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Abstract 
 

A new moving mesh approach is used for numerical 
simulation of incompressible flow problems involving free-
surfaces. The divergence form of the Navier-Stokes equation is 
discretized using an unstructured staggered mesh method. This 
method exploits the inherent advantages of the Delaunay-
Veronoi co-volumes, which exhibit an orthogonal behavior. The 
paper also describes the semi-Lagrangian mesh adaptive 
technique used to track the free-surface. Results obtained from 
implementing this numerical technique on a few free-surfaces 
flows are presented and discussed. 
 
1. Introduction 
 

The study of free-surface flows covers a wide range of 
engineering and environmental flows, including such areas as 
small-scale bubble dynamics, wave mechanics, flow about a 
ship or offshore structure, open-channel flows and ocean-
atmosphere interactions. The phenomena we consider often 
happen on scales of space and time where experimental 
visualization is difficult or impossible. In such cases, numerical 
simulation may bring useful insight to the physicist or the 
engineer. 

The presence of free-surfaces poses a very interesting 
and challenging numerical problem in that, the location of the 
free-surface and hence the shape of the domain of interest may 
be time dependent. Tracking the free-surface is critical to 
accurate solution of such problems. In the present work, a new 
moving mesh approach with discretization based on an 
unstructured staggered grid is used to track the free-surface. 
2. The unstructured staggered mesh approach 
 
 The approach adopted in the current work is a 
generalization of a particular staggering scheme that dates 
originally to the work of Harlow and Welch [1].   They describe 
a scheme for regular Cartesian meshes where the pressure is 
located at cell centers but the velocity is distributed on the cell 
faces with horizontal velocity components prescribed at vertical 
faces and vertical velocity components prescribed at horizontal 
faces.   This particular staggering scheme has been found to be 
especially attractive for simulations of incompressible flow and 
is widely used for this class of flows.  The important property 
for incompressible flows is the fact that this scheme does not 
display spurious pressure modes.  There is no red-black 
uncoupling of the pressure unknowns or a need for 
�stabilization� terms that damp pressure and velocity 
fluctuations.  Several properties beyond the ability to easily 
simulate incompressible flow make this method attractive for 
simulations of high Reynolds number flows.  The method is 
typically very fast and uses minimal memory. 
 

The staggered mesh method of Harlow & Welch was 
generalized to unstructured (triangular) meshes independently 
by Hall, Peterson, Porshing & Sledge [2] and by Nicolaides [3-
5]. The works of Nicolaides provide extensive mathematical 
analysis of the method.  These �dual mesh� or �covolume� 
methods take explicit advantage of the fact that every 
unstructured tetrahedral or triangular mesh (a Delaunay mesh) 
has an orthogonal or dual mesh associated with it (a Voronoi 
tessellation).  An example of an unstructured mesh and its dual 
Figure 1. Exam ple of two-dim ensional
unstructured triangular m esh and the
associated Veronoi dual m esh.  The faces
of the two m eshes are always locally
orthogonal.  The locally orthogonal dual
m esh concept can be generalized to three-
dim ensions (and higher).
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are shown in fig. 1. The local mutual orthogonality of these 
meshes can be used to develop discretization operators that 
closely mimic their continuous counterparts.  This allows a true 
inner product to be defined and important vector identities 
(such as 0)( =•×∇⋅∇ ) to be maintained in a discrete sense. 
 
3. Governing equations: 

Different discretizations of the Navier-Stokes 
equations are possible depending on which form of the 
equations are discretized. In this work, the divergence form of 
the Navier Stokes equations for incompressible flow are used 
for discretization and are presented below: 
 
Conservation of mass:  0=•∇ u                     (1) 
        
Conservation of momentum:  

T( ( )) p ( )
t

∂ + ∇ • − = −∇ + ∇ • ν ∇ + ∇
∂
u u u v u u      (2) 

where u is the velocity of the fluid and v is the velocity of the 
control surface. Discretizations based on the divergence form of 
the equations are of interest because they are able to discretely 
conserve momentum. While momentum conservation is a trivial 
consequence of a classical finite volume method, it is not an 
obvious trait of staggered mesh methods.  This is because the 
staggered mesh methods only update the normal velocity 
components at cell faces, while the tangential velocity 
components are interpolated, but not evolved. It is shown that 
with certain choices of the interpolation operators, the staggered 
mesh update of face normal velocities is directly equivalent to a 
classic finite volume method which updates the velocity vector 
at cell centers. [6] 
 
4. Discretization of the equations: 
 
4.1 Mesh configuration: Pressure and velocity, the two 
independent variables of the problem, are located in a staggered 
manner as shown in fig. 2. The normal velocity U at each face is 
assumed to point from cell C1 to cell C2 and pressure P is 
located at the cell circumcenters. At boundary faces the normal 
vector is assumed to point out of the domain and cell C2 is a 
virtual cell located at the domain boundary. 
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Figure 2 : Configuration of the mesh 
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4.2 Conservation of mass: This equation is satisfied 
automatically by the definition of the normal velocity at each 
face, which is computed as the discrete curl of stream function. 
 
4.3 Conservation of momentum: The divergence form of the 
Navier-Stokes equation is discretized to obtain an evolution 
equation for the normal face velocity component and is given 
by, 
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where f

faces
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)��(1 −= ∑uc  is a conservative 

discretization of the convection term evaluated in each cell,  

f

faces
cell

f
T

cV
1

c A�)(∑ ⋅∇+∇ν= nuud  is a conservative discretization 

of the diffusion term evaluated in each cell, cV  is the volume of 
each cell, fA is the face area, fW  is the distance between 
neighboring cell circumcenters, and f

CW  is the distance between 
the face circumcenter and the cell circumcenter.  Note that 

fu nu ⋅=  is the normal velocity component at each cell face 
and v�  is the normal velocity component of the mesh.  Similarly 

f�n  is the normal vector pointing out of a particular cell. It has 
been shown by Perot[7] that such discretization conserves both 
momentum and kinetic energy. 
 
 The convection and diffusion terms in the above 
expression require the velocity vectors at the cell positions to be 
evaluated. The following interpolation scheme is used for 
computing the cell velocity from face-normal velocities: 

                              f
CC
f

faces
cell

c AuV ru �∑=                              (4 ) 

where cV  is the volume of the cell under consideration, u� is the 
outwards normal component of the velocity at the cell faces and 

eff
CC
c

CC
f

CC
f Dnxxr �)( =−= . CC

fx and CC
cx are face and 

cell circumcenter positions respectively, while efD  is the 
distance between the face and cell circumcenters. This is a first 
order approximation relating the cell velocity vector to the 
normal velocity components at the faces. For a more detailed 
analysis of this interpolation scheme, the reader is 
recommended to refer to the work of Perot[7]. 

The pressure term in eq (3) in the interior cells is 
eliminated by performing a curl operation on the entire set of 
discrete equations. However, pressure needs to be introduced 
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along with surface tension as a boundary condition, as shall be 
explained in more detail in the following section. 
  
5. Free-surface boundary condition:  
 A constant pressure boundary condition is used for the 
free-surface. Surface tension is treated as an additional term in 
pressure. Mathematically, pressure is evaluated as follows: 

effectiveR
pp σ+= 0          (5) 

where            ),(1 yx
Reffective

hn 2∇•−=          (6) 

Here, 0P is the external pressure, σ is the surface tension 

coefficient, effectiveR  is the effective local radius of curvature, n 
the unit normal vector while h is the position vector of the free-
surface.  
  
6. Free-surface tracking method: 

In the present method, a new adaptive mesh approach 
is used that tracks the free-surface in a mixed manner between 
the Lagrangian motion and the fixed Eulerian point of view. The 
mesh at the free-surface moves in a Lagrangian manner, 
tracking the free-surface and exactly preserving the fluid 
volume. The mesh in the interior does not move with the fluid. 
It moves in a manner so as to achieve high quality cell shapes 
and connectivity. Some of the adaptive mesh features are 
described in detail below: 
 
6.1 Mesh smoothing: As the mesh-nodes on the free-surface 
boundary move with velocity equal to that of the fluid in a 
Lagrangian manner, the internal cells get distorted and may 
lose useful properties that are associated with smooth, acute 
angled cells. To retain high quality cell shapes, a smoothing 
technique is implemented. This technique essentially treats each 
cell face as a spring under tension with the other cell-faces 
sharing the same node. (see fig 3). The spring restoring force is 
chosen proportional to the area of the face, implying, faces with 
larger areas tend to pull their adjoining nodes closer to 
themselves. The resulting forces at the nodes are computed and 
the positions of internal nodes are rearranged through an 
iterative scheme until the nodes attain a state of equilibrium. 
 
6.2 Mesh flipper: As discussed earlier, distortions in the cell 
shapes could result in the loss of Delaunay properties of the 
cells which are very important for accurate results. To overcome 
this problem, a mesh-flipper is implemented, which detects non- 

 

  
 

Figure 3: Mesh flipping: The common face between
neighboring cells is flipped to retain Delaunay properties 
 

 

Figure 4: The node in the interior is pulled to the center by the smoothing 
algorithm 
 
Delaunay faces and flips them between the two neighboring 
cells to restore Delaunay properties as shown in fig. 4. 

The smoothing and flipping functions can be extended 
to three dimensions in a similar fashion. Although the 
smoothing function in 3D is just an extension of its 2D 
counterpart, flipping in 3D is a little more complicated as it 
involves flipping of 2 or 3 tetrahedra simultaneously to produce 
3 or 2 new tetrahedra respectively. Joe[8] discusses the details 
of 3D flipping in more detail. 
 
7. Results and discussion: 
 

This section presents results obtained from the 
numerical simulation of some free-surface flows using the 
present adaptive mesh method. 
 
7.1 Validation of the code: The problem we considered for 
validating the code consists of standing waves in a rectangular 
tank with sufficiently small displacement. The results from the 
code are compared with the analytical solution for gravity 
induced standing waves in an irrotational fluid contained in a 
two-dimensional rectangular tank. It is easy to show that the 
fundamental period of sloshing of standing waves with a wave- 
length λ  in a rectangular container of initial depth D is given 
by[9]: 

2
1

)2tanh(
2

1







=

λ
π

πλ
Dg

T                                     (7)  

In the numerical model to the present problem, the fluid is 
assumed to be inviscid and incompressible. The wavelength of 
the standing waves is taken to be twice the width of the tank. As 
an initial condition, the shape of the free-surface is assumed to 
be a sinusoidal wave and the fluid is assumed to be at rest. The 
unsteady potential flow equations are then solved and the 
results are compared with the analytical solutions. 

 
Table 1 presents the comparison of numerical and 

analytical solutions for various values of gravity. It is clear that 
the results from numerical simulation are in good agreement 
with the analytical solution. 
 

 
 
 
 
 
 
 
 
    Before smoothing  After smoothing 
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Time period (s)  Gravity 

2−ms  Analytical Numerical 
% error 

1 4.90 16.0440 15.8776 1.04 
2 9.80 11.3499 11.2394 0.97 
3 20.0 7.9410 7.85705 1.06 
Table 1: Comparison of analytical and numerical results for the 
standing wave problem 
 
7.2 Some numerical examples: 

In this section, numerical solutions of a few problems 
are presented : sloshing of a viscous fluid in a rectangular tank, 
axi-symmetric sloshing in a cylindrical tank and impingement of 
a cylindrical droplet onto a wall. 
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Figure 5(a): Initial state of the free surface 
 
 
7.2.1 Sloshing of a viscous fluid in a rectangular tank: Viscous 
sloshing of an incompressible fluid contained in a two-
dimensional rectangular tank is simulated. The free-surface is 
assumed to be at rest with a linear, slanted surface as an initial 
condition. The maximum Reynolds number in the problem is 
found to be approximately 100. 
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Figure 5(b): Free-surface profile at 5.5 time units. 
 
It is observed from the simulations that the sloshing dampens 
quickly and the free-surface assumes a horizontal shape at 
steady state conditions, as per our expectations. Figures 5(a)-(b) 
indicate the intermediate shapes of the free-surface at various 
stages of sloshing. The arrows in the pictures represent the local 
velocity vectors. 
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Figure 6(a): Initial shape of the free-surface. 
 
7.2.2 Axi-symmetric sloshing of a viscous sloshing in a 
cylindrical container: Axi-symmetric version of the code is 
implemented to simulate the sloshing of a viscous liquid in a 
cylindrical container. Figures 6(a)-(d) present the time series of 
evolution of the free surface. The free-surface starts with a 
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conical profile as shown in in fig 6(a). The maximum Reynold's 
number in the problem is approximately 500. 
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Figure 6(b): Free-surface profile at 2.83 time units. 
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Figure 6(c): Free-surface profile at 4.25 time units. 
 
7.2.3 Droplet impingement on a wall: The problem consists of a 
cylindrical droplet falling freely under gravity and colliding 
against a solid wall. The resulting deformation of the droplet is 
simulated at a Reynold's number of 220 and a Weber number of 
0.4. The wall is assumed to be a no-slip wall so that the portion 
of the drop that comes into contact with the wall remains 
stationary. Figures 7 (a)-(d) depict the shape of the deforming 
droplet at various intermediate stages.  
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Figure 6(d): Free-surface profile at 5.67 time units. 
 

As we see from the plots, the droplet flattens at the 
bottom where it hits the wall and flows radially outward, thus 
reducing the thickness at the axis of symmetry. The present 
simulation uses very low Weber and Reynold numbers, 
implying domination of surface tension forces and viscous 
forces over the viscous forces. Hence we notice that the fluid is 
held together as a single unit and outward flow is restricted.  
Also as the pictures indicate, the stream function contours shift 
outward on either side as the fluid sees a stagnation zone in the 
area where contact with the wall takes place. 

Figure 7(a): Initial shape of the droplet 
 

5 Copyright © 2000 by ASME 



 

 
 
 
 

 
Figure 7(b) : Profile after  0.14 time units 
 
 
 

 
Figure 7(c): Shape of the droplet after 0.19 time units 

Figure 7(d): Shape of the droplet after 0.32 time units 
 

8. Conclusions: 
 
 A new unstructured moving mesh approach is 
presented in this paper to solve incompressible flow problems 
involving free-surfaces. The code is tested and validated using 
the benchmark problem of irrotational sloshing in a two-
dimensional rectangular tank. A few numerical examples of 
free-surface simulation using the present approach have also 
been presented. 
 

9. References: 

[1] HARLOW, F. H. & WELCH, J. E., Numerical calculations of 
time dependent viscous incompressible flow of fluid with a free 
surface, Phys. Fluids, 8 , 1965, p. 2182. 
 
[2] C. A. Hall, J. S. Peterson, T. A. Porsching & F. R. Sledge, 
The dual variable method for finite element discretizations of 
Navier/Stokes equations, Int. J. Num. Meth. Eng., 21, 883-898, 
(1985) 

[3] R. A. Nicolaides, Direct discretization of planar div-curl 
problems, ICASE Report 89-76 (1989). 
 
[4] R. A. Nicolaides, The covolume approach to computing 
incompressible flow, Incompressible Computational Fluid 
Dynamics, M. D. Gunzburger & R. A. Nicolaides, eds., 
Cambridge University Press, 295-234 (1993). 
 
[5] R. A. Nicolaides and X. Wu, Covolume solutions of three-
dimensional div-curl equations, ICASE Report. 95-4 (1995). 
 
[6] Blair Perot and Xing Zhang, Reformulation of the 
unstructured staggered mesh method as a classic finite volume 
method, Finite Volumes for Complex Applications II, Hermes 
Science Publications (1999), pp. 263-270. 
 
[7] Blair J. Perot, Conservation properties of  unstructured 
staggered mesh schemes, Journal of Computational Physics, 
(Accepted for publication in 2000). 
 
[8] B. Joe, Three-dimensional triangulations from local 
transformations, SIAM J. Sci. Stat. Comput., 10, pp.718-
741(1989). 
 
[9] F. Harlow and A. Amsden, Fluid Dynamics, an introductory 
text, Los Alamos scientific laboratory, LA-4700 (1980) 
 
 

6 Copyright © 2000 by ASME 


	F-233. TOC
	MAIN TOC

