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Abstract 
 
An analysis of the performance of low cost PC clusters for 

scientific computations is presented.  The solution of Laplace�s 
equation is analyzed in detail on two small PC clusters, a shared 
memory machine, and a single processor machine for three 
different problem sizes.  Detailed analyses of the 
communication costs indicate that PC clusters are suitable for 
large-scale scientific computations if communication can be 
overlapped with computation.  However, small amounts of non-
overlapped communication, such as the dot products in the 
Conjugate Gradient algorithm, can severely impact the parallel 
performance of otherwise highly parallel programs. 

 

1.Introduction 
 
Due to extremely large sales volumes, desktop processors such 
as the Pentium II offer very good performance for their price. 
Connecting a number of these machines together into a PC 
cluster can further enhance the power of these low cost 
processors.  The cluster nodes are connected via a fast network 
allowing all the processors to operate on a single problem in 
unison.  Large PC clusters, such as the ASCI Red machine with 
9,072 processors [1], are among the fastest supercomputers 
available today reaching speeds in excess of 1012 floating point 
operations per second (teraflops).    Smaller machines of the 
order of 32 to 128 processors are now common in the academic 
setting.  They provide computational performance comparable 
to million dollar commercial supercomputers at about one-tenth 
the cost.  
The PC cluster-computing model has the potential to radically 
alter how large-scale scientific computing is performed in the 
future. This paper evaluates the actual performance of a number 
of small PC clusters when numerically solving Laplace�s 
equation using an unstructured mesh algorithm.  Laplace�s 
equation arises in numerous physical situations (potential fluid 
flow, conductive heat transfer, electric fields, stress analysis, 
etc), and when solved with an unstructured mesh displays most 
of the important numerical characteristics that are important to 
performance on PC clusters.  Laplace�s equation should be 
reasonably indicative of a wide variety of other large-scale 
scientific computing applications.   
 
Processors can be connected together in two fundamentally 
different ways.  The first paradigm is shared-memory machines 
where multiple CPUs exist on a single motherboard and 
communicate via the same memory.  Dual and Quad processor 
machines of this type are common, and some configurations 
with up to 14 CPUs are available.   However, all but the dual 
processor machines are very expensive per CPU.  The other 
paradigm is to connect processors via a network such as 
Ethernet.  Machines that are connected via a network can not 
easily access the memory of other machines and must 
communicate with each other via message passing over the 
network.  PC clusters often take advantage of both paradigms, 
networking together a number of shared memory (dual or quad 
processor) machines.    
 

The paper will evaluate the tradeoffs associated with 
various PC cluster configurations and discuss the algorithmic 
requirements required to parallelize an unstructured Laplace 
solver on such machines.   We will attempt to define the limits 
of current PC cluster technology and identify the current 
bottlenecks associated with this type of supercomputer 
architecture. 
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2. Problem Description 
The problem that was considered is the inviscid flow around 
circular cylinder.  Figure 1 shows the relevant boundary 
conditions and final solution (streamlines) for this problem. The 
initial condition for this problem was a simple uniform flow.  
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Figure 1. Test Problem: Flow (streamlines) around a circular cylinder.   
 

Outlet Inlet 
The potential flow solver is an in-house code which uses a finite 
volume discretization, unstructured meshes, and a Jacobi 
Preconditioned Conjugate Gradient (CG) solver [2].  The CG 
solver is an iterative method, and convergence was stopped 
when the relative solution error was less than 0.01%.   This 
 

level of convergence took on the order of 200 to 650 iterations 
depending on the number of unknowns (mesh size) of the 
problem.  Three different mesh sizes were tested: a small mesh 
with 16,410 unknowns, a medium size mesh with 34,448 
unknowns, and a large problem size of 114,128 unknowns.   
The problem was tested on four different hardware 
configurations as shown in Figure 2.  Configuration A is just a 
standard single CPU machine. Configuration B is a Dual 
processor machine.  The two CPUs in configuration B can 
communicate data via their common memory.  The second two  
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Figure 2. Cluster Configurations 
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configurations are simple PC clusters.  Configuration C is 
constructed from two single processor machines connected via 
100 Mbit Ethernet and Configuration D is two dual processor 
machines connected via fast Ethernet.  Configuration D utilizes 
both communication paradigms of shared memory and message 
passing.  All the machines involved in these tests contain 400 
MHz Intel Pentium II processors running Windows NT.  The 
message-passing interface (MPI) is Wmpi version 1.2, a public 
domain implementation of MPI from Coimbra, Portugal [3]. 
MPI is a library specification for message passing between the 
cluster of machines, proposed as a standard by a broadly based 
committee of vendors, implementers, and users. 
   95 
Effective partitioning is an important technique for achieving 
better performance of parallel algorithms since it minimizes the 
amount of data that must be passed between the processors.  
Figure 3 shows an example of the simple mesh partitioning used 
for this work.  Partitions were constructed by constructing 
contiguous strips where each strip contains the same number of  
 
 
unknowns.   Figure 3 shows the partitioning used for hardware 
Configuration D.  Note that the second partition from the left is 
slightly wider since it contains most of the empty cylinder. 
 
 
 

 

 

 

 

 

3. General Performance Results  
Timings for the various hardware configurations and problem 
sizes are shown in Table 1.  In most cases the problem was 
actually solved many times in order to get stable timing results.  
In addition, since the different problem sizes require different 
numbers of iterations for convergence, we have reported the 
more relevant values of the time per iteration (in milliseconds), 
and the efficiency of the parallel implementation compared to 
the single processor configuration (A).   
  

 

                                
 
Figure 3.  An example of mesh partitioning.   
 

Configuration A   (1) B    (2) C (1/1) D   
(2/2) 

Big Problem 
Time/iteration (10-3) 88.503 51.684 45.603 26.6030 
Efficiency 1.0 0.8562 0.9704 0.83171 
Medium Problem 
Time/iteration (10-3) 25.405 15.207 14.364 9.4034 
Efficiency 1.0 0.8353 0.8843 0.6754 
Small Problem 
Time/iteration (10-3) 11.034 5.623 7.242 6.522 
Efficiency 1.0 0.982 0.762 0.423 

 
Table 1. Time per iterations and parallel efficiency for each 
hardware configuration and problem size. 
 
 
Efficiency is calculated by using the below formula 
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Where t1 is the time taken to solve the problem on single 
processor machine, t2 is the time taken by each process, for the 
same problem, on cluster of machines, and n is the number of 
processors in the cluster.  This is effectively a measure of the 
total time taken by all CPU's to solve a certain problem verses 
the total time it takes a single CPU to solve the same problem. 
 
The large problem shows a nearly linear increase in 
performance as the number of CPU�s is increased. Interestingly, 
Configuration C with 2 CPUs communicating over the network, 
is more efficient than Configuration B where two CPU�s 
communicate via shared memory.  This does not indicate that 
the network communication is faster than the shared memory 
communication.  It is an artifact of the background operating 
system processes running on these machines.  In Configurations 
A and C background processes are performed on a second CPU 
which is not being used for the test problem.   However, 
Configurations B and D use all the available processors and so 
the background processes must compete with the test problem 
for CPU time.  These background processes do not use much 
CPU time, but the context switching on each CPU does reduce 
the available CPU time and also the cache hit rates.  The 
roughly 15% efficiency loss in configurations B and D is almost 
entirely due to background process contention for the CPUs.  
 
The medium and small problems show a significant decrease in 
efficiency compared to the larger problem.  The decrease is 
particularly pronounced for Configuration D.  This is because 
for smaller problem sizes the communication times begin to 
become more important. Communication time is almost 
independent of the size of problem when the code is reasonably 
well partitioned and the sizes of data exchanges over the 
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network are small.  The time taken to exchange a small data 
item is referred to as the communication latency.  On our system 
the latency is roughly 0.7 milliseconds which is equivalent to 
roughly 200,000 real number adds by the CPU.    So even a few 
communication operations can soon impact a computationally 
intensive algorithm.   The impact of communication time is 
analyzed in detail in the next section 

4. Detailed Performance Results 
The iterative solution of Laplace�s equation via the Jacobi 
preconditioned CG method requires one matrix multiply, two 
dot products, and three vector add/multiplies (vector1 = vector1 
+ scalar*vector2).  Only the matrix multiply and dot products 
require communication between processors.  The 
communication in the matrix multiply can be overlapped with 
the matrix multiply calculation.  In this way, the processor 
remains busy while the data travels over the network, and only 
becomes idle if the data has not arrived by the time the 
calculation is complete. The dot products require far less data to 
be communicated but can not be overlapped with any 
calculation.   The full dot product is accomplished by 
performing partial dot products on each CPU and the adding the 
result from each CPU together.  The partial dot products must 
be completed before the summation over the network can occur, 
and the resulting total dot product is required before the CG 
method can proceed.   
 
Table 2 shows the detailed time distribution for different 
configurations and different size of problems. Time is given in 
milliseconds per iteration. Communication and computation 
times are separately shown in order to give clear idea of 
tradeoffs between different configurations.  The communication 
time shown for the matrix operation is the time it takes to 
initiate the communication and then possibly wait for the result.  
It is the CPU time used by matrix communication.  The actual 
time to send a message is typically much longer but not of 
direct interest as long as the CPU is busy during that time.   
 
Table 2. reveals a number of very interesting observations.  
First, the time spent in the matrix communication is relatively 
small for all the configurations tested.    There is sufficient 
computational load to hide the communication time if the 
matrix multiply is appropriately programmed.  The matrix 
communication time is also roughly constant.  The variations 
are thought to be due to statistical variation or slight differences 
in the computational load on the CPU�s.   Tests indicate that 
with the current hardware configurations that the matrix 
communication time can be hidden by computation as long as 
the number of unknowns per CPU is of the order of 1000 or 
more.   1000 unknowns per CPU is quite small for 
computationally intensive scientific problems requiring parallel 
hardware.   
 

 
                                                                                                            
               

Communication Computation Conf
igur
ation 

Total 
Time 

Ma
trix 

Dot 
Product 

Matrix Other CG 

For big problem 
(B) 2 51.684 0.336 0.299 32.202 18.838 
(C) 
1/1 

45.812 0.414 0.751 27.005 14.584 

(D) 
2/2 

26.587 0.374 2.996 14.268 8.961 

For medium problem 
(B) 2 15.208 0.237 0.227 10.481 4.263 
(C) 
1/1 

14.364 0.472 1.172 8.094 4.626 

(D) 
2/2 

9.403 0.333 2.954 3.69 2.426 

For Small problem 
(B) 2 5.623 0.146 0.179 3.052 1.905 
(C) 
1/1 

7.242 0.601 0.771 3.236 2.624 

(D) 
2/2 

6.522 0.216 1.156 1.338 3.792 

 
Table 2.  Detailed timings for different configurations 
 
The communication time required by the dot product is much 
more detrimental to the parallel performance.  It can be seen 
that the dot product communication increases with the number 
of CPUs involved, and with the number of communications that 
most occur over the network.   The time taken for the dot 
product communication is not small and becomes a significant 
fraction of the total solution time for the small problem (up to 
15%).    It is this one operation which is impacting the parallel 
efficiency of the small problem in Table 1.  For Configuration 
D, the dot product communication step adds a total of eight real 
numbers.  The relative cost for these eight adds is extremely 
high.  
 
In order to demonstrate the impact the dot product 
communication has on the parallel efficiency of the code, the 
times for the medium size problem have been recalculated 
assuming that the dot product communication time was zero.  
The results are presented in Table 3. and should be compared 
with the original results in Table 1.  It is clear than dot product 
communication is the only major impediment to the parallel 
efficiency of the code on PC clusters. 
 

configuration A B C D 
Time/iteration  25.405 14.981 13.192 6.449 
Speedup 1.0 0.848 0.963 0.985 

 
 
Table 3.  Performance of the code for the medium size problem 
if dot product communication is assumed to be negligible. 
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There are a number of ways to reduce the dot product 
communication time.  Developing a CG method where the dot 
product communication can be overlapped with computation 
would be effective.  Parallel CG methods [4] have been devised 
which have a single effective dot product (rather than two) and 
an additional vector add/multiply.   Chebychev iteration [5] is 
similar to CG and requires no dot products.  The difficulty of 
Chebychev iteration is that external eigenvalues of the matrix 
must be accurately known.   Other iterative methods, such as 
multigrid [6], also do not require dot products. Finally, faster 
communication hardware could be used.   Network hardware 
with latencies at least 10 times smaller than 100 Mbit Ethernet 
are currently available [7], though much more expensive. 
 

5. Threads vs. MPI 
 
On shared memory machines or clusters of shared memory 
machines it is possible to perform communication among the 
processors on the same machine using operating system  
 
 
Threads.  Threads can allow a program to take advantage of 
multiple CPUs while allowing the CPUs to see the same 
memory locations.  Allowing the CPUs  to see the same 
memory locations allows the processors to communication via 
 

memory.   This should be more efficient than passing messages 
between the CPUs.  Configurations B shown in Figure 1. was 
tested using a Thread based communication paradigm rather 
than MPI to determine the performance tradeoffs associated 
with parallelizing the code using Threads.  It was found that the 
Thread based code performed less than 10% faster. Table 4 
shows the time taken by Thread communication and MPI for 
the small problem on Configuration B.  
 
 
 

Communication Method Total time taken 
Threads 10.001 
MPI 11.034 

 
 
Table 4. Comparison of Threads vs MPI (Time in milliseconds 
per iteration) for Configuration B. 
 
 
Since Threads can not be used to communicate between 
machines (over the network), MPI is still required for PC 
clusters.  The complexity of combining threads and MPI to 
perform communication is probably not worth a 10% speed 
increase.    Thread communication might become more 
attractive if shared memory emulation, such as Brazos from 
Size of data

Ti
m

e 
in

 m
ill

is
ec

on
ds

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000 10,000 11,000
0

0.8

1.6

2.4

3.2

4

4.8

5.6

6.4

Move on Shared Memory Machine
MPI Bcast on Shared Memory Machine
MPI Bcast on Clustered Machine

 
 

Figure 4. MPI Communication vs. Move 
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Rice University [8] was in place.  Shared memory emulation is 
allows the operating system to address memory on other 
machines just as it addresses its own. While an attractive idea, 
shared memory emulation is probably not developed 
sufficiently for production scientific computations at this time.   
 

6. Comparison of MPI Communication 
vs. Move 
 
Figure 4. shows the time taken for moving data within the 
shared memory machine to that of MPI communication for both 
a shared memory machine as well as a cluster machine. We 
notice that a move (write to memory) takes almost negligible 
time when compared to the MPI Broadcast on a shared memory 
machine. This is  why in the Table 4 we see a gain of roughly 
10% using the Thread communication. In addition, the time 
taken by MPI communication on a clustered machine over the 
network is almost 8 times more than that of MPI on a shared 
memory machine. This explains the significant drop in 
efficiency of clustered machines over stand alone shared 
memory machines.  
 

7. Conclusion 
 
Solutions of Laplace�s equation with different numbers of 
unknowns have been computed on four different hardware 
configurations.  Two of the hardware configurations (C and D), 
require communication over a network and are representative of 
small PC clusters.  One of the hardware configurations (A) is 
representative of shared memory multiprocessor machines.  It 
has been found that PC clusters connected via 100 Mbit 
Ethernet are a viable hardware alternative for large scale 
parallel computing.  The important caveat being that for smaller 
problem sizes, all communication has to be overlapped with 
useful computation.  Even small communication operations, 
such as the dot product communication, which only adds four 
real numbers, can have a severe impact on the performance of 
the overall algorithm, if that communication is not overlapped 
with calculation.  While Conjugate Gradient and related Krylov 
subspace methods are normally considered to be highly parallel 
this is not the case when applied to PC cluster architectures due 
to the presence of dot products.   
 
At this time, scientific computations where all communication 
can be overlapped with computation are well suited to PC 
cluster architectures.  However, overlapping of computation and 
calculation is probably not possible to accomplish with an 
optimizing compiler, and is not always possible in many 
supposedly parallel algorithms, such as standard CG.  Code 
modification and possibly algorithm changes are required to 
effectively use PC clusters. Faster networking can obviate the 
 

necessity for this type of code modification and algorithm 
changes.   However, we believe that network speeds will not be 
increasing significantly faster than CPU speeds in the near 
future, and so the basic imbalance will probably remain for 
some time unless expensive networking equipment is used.      
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