  In compact notation these equations are written as,
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R ⋅∇−+−=∇ν−∇⋅+
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∂ Πε2
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where P is the production term, ε  is the dissipation tensor, Π  is the pressure-velocity
gradient correlation tensor and T is the velocity fluctuation triple correlation.  The definition
of the last three source terms is not unique, but the cumulative effects of these last three terms
must somehow be modeled in order to solve the equations.  The corresponding equations for
the evolution of the turbulent potentials are,

)(P)()(
t

)( 222
2
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∂

φ∇∂
φ Πε (5a)
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TPu ⋅∇−+−⋅∇×∇−=∇∇ν−∇∇⋅+
∂
∇∂ Πεψψψ

ψ (5b)

The production terms are no longer directly related to only the turbulent potentials and the
velocity gradients.  So in flows with more than one direction of inhomogeneity, part of the
production terms must be modeled. In turbulent flows with a single direction of
inhomogeneity, φP is zero and )(2 ωψ φ∇=P , where ω is the mean vorticity.    In addition,

when only one direction of inhomogeneity is present 22

2M)( ∇=⋅∇⋅∇ M  and

)M,0,M()( 1232

2 −∇=⋅∇×∇− M  for any symmetric tensor M.   So when one

inhomogeneous direction is present the transport equations for the turbulent potentials are
identical to the transport equations for the middle column (or row) of the Reynolds stress
tensor.    The other Reynolds stress components ( 133311 R,R,R ) do not directly influence the

mean flow.  However, it should be noted that the remaining Reynolds stress can, and probably
do, influence the source terms in the transport equations for the turbulent potentials in Eqn. 5.
These more subtle effects on the mean flow evolution are accounted for in the model by
carrying a transport equation for the turbulent kinetic energy and also the dissipation rate.

While the model includes transport equations for k and ε it should be emphasized that the
proposed model is a significant departure from standard two-equation models. These auxiliary
quantities are only used to help model the source terms in the turbulent potential evolution
equations.   They are not used to determine the Reynolds stress tensor and the resulting mean
flow.   The dissipation rate was chosen for this study because some of the test cases have this
quantity available for comparison, but the choice of the particular ‘scale’ equation is not
thought to have a profound effect on the overall performance of the model, since it no longer
appears directly in an expression for the Reynolds stresses.

The elimination of the constitutive equation for the Reynolds stresses is an important
departure from two-equation models that removes one of the weaker modeling assumptions.
In flows with a single inhomogeneous direction (parallel shear flows), the similarity with a
Reynolds stress transport model is very clear.   The only significant departure is a lumping of
the “secondary” Reynolds stresses (those whose gradients do not directly influence the mean
flow evolution), into a single quantity – the turbulent kinetic energy.   This approach
effectively reduces the number of equations in a way which is least likely to impact the mean
flow predictions.   In addition, it separates the stresses in a meaningful way, allowing the
solution of the turbulent transport equations to be numerically uncoupled.    As mentioned
earlier, this idea of isolating the important Reynolds stresses has been used previously for
models restricted to parallel shear flows.     However, the turbulent potentials and their
evolution equations are well defined in any flow situation and allow one to effectively isolate
the most influential parts of the Reynolds stress tensor in any flow geometry.

The general modeling philosophy of this project has been to use existing Reynolds stress
transport models, and the assumption of a single inhomogeneous direction, to guide the
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construction of the turbulent potential source terms.  Other guiding factors have been the
construction of a model that naturally obtains the correct asymptotic behavior near walls and
free surfaces, and a model which responds correctly to shearing, both initially (rapid distortion
theory - RDT) and in the long time limit.   Obtaining the correct rapid response for shear
flows is important because this situation is closely obtained by many engineering applications.
Examples are, free-stream turbulence which suddenly encounters an obstacle (such as a blade
in a turbine), and the initial development of tripped boundary layers and free shear layers.

Three principal terms need to be modeled: dissipation, pressure coupling, and turbulent
transport.  There is some ambiguity in how these terms are defined, but this is of little concern
here, since the goal is only to model the respective physical effects.  In addition, the effects of
system rotation, and transition have also been included. The modeling of each term is
described below.

3.1 Dissipation
In Reynolds stress transport models the dissipation tensor is often modeled as an isotropic
tensor; the theory being that at high Reynolds numbers small scales should be isotropic.
Recent experiments at NASA-Ames by Saddoughi16 indicate that this hypothesis is probably
correct at high enough Reynolds numbers.  However, the dissipation rate used in the model is
actually an integral over all scales not just small scales.  While small scales dominate this
integral, recent work17-18 suggests that the large-scale components can not be neglected in a
wide class of flows.  Therefore we move to the next level of approximation, where a portion
of the dissipation is isotropic and the rest is proportional to the Reynolds stress tensor.  Rotta9

proposed that the dissipation tensor was proportional to the Reynolds stress tensor.  It is
thought that the Rotta model is the low Reynolds number limit and it has been shown to work
quite well near walls19. Most dissipation tensor models can be written in the form

RI k
εαεα +−= 3

2)1(ε , where ε is the dissipation rate of turbulent kinetic energy, and α is
some blending parameter. Hanjalic & Launder20 used a blending factor that was a function of
the turbulent Reynolds number.  More recently there have been proposals to use a function of
a two-componentality factor (which requires the solution of an additional PDE)21.  In this
work we advocate )1/(1 5.1

k
φα += .  Such a model has the right near wall and isotropic

turbulence limits.  In addition it implies that the anisotropy of the dissipation tensor is one half
the anisotropy of the Reynolds stress tensor for strained isotropic turbulence, which is the
correct rapid distortion limit for both irrotational and rotational mean flows22.

Assuming either that the inverse turbulent time scale varies slowly or that the flow has a
single direction of inhomogeneity gives the following dissipation models, φαε ε

φ k2=  and

iki
ψα=ε ε

ψ .  These models show very good agreement with the DNS data for turbulent

channel flow.  However, they do not have the correct asymptotic behavior near a wall or a
free surface (where 1→α ).  At a wall the scalar and vector dissipation should go like φε

k4

and ψε
k2 , respectively.   At a free-surface they should go like φν

2
2

y
 and )( yO .   The

asymptotic order is correct in each case, but the constants are not correct.  These constants
(along with the pressure redistribution constants) are critical to obtaining the correct
asymptotic behavior of the turbulent potentials.  Near a wall the potentials go like 4y and 3y .

Obtaining this sort of asymptotic behavior with a single boundary condition (zero potential at
the wall) is not a trivial task, and requires that the modeled source terms be exact at the
boundary.

Fortunately, a dissipation model that is exact at walls and free-surfaces has been proposed and
tested by Perot & Moin23.  We use this model to motivate the near boundary terms.  The
resulting dissipation terms are,
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φφφ∇⋅φ∇ν+βα=ε ε
φ ]/)(22[ 2/12/1
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ψφφνβαε ε
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where ( ) 2/1

Re/11
Re/*21

CwtT
rrrrCwT

+
⋅+=β , krr /5.1 φ= , and )/(Re 2 νεk= .  The gradient terms make the

model exact at walls and free surfaces.  The parameter β  turns the standard part of the model

off at very low Reynolds numbers.  Both these modifications are significant only well within
the laminar sublayer but can not be neglected when walls or surfaces are present.

The model would be more elegant without the inclusion of β , but this does not seem possible

for a model that integrates the equations up to the wall. All low Reynolds number models
damp the dissipation term near the wall.   The fundamental problem appears to be that k/ε  is
not the correct inverse time scale in highly anisotropic regions such as near a wall or surface.
The current form for β is ad hoc and is essentially borrowed from Parneix, Laurence &

Durbin24.  However, the exact form is not important, and we have not investigated simpler
alternatives at this time.  Note that the only model constants which enter the dissipation model
appear in the parameterβ , which is effective only very close to a wall or surface.

3.2 Pressure Coupling
Coupling between the pressure gradient and velocity is one of the important physical effects
that can be captured by Reynolds stress transport models. This correlation produces counter-
gradient transport (a reduction of the turbulent transport term), as well as a redistribution of
turbulent energy among the various Reynolds stress components.  The development of the
pressure coupling terms is motivated by the exact evolution equation for the Reynolds stress
anisotropy tensor, kk /)( 3

2 IRa −= .  This evolution equation contains the pressure coupling

term as one of the source terms. The model assumes that the pressure coupling term is
proportional to the other source terms in the anisotropy evolution equation.  This assumption
gives, )2)(1 RPR k

P
k CpCp   ( ε Π −−−= ε , where Π  is the pressure coupling term, P is the

Reynolds stress production tensor, and P is the production of turbulent kinetic energy.

When the previously proposed dissipation model is introduced into this equation (without the
near wall corrections) the pressure coupling term becomes,

)2)()1(1 3
2 RPRI k

P
k CpkCp   (  Π −−−−= εα .  This bears considerable resemblance to classic

pressure coupling models.   The second term is similar to the Isotropization of Production (IP)
model of Launder, Reece & Rodi10 (which is )(2 3

2 IP PCp − ).  To obtain the correct initial

behavior of the shear-stress in rapidly distorted homogeneous shear flows a value of
5/32 =Cp is required.

The first term is a return-to-isotropy term multiplied by (1-α).  In isotropic turbulence (1-α) =
½, and near walls and surfaces (1-α) = 0.   This is in qualitative agreement with the
simulations of Perot & Moin25 and predictions of Lumley11 which indicate that return-to-
isotropy is a good approximation for nearly isotropic turbulence and is not present at low
Reynolds numbers and near boundaries.  The value of the ‘Rotta constant’ for the classic
return to isotropy model is commonly taken in the range 1.5 to almost 3.0.   The value of

2.41=Cp used in this work gives an equivalent Rotta constant of 1.6 for shear flows and 2.1

for isotropic turbulence.  In order to obtain no return-to-isotropy effect at low turbulent
Reynolds numbers the return-to-isotropy term is divided by Re)/251( + where Re is the

turbulent Reynolds number.  This near wall modification is similar to the near wall
modification of the dissipation model and it too only comes into effect in the laminar
sublayer.  Its actual form (or the value of 25) is not particularly critical to the model.
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This basic pressure coupling model (as well as its more classic variations) produces too much
production of the turbulent potentials in the near wall region.  Durbin26 approached the
problem of too much production near the wall by using an additional elliptic equation to damp
the pressure coupling term near the wall.  This has the added benefit of allowing the
imposition of an additional boundary condition that could then be used to force the correct
asymptotic behavior of the potentials. This is an elegant solution but was not found necessary
in this modeling framework.  Interestingly, the same effect can be obtained with the following
near wall pressure coupling term, ε]/T3Cp1(

11
νν+α− . This term has the correct asymptotic

behavior near both walls and free-surfaces, and disappears at high Reynolds numbers. Direct
numerical simulations of Perot & Moin27 indicate that the pressure coupling term is strongly
influenced by viscous dissipation near walls and surfaces.  A value of 12.03=Cp  is used in

the subsequent calculations.

The final enhancement to the pressure coupling term is formulated to allow the scalar
potential to obtain the correct behavior for rapidly distorted shear flow.  The scalar potential
has the interesting property that it decreases when the flow is suddenly sheared.    For this
reason we add the following term, )/2)()(42( Re)/251(

1 kPCpCp
T

Rαν
ψψ −+ +
⋅ .  The constant is set

by Rapid Distortion Theory (RDT) to be 7/64 =Cp .  When the eddy viscosity hypothesis is

an accurate approximation this term is small or zero.  It only becomes significant when the
flow is in a strong non-equilibrium situation (such as RDT).     If one assumes that Cp2 and
Cp4 must be set to obtain the correct RDT response, then the only free constants in the
modeling of pressure coupling  term are Cp1 and the near-wall/low Re corrections.

3.3  Turbulent Transport
The enhanced transport which turbulence invariably produces is modeled using a gradient
transport hypothesis.  This results in the following source terms for the scalar and vector
potentials, φσν ∇⋅∇ )/( kT  and ψσν ∇⋅∇ )/( kT .  In flows with a single inhomogeneous

direction these models are equivalent to the Daly & Harlow12 model for Reynolds stress
turbulent transport, where the eddy viscosity is defined as ε

φ
µ=ν k

T C , with 21.C =µ .   The

constant, 79.0=kσ , is the same for both the potentials and the turbulent kinetic energy

transport term.  It was obtained by solving the k equation in turbulent channel flow, using the
exact production and dissipation (from DNS data), and obtaining a best fit.  Note that this is
somewhat lower than the conventional value of 1.0.  However, the conventional value is set
so as to counteract some inadequacies of the ε equation and the current value agrees well with
other DNS simulations28.  The value of 79.0=kσ gives an equivalent Daly & Harlow

constant which is well within the range [.20 to .25] commonly used for that model.

3.4  Rotation
The principal effects of system rotation appear explicitly in the Reynolds stress transport
equations via the term, )][(2 TRR ×Ω+×Ω , where Ω  is the system rotation vector. The

trace of this term is zero so rotation has no explicit effect on the turbulent kinetic energy.
This is one reason why the k/ε model and its variants often represent rotation effects fairly
poorly.   For a constant (in space) rotation rate, the corresponding scalar potential source term
is ψ⋅Ω−4 .  For fully three-dimensional flows the vector potential rotation term is complex

and is given by, ]})()([2{2 T2 Rf ×∇×∇+∇⋅Ω∇+φΩ −  where f is the turbulent body force.

For a two-dimensional flow the term involving f is zero.  The last term must be modeled in
any dimension since the full Reynolds stress tensor is no longer calculated.  Assuming that the
Reynolds stress tensor is isotropic and the flow is 2D gives )(2 3

2 φ−Ω− k for the vector

potential rotation term.  Both rotation terms have the important property of breaking system
symmetries under the influence of rotation.  Besides introducing an addition explicit
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production term rotation has secondary effects on the turbulence evolution. These secondary
effects have not been included in the model at this time.

3.5  Transition
Transition is a complex phenomenon that is dependent both on the flow configuration and
initial disturbance spectrum. Many low Reynolds number two equations models have been
shown to be able to predict at least the qualitative behavior of relaminarization and bypass
transition29-31. Predictions of transition using Reynolds stress transport models have had less
success32.  In this model we introduce a term which allows transition to be controlled, but
which does not otherwise influence the turbulence predictions.  The following term is
included in the scalar potential equation, )1(PC k

5.1

t

φ− .  tC  can be taken anywhere in the

range 0.01 to 1.0e-5.  The smaller values delay the transition process and increase the
transition time by an order of magnitude.  The ability to tune this constant gives the model
considerable flexibility in predicting different types of transition processes.

3.6 Turbulent Kinetic Energy and Dissipation Equations
The turbulent potential transport equations are supplemented by transport equations for the
turbulent kinetic energy and the dissipation.  These equations where chosen because they are
widely used for engineering solutions, and because data for both k and ε are widely available.
These equations enable the system to behave correctly in time developing or convection
dominated situations, and help to make the equations system more robust in situations where
the mean flow gradients are small.

If computational time is a serious issue, algebraic models for either or both of these variables
can be used.  In particular, for shear dominated flows, )/(2

3 φψψφ ⋅+= Ek and

ψ⋅ψ
φ

µ=ε kPC are good approximations.  The latter expression is equivalent to the linear eddy

viscosity hypothesis (though used in a different context).  Computations of turbulent channel
flow with these algebraic expressions and 1.1=E showed a reasonable agreement with the
DNS data of Kim, Moin & Moser33.

The k and ε transport equations used in this study are the standard implementation with a few
exceptions.  As mentioned previously kσ has been reduced from 1.0 to 0.79 after careful

comparisons with the DNS data of turbulent channel flow.  In addition, following the example
of Durbin26, the inverse time scale in the ε equation is modified by β .  Finally, an additional

transport term has been added to the ε equation to reduce the dissipation in regions of strong
turbulent kinetic energy diffusion.  It is given by, kC ∇⋅∇− ε

φ
ε εα 2)1(3  and 17.03 =εC .  This

term has the property that it allows both the mixing layer and the boundary layer to be
modeled without any adjustments to the other model constants.  In addition, the center of
turbulent channel flow is represented more accurately when this term is present.

The constants in the k/ε model (specifically 5.11 =εC and 83.12 =εC ) determine the growth

rate of the turbulence in homogeneous shear flows at long times.  The standard k/ε model
predicts a growth rate of 0.243.  The different definition of the eddy viscosity used in this
model leads to a much more accurate growth rate of 0.143, which is very close to
experimental measurements34.

4. Turbulent Body Force Potential Model

4.1 Model Summary
The transport equations that constitute the turbulent potential model are summarized below.
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φ+=α ,   and  )/(kRe 2 νε= .  

Initially these equations appear daunting.  In fact they represent a fairly simple extension of
the classic k/ε equation system, and are relatively simple compared to Reynolds stress
transport equation models.  The second source term in the potential equations (in parentheses)
is a dissipation-like term.  This term is a standard dissipation model with two near-
wall/surface modifications, one for the dissipation and one for the near wall pressure
correlation term.  These modifications are active in the laminar sublayer and allow the model
to obtain the correct asymptotic behavior in the sublayer.  The source terms involving the
constants Cp1 and Cp2 are pressure-strain redistribution terms.  The slow pressure-strain is
based on return-to-isotropy and the fast pressure-strain is based on isotropization of the
production model.  The constants are set to common values for these models. The effect of
system rotation has been explicitly included, and the scalar transport equation has a transition
term involving the constant tC .  The transition term does not effect model results for fully

developed turbulence, but does allow control of transition to turbulence.

5. Potential Model Predictions

In this section the predictions of the turbulent potential model are presented for a number of
different turbulent flows. These predictions are compared to experimental or direct numerical
simulation data, and other RANS turbulence models whenever possible.  Results will be
presented for channel flow at two different Reynolds numbers, rotating channel flow at
moderate rotation rates, a mixing layer, two adverse pressure gradient boundary layers, and
preliminary results of turbulent flow over a backward facing step.  In addition, the ability to
control the transition rate in channel flow will be demonstrated.
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5.1 Channel Flow
The geometric simplicity of turbulent channel flow makes it a very attractive candidate for the
testing of turbulence models.  Due to the fact that the convective derivative is identically zero
in this flow (and the viscous term is small everywhere but close to the wall), this flow is very
sensitive to the modeled source terms and is a reasonably difficult test case of a turbulence
model.  This is particularly true if the model does not use ‘law of the wall’ boundary
conditions and integrates up to the wall.

Most low Reynolds number models which are capable of integrating to the wall, use an
abundance of damping functions and other near wall modifications to capture the near wall
region.  Functions of the wall normal vector or wall normal distance are poorly defined in
complex geometries.  Damping functions that use the turbulent Reynolds are more general,
but can also lead to instability in low turbulence regions far from walls and must be
implemented carefully.

The channel flow calculations presented in Figure 1 demonstrate the potential model’s ability
to represent near wall behavior without the use of damping functions.  This figure shows the
mean velocity ( 110−× ), turbulent kinetic energy, dissipation rate ( 110−× ), normal Reynolds
stress ( 22R ) and shear stress (12R ) in one half of the symmetric channel.  The Reynolds

number based on the mean velocity and channel half width is 7900 and the pressure gradient
is equal to 1.0.  The Reynolds number based on the shear velocity ( *u ) is 395.  The DNS data
of Kim 35 is given by the dashed lines, and solid lines indicate the model predictions.

Note that these calculations were performed with a fixed pressure gradient not a fixed mass
flux, and therefore the mean velocity predictions are much more sensitive to the model (a
fixed mass essentially renormalizes the velocity profile so that the integral is always correct).
Nevertheless, the agreement with the DNS data is extremely good.  In part, this good
agreement is a result of the fact that some of the near-wall model constants were tuned using
this flow. However, the model is not particularly sensitive to these constants, and the good
predictions for all the turbulence quantities suggests that the agreement is due to more than
just model tuning.

A reasonable criticism of model comparisons with DNS data is that the Reynolds numbers are
fairly low.  (The attraction of DNS data is that all turbulence quantities are usually available).
A test of the model at higher Reynolds numbers is shown in Figure 2.   This figure shows the
mean velocity ( 110−× ), turbulent kinetic energy, and  normal Reynolds stress in one half of
the symmetric channel.  The Reynolds number based on the mean velocity and channel half
width is over ten times higher than the previous figure, 90660, and the pressure gradient is
equal to 1.0.  The Reynolds number based on the shear velocity ( *u ) is 3951.  The Large-eddy
simulation data of Kravchencko & Moin36 is given by the dashed lines, and solid lines
indicate the model predictions.

At the low end of the Reynolds number spectrum, experiments indicate that turbulent channel
flow can not be sustained at Reynolds numbers below about 2000.  Viscosity causes the
turbulence to dissipate and the flow relaminarizes. The potential model predicts
relaminarization at a Reynolds number of 2100 (or 125 based on *u ).  The ability of the
model to correctly predict relaminarization could be closely related to its ability to predict
laminar to turbulent transition.

5.2  Rotating Channel Flow
Rotation is an integral part of many engineering applications (propellers, turbines, pumps, etc)
and can not be ignored when developing a general turbulence model.  As mentioned
previously, rotation has complex effects on turbulence.  Rotation produces a Coriolis force
which, like the pressure gradient force, can couple with the turbulence and influence its
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evolution.  The coupling of the Coriolis force with the Reynolds stresses is explicitly captured
in Reynolds stress transport equations models, and can be reasonably well approximated by
the turbulent potential model.  However, there are additional secondary effects due to rotation.
At a first level of approximation turbulent eddies act like gyroscopes with individual angular
momentum.  When rotation is imposed turbulent eddies precess to try and maintain their
angular momentum.  This precession randomizes the eddy orientations and alters
conventional turbulence structures leading to a reduction of the turbulent dissipation rate, and
an increased return to isotropy rate.

The scope of this initial work has not allowed for the implementation of models for secondary
rotation effects.  Nevertheless the potential model does show the correct qualitative features
due to system rotation.  Figure 3 shows model predictions for rotating channel flow.  The
Reynolds number is 7900, and the Rossby number ( max/ULRo Ω= ) is equal to 0.07.  The

entire channel is now displayed since the flow is no longer symmetric about the centerline.
The model correctly predicts the qualitative effects of stabilization on the upper wall and
enhanced turbulence production on the lower wall. Comparison with experiments37 indicate
that the model prediction is over stabilized on the upper wall.  Both the secondary rotation
effects described earlier (reduced dissipation and increased return to isotropy) would
counteract this tendency of the model.

5.3  Mixing Layer
The mixing layer demonstrates the performance of the potential model for free shear layers.
The mixing layer was chosen because it is generally more difficult to predict than jets and
wakes.  The mixing layer that was calculated involves two parallel streams, the upper stream
moving at a speed twice that of the lower stream.  The Reynolds number at the downstream
location where the profiles are presented is on the order of 610  based on the velocity

difference and the downstream distance (or roughly 510  based on the mixing layer thickness).
Figure 4a shows the mean velocity profile, and Figure 4b shows the kinetic energy
distribution. The figures are normalized with respect to the mean velocity difference and the
mixing layer vorticity thickness (defined by ||/)( max12 ωδ UU −= ). Symbols indicate the

experimental data of Plesniak & Johnston38. Dash-dotted lines are the predictions of a
standard k/ε model using the boundary layer approximation. Dotted lines are the predictions
of the potential model using the boundary layer approximation, and solid lines are the
predictions of the potential model using a Navier-Stokes code.

The edges of the experimental data of Plesniak & Johnston display the presence of high levels
of free-stream turbulence.  Similar DNS simulations39 suggest that the turbulent kinetic
energy falls off more rapidly at the edges when free-stream turbulence is not present.  In those
experiments the turbulence is essentially zero by 1.1/ =δy . In any case, the k/ε  model

predicts an abrupt edge to the mixing layer at about half that distance.  The tendency for the
k/ε model and other models to form sharp fronts is well documented and is a result of the
nonlinear nature of the turbulent transport term40,41.   The boundary layer solution of the
potential model shows smoother behavior at the edges, and an improved kinetic energy
distribution.  Full solutions using the turbulent potential model show even better agreement
with the experimental data, and a behavior at the mixing layer edge that is close to the DNS
simulations of Rogers & Moser39.

The strong asymmetry of the modeled turbulent kinetic energy profile versus the experimental
data is probably a result of the scaling of the experimental data.  The experiments were
actually performed in a configuration where the two fluid streams had velocities that were
close in magnitude.  The data were then scaled on the velocity difference.  While the physics
of the mixing layer core is dominated by the velocity difference, the decay of turbulence at the
layer edges is a strong function of the actual velocity magnitude.
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Experiments and DNS simulations indicate that the nondimensional peak value of the normal
Reynolds stress (22R ) should be in the range 0.016 to 0.0017, and the peak value of the shear

stress ( 12R ) should be in the range -0.010 to -0.0011.  The potential model predicts a peak

value of 0.015 for the normal Reynolds stress and –0.0012 for the peak shear stress.  Plesniak
et al. reported a spreading rate (dx

dδ ) of 0.061, but experiments vary from 0.054 to 0.065.

k/ε models typically under predict the spreading rate by about 15% and produce spreading
rates of about 0.052.  The spreading rate predicted by the potential model is 0.063, which is in
close agreement with experimental norms.

5.4  Adverse Pressure-Gradient Boundary Layer
Adverse pressure-gradient boundary layers represent a situation where the classic assumptions
of turbulence modeling are not well approximated.  In particular, the turbulence is not in
equilibrium with the mean flow, and the eddy viscosity hypothesis is a poor approximation.
Two equation models (even the more elegant models, such as Durbin’s  elliptic relation
model) sometimes have problems predicting adverse pressure boundary layers26.  However,
models which predict the shear stress directly (Johnson & King, and Bradshaw, Ferriss &
Atwell, and full Reynolds stress closures) generally show considerable success with these
types of flows.  Since the potential model also directly predicts a quantity akin to the shear
stress, it is expected to perform well in these situations.

A common adverse pressure-gradient flow for tests of turbulence models is the experiment of
Samuel & Joubert42.  The friction coefficient as a function of the downstream distance for this
flow is shown in Figure 5.  Circles indicate the experimental data and the solid line shows the
model prediction.  In addition, the experimental and computed velocity profiles at two
downstream locations (Samuel & Joubert’s station 9 and station 12) are shown in Figure 6.
The agreement is very satisfactory.

A more difficult test of the model’s ability to capture separating flows is given by the
experiments of Schubauer & Spangenberg43.  This experiment has a very strong adverse
pressure-gradient and presents data very close to the separation point.   Figure 7 shows
velocity profiles for three downstream locations of this flow compared with the experiments.
The agreement continues to be reasonable.

5.5  Backward Facing Step
The backward facing step displays a number of complex interacting flow phenomena, such as
a detached shear layer, boundary layers, reattachment, recirculation, and boundary layer
recovery.  Two-equation models which use wall functions have had some success predicting
this flow, but models which integrate up to the wall have more difficulty since the damping
functions are usually ill-defined at the corners and often unstable at the reattachment point.
Those models which do predict the reattachment point of the backstep correctly, tend to under
predict the recovery of the boundary layer at higher Reynolds numbers.

The computed streamlines for the backward facing step at a Reynolds number of 5100 (based
on the step height, h) and an expansion ratio of 1.2 are shown in Figure 8. This geometry
corresponds to the DNS simulations of Le & Moin44 and the experimental results of Jovic &
Driver45. The step is located at y/h=1 and x/h=0.  The calculation domain extends from –3h
upstream of the step to 27h downstream and 6h in the vertical direction. The mesh consisted
of 120x120 quadrilateral cells stretched so as to resolve the boundary layers, shear layer, and
the reattachment zone.  The computed reattachment point was found to be 6.36 step-heights
downstream of the step.  This corresponds very favorably with the value of 6.28h found by
the DNS simulations and 6.1h found by the experiments.  A standard k/e formulation typically
predicts premature reattachment at around 5.4h, though enhanced models predict the
reattachment point correctly.
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DNS data and model predictions for the mean velocity are shown for a number of downstream
positions in Figure 9. Squares indicate the DNS results and solid lines indicate the model
predictions.  The magnitude of the velocity in the recirculation bubble is slightly under
predicted, but the overall agreement is very reasonable for this initial formulation of the
model.

5.6  Transition
The ability to predict transition is an important component of many engineering problems.
However, transition is usually an afterthought in the development of turbulence models. It
may be impossible to accurately predict all the different types of transition with a single
RANS model.  In this work, a pragmatic approach is taken, where the user is able to control
the transition development.  It is hypothesized that this approach will allow fairly broad
classes of transition problems (such as natural transition in boundary layers, or bypass
transition in mixing layers) to be calculated using a single parameter value and without
explicit user intervention (such as tripping).

A demonstration of natural transition control has been performed for transition in the channel
flow.  The mean velocity is initially uniform and set to a value of 10. The initial turbulent
kinetic energy is 0.01% and the initial eddy viscosity is equal to 0.1ν.  The channel Reynolds
number based on the channel half height is 3300.  Figure 10 shows the development of the
maximum turbulent kinetic energy as a function of time for various values of the transition
constant tC .  The model correctly shows exponential growth of the turbulent kinetic energy

during the transition process, with the rate of growth controlled by the transition constant.
The other turbulence quantities behave similarly.  If the viscosity is increased significantly so
that the channel Reynolds number is 1600, then the flow does not transition even for values of

tC as high as 0.001.

Most RANS turbulence models that display transition-like behavior require relatively high
levels of free-stream turbulence to trigger the transition event (essentially by-pass transition).
Usually, the transition time is dictated by how long it takes the free-stream turbulence to
diffuse into the boundary layer and is difficult to control.  The potential model does not rely
on free-stream turbulence to trigger transition.  This means that it can predict transition when
the free-stream turbulence is very small, and more importantly, that the transition behavior
can be explicitly controlled.

6. Conclusion

A new approach to RANS turbulence modeling has been presented based on the scalar and
vector potentials of the turbulent body force vector – the divergence of the Reynolds stress
tensor.  This approach lies somewhere between two-equation models and full Reynolds stress
transport equations models.  It shares with Reynolds stress transport equation models the
ability to accurately predict strongly non-equilibrium flows, but it has a cost and complexity
comparable to enhanced two-equation models.

Analysis of the ‘turbulent potentials’ indicates that they are not just mathematical constructs,
but physically relevant turbulence quantities closely related to the Reynolds stresses.  The
scalar potential can be thought of as a ‘turbulent pressure’, and is a valuable indicator of
turbulence anisotropy.  The vector potential can be thought of as a  ‘turbulent vorticity’.   In
fact the linear eddy-viscosity hypothesis is equivalent to the expression ωψ Tν=  if second

derivatives of the eddy viscosity are assumed to be small.   Like the vorticity, only one
component of the vector potential is non-zero in two-dimensional and axisymmetric mean
flows.
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Transport equations for the turbulent potentials have been derived, and models for the source
terms in those equations were proposed based largely on methods and models developed for
the Reynolds stress transport equations.    The formulation has been demonstrated to be
computationally tractable, and robust convergence to steady-state was achieved for all the test
cases even though all the transport equations were uncoupled numerically.  The proposed
transport equations can be integrated up to a wall or surface; they do not require wall
functions.   In addition, no functions of the wall normal coordinate have been used, so the
model can be implemented easily into existing flow solvers and complex geometries.

The channel flow simulations showed good agreement with DNS data at both high and low
Reynolds numbers.  Relaminarization was predicted correctly, and the ability to transition to
full turbulence from very small free-stream turbulence levels (‘natural transition’) was
demonstrated.  In addition, the model was shown to have the ability to control the transition
rate and transition point.  Simulations of rotating channel flow showed the models ability to
capture the qualitative effects of rotation, namely enhanced production on the unstable side,
and turbulence suppression on the stable side.  However, additional modification are
necessary to capture secondary rotation effects and obtain good quantitative agreement.

Calculations of a developing mixing layer captured the mean velocity and kinetic energy
profiles well.  The mixing layer edge was better resolved than standard two equation models.
The simulation of two adverse pressure gradient boundary layers gave the correct boundary
layer growth and velocity profiles as separation was approached.   Simulations of a backward
facing step captured the reattachment length correctly and produced reasonable agreement
with DNS data for the mean velocity.  However, the behavior of the turbulence in the
attachment zone could be improved.   It seems likely that the model requires additional terms
that appear only when the flow has more than one inhomogeneous direction.
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Figure 1. Model predictions of turbulent channel flow at a Reynolds number of 7900 compared with the direct
numerical simulation data of Kim.

Figure 2. Model predictions of turbulent channel flow at a Reynolds number of 90,660 compared with the Large-eddy
simulation data of Kravchenko & Moin.  Dashed lines are the LES calculations and solid lines are the model
predictions.

Figure 3. Model predictions of rotating channel flow at a Reynolds number of 7900 and Rossby number of 0.07.

Figure 4. Model predictions of a high Reynolds number turbulent mixing layer. (a) mean velocity profile, and (b)
turbulent kinetic energy distribution.

Figure 5.  Friction Coefficent versus downstream distance for the adverse pressure-gradient boundary layer of Samuel
& Joubert. Circles are experimental data, and the solid line indicates  the turbulent potential model prediction.

Figure 6.  Experimental (symbols) and calculated (lines) velocity profiles at station 9 and station 12 of the Samuel &
Joubert adverse pressure gradient boundary layer.

Figure 7.  Experimental (symbols) and calculated (lines) velocity profiles for the adverse pressure gradient boundary
layer of Schubauer & Spangenberg.

Figure 8. Computed streamlines for a backward facing step with a Reynolds number of 5100 and expansion ratio of
1.2.

Figure 9.  Mean velocity profiles downstream of a  backward facing step at a Reynolds number of 5100.  Symbols are
the DNS data of Le, Moin & Kim. Solid  lines are the model predictions.

Figure 10. Transition of a uniform channel flow for different values of the transition constant.
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Figure 8:   Perot ;  Physics of Fluids
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Figure 9:   Perot ;  Physics of Fluids
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Figure 10:   Perot ;  Physics of Fluids


