

Proceedings of FEDSM 2000:
ASME Fluids Engineering Division Summer Meeting

June 11-15,2000, Boston, MA

FEDSM2000-11223

PARALLELIZATION OF POTENTIAL FLOW SOLVER USING PC CLUSTERS

Prof. Blair.J.Perot

Manjunatha .N. Ramanathpura

Department of Mechanical and Industrial Engineering, University of Massachusetts,
Amherst, MA - 01003
Abstract

An analysis of the performance of low cost PC clusters for

scientific computations is presented. The solution of Laplace�s
equation is analyzed in detail on two small PC clusters, a shared
memory machine, and a single processor machine for three
different problem sizes. Detailed analyses of the
communication costs indicate that PC clusters are suitable for
large-scale scientific computations if communication can be
overlapped with computation. However, small amounts of non-
overlapped communication, such as the dot products in the
Conjugate Gradient algorithm, can severely impact the parallel
performance of otherwise highly parallel programs.

1.Introduction

Due to extremely large sales volumes, desktop processors such
as the Pentium II offer very good performance for their price.
Connecting a number of these machines together into a PC
cluster can further enhance the power of these low cost
processors. The cluster nodes are connected via a fast network
allowing all the processors to operate on a single problem in
unison. Large PC clusters, such as the ASCI Red machine with
9,072 processors [1], are among the fastest supercomputers
available today reaching speeds in excess of 1012 floating point
operations per second (teraflops). Smaller machines of the
order of 32 to 128 processors are now common in the academic
setting. They provide computational performance comparable
to million dollar commercial supercomputers at about one-tenth
the cost.
The PC cluster-computing model has the potential to radically
alter how large-scale scientific computing is performed in the
future. This paper evaluates the actual performance of a number
of small PC clusters when numerically solving Laplace�s
equation using an unstructured mesh algorithm. Laplace�s
equation arises in numerous physical situations (potential fluid
flow, conductive heat transfer, electric fields, stress analysis,
etc), and when solved with an unstructured mesh displays most
of the important numerical characteristics that are important to
performance on PC clusters. Laplace�s equation should be
reasonably indicative of a wide variety of other large-scale
scientific computing applications.

Processors can be connected together in two fundamentally
different ways. The first paradigm is shared-memory machines
where multiple CPUs exist on a single motherboard and
communicate via the same memory. Dual and Quad processor
machines of this type are common, and some configurations
with up to 14 CPUs are available. However, all but the dual
processor machines are very expensive per CPU. The other
paradigm is to connect processors via a network such as
Ethernet. Machines that are connected via a network can not
easily access the memory of other machines and must
communicate with each other via message passing over the
network. PC clusters often take advantage of both paradigms,
networking together a number of shared memory (dual or quad
processor) machines.

The paper will evaluate the tradeoffs associated with
various PC cluster configurations and discuss the algorithmic
requirements required to parallelize an unstructured Laplace
solver on such machines. We will attempt to define the limits
of current PC cluster technology and identify the current
bottlenecks associated with this type of supercomputer
architecture.
1 Copyright © 2000 by ASME

2. Problem Description
The problem that was considered is the inviscid flow around
circular cylinder. Figure 1 shows the relevant boundary
conditions and final solution (streamlines) for this problem. The
initial condition for this problem was a simple uniform flow.
 Cylinder Wall

 Wall

Figure 1. Test Problem: Flow (streamlines) around a circular cylinder.

Outlet Inlet
The potential flow solver is an in-house code which uses a finite
volume discretization, unstructured meshes, and a Jacobi
Preconditioned Conjugate Gradient (CG) solver [2]. The CG
solver is an iterative method, and convergence was stopped
when the relative solution error was less than 0.01%. This

level of convergence took on the order of 200 to 650 iterations
depending on the number of unknowns (mesh size) of the
problem. Three different mesh sizes were tested: a small mesh
with 16,410 unknowns, a medium size mesh with 34,448
unknowns, and a large problem size of 114,128 unknowns.
The problem was tested on four different hardware
configurations as shown in Figure 2. Configuration A is just a
standard single CPU machine. Configuration B is a Dual
processor machine. The two CPUs in configuration B can
communicate data via their common memory. The second two
A. B.
1 CPU

2 CPUs

C. D.

1 CPU 1 CPU

100 Mbit
Ethernet

2CPUs 2CPUs

100 Mbit
Ethernet

Figure 2. Cluster Configurations

2 Copyright © 2000 by ASME

configurations are simple PC clusters. Configuration C is
constructed from two single processor machines connected via
100 Mbit Ethernet and Configuration D is two dual processor
machines connected via fast Ethernet. Configuration D utilizes
both communication paradigms of shared memory and message
passing. All the machines involved in these tests contain 400
MHz Intel Pentium II processors running Windows NT. The
message-passing interface (MPI) is Wmpi version 1.2, a public
domain implementation of MPI from Coimbra, Portugal [3].
MPI is a library specification for message passing between the
cluster of machines, proposed as a standard by a broadly based
committee of vendors, implementers, and users.
 95
Effective partitioning is an important technique for achieving
better performance of parallel algorithms since it minimizes the
amount of data that must be passed between the processors.
Figure 3 shows an example of the simple mesh partitioning used
for this work. Partitions were constructed by constructing
contiguous strips where each strip contains the same number of

unknowns. Figure 3 shows the partitioning used for hardware
Configuration D. Note that the second partition from the left is
slightly wider since it contains most of the empty cylinder.

3. General Performance Results
Timings for the various hardware configurations and problem
sizes are shown in Table 1. In most cases the problem was
actually solved many times in order to get stable timing results.
In addition, since the different problem sizes require different
numbers of iterations for convergence, we have reported the
more relevant values of the time per iteration (in milliseconds),
and the efficiency of the parallel implementation compared to
the single processor configuration (A).

Figure 3. An example of mesh partitioning.

Configuration A (1) B (2) C (1/1) D
(2/2)

Big Problem
Time/iteration (10-3) 88.503 51.684 45.603 26.6030
Efficiency 1.0 0.8562 0.9704 0.83171
Medium Problem
Time/iteration (10-3) 25.405 15.207 14.364 9.4034
Efficiency 1.0 0.8353 0.8843 0.6754
Small Problem
Time/iteration (10-3) 11.034 5.623 7.242 6.522
Efficiency 1.0 0.982 0.762 0.423

Table 1. Time per iterations and parallel efficiency for each
hardware configuration and problem size.

Efficiency is calculated by using the below formula

2

1

tn
t
×

=η

Where t1 is the time taken to solve the problem on single
processor machine, t2 is the time taken by each process, for the
same problem, on cluster of machines, and n is the number of
processors in the cluster. This is effectively a measure of the
total time taken by all CPU's to solve a certain problem verses
the total time it takes a single CPU to solve the same problem.

The large problem shows a nearly linear increase in
performance as the number of CPU�s is increased. Interestingly,
Configuration C with 2 CPUs communicating over the network,
is more efficient than Configuration B where two CPU�s
communicate via shared memory. This does not indicate that
the network communication is faster than the shared memory
communication. It is an artifact of the background operating
system processes running on these machines. In Configurations
A and C background processes are performed on a second CPU
which is not being used for the test problem. However,
Configurations B and D use all the available processors and so
the background processes must compete with the test problem
for CPU time. These background processes do not use much
CPU time, but the context switching on each CPU does reduce
the available CPU time and also the cache hit rates. The
roughly 15% efficiency loss in configurations B and D is almost
entirely due to background process contention for the CPUs.

The medium and small problems show a significant decrease in
efficiency compared to the larger problem. The decrease is
particularly pronounced for Configuration D. This is because
for smaller problem sizes the communication times begin to
become more important. Communication time is almost
independent of the size of problem when the code is reasonably
well partitioned and the sizes of data exchanges over the
3 Copyright © 2000 by ASME

network are small. The time taken to exchange a small data
item is referred to as the communication latency. On our system
the latency is roughly 0.7 milliseconds which is equivalent to
roughly 200,000 real number adds by the CPU. So even a few
communication operations can soon impact a computationally
intensive algorithm. The impact of communication time is
analyzed in detail in the next section

4. Detailed Performance Results
The iterative solution of Laplace�s equation via the Jacobi
preconditioned CG method requires one matrix multiply, two
dot products, and three vector add/multiplies (vector1 = vector1
+ scalar*vector2). Only the matrix multiply and dot products
require communication between processors. The
communication in the matrix multiply can be overlapped with
the matrix multiply calculation. In this way, the processor
remains busy while the data travels over the network, and only
becomes idle if the data has not arrived by the time the
calculation is complete. The dot products require far less data to
be communicated but can not be overlapped with any
calculation. The full dot product is accomplished by
performing partial dot products on each CPU and the adding the
result from each CPU together. The partial dot products must
be completed before the summation over the network can occur,
and the resulting total dot product is required before the CG
method can proceed.

Table 2 shows the detailed time distribution for different
configurations and different size of problems. Time is given in
milliseconds per iteration. Communication and computation
times are separately shown in order to give clear idea of
tradeoffs between different configurations. The communication
time shown for the matrix operation is the time it takes to
initiate the communication and then possibly wait for the result.
It is the CPU time used by matrix communication. The actual
time to send a message is typically much longer but not of
direct interest as long as the CPU is busy during that time.

Table 2. reveals a number of very interesting observations.
First, the time spent in the matrix communication is relatively
small for all the configurations tested. There is sufficient
computational load to hide the communication time if the
matrix multiply is appropriately programmed. The matrix
communication time is also roughly constant. The variations
are thought to be due to statistical variation or slight differences
in the computational load on the CPU�s. Tests indicate that
with the current hardware configurations that the matrix
communication time can be hidden by computation as long as
the number of unknowns per CPU is of the order of 1000 or
more. 1000 unknowns per CPU is quite small for
computationally intensive scientific problems requiring parallel
hardware.

Communication Computation Conf
igur
ation

Total
Time

Ma
trix

Dot
Product

Matrix Other CG

For big problem
(B) 2 51.684 0.336 0.299 32.202 18.838
(C)
1/1

45.812 0.414 0.751 27.005 14.584

(D)
2/2

26.587 0.374 2.996 14.268 8.961

For medium problem
(B) 2 15.208 0.237 0.227 10.481 4.263
(C)
1/1

14.364 0.472 1.172 8.094 4.626

(D)
2/2

9.403 0.333 2.954 3.69 2.426

For Small problem
(B) 2 5.623 0.146 0.179 3.052 1.905
(C)
1/1

7.242 0.601 0.771 3.236 2.624

(D)
2/2

6.522 0.216 1.156 1.338 3.792

Table 2. Detailed timings for different configurations

The communication time required by the dot product is much
more detrimental to the parallel performance. It can be seen
that the dot product communication increases with the number
of CPUs involved, and with the number of communications that
most occur over the network. The time taken for the dot
product communication is not small and becomes a significant
fraction of the total solution time for the small problem (up to
15%). It is this one operation which is impacting the parallel
efficiency of the small problem in Table 1. For Configuration
D, the dot product communication step adds a total of eight real
numbers. The relative cost for these eight adds is extremely
high.

In order to demonstrate the impact the dot product
communication has on the parallel efficiency of the code, the
times for the medium size problem have been recalculated
assuming that the dot product communication time was zero.
The results are presented in Table 3. and should be compared
with the original results in Table 1. It is clear than dot product
communication is the only major impediment to the parallel
efficiency of the code on PC clusters.

configuration A B C D
Time/iteration 25.405 14.981 13.192 6.449
Speedup 1.0 0.848 0.963 0.985

Table 3. Performance of the code for the medium size problem
if dot product communication is assumed to be negligible.
4 Copyright © 2000 by ASME

There are a number of ways to reduce the dot product
communication time. Developing a CG method where the dot
product communication can be overlapped with computation
would be effective. Parallel CG methods [4] have been devised
which have a single effective dot product (rather than two) and
an additional vector add/multiply. Chebychev iteration [5] is
similar to CG and requires no dot products. The difficulty of
Chebychev iteration is that external eigenvalues of the matrix
must be accurately known. Other iterative methods, such as
multigrid [6], also do not require dot products. Finally, faster
communication hardware could be used. Network hardware
with latencies at least 10 times smaller than 100 Mbit Ethernet
are currently available [7], though much more expensive.

5. Threads vs. MPI

On shared memory machines or clusters of shared memory
machines it is possible to perform communication among the
processors on the same machine using operating system

Threads. Threads can allow a program to take advantage of
multiple CPUs while allowing the CPUs to see the same
memory locations. Allowing the CPUs to see the same
memory locations allows the processors to communication via

memory. This should be more efficient than passing messages
between the CPUs. Configurations B shown in Figure 1. was
tested using a Thread based communication paradigm rather
than MPI to determine the performance tradeoffs associated
with parallelizing the code using Threads. It was found that the
Thread based code performed less than 10% faster. Table 4
shows the time taken by Thread communication and MPI for
the small problem on Configuration B.

Communication Method Total time taken
Threads 10.001
MPI 11.034

Table 4. Comparison of Threads vs MPI (Time in milliseconds
per iteration) for Configuration B.

Since Threads can not be used to communicate between
machines (over the network), MPI is still required for PC
clusters. The complexity of combining threads and MPI to
perform communication is probably not worth a 10% speed
increase. Thread communication might become more
attractive if shared memory emulation, such as Brazos from
Size of data

Ti
m

e
in

 m
ill

is
ec

on
ds

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000 10,000 11,000
0

0.8

1.6

2.4

3.2

4

4.8

5.6

6.4

Move on Shared Memory Machine
MPI Bcast on Shared Memory Machine
MPI Bcast on Clustered Machine

Figure 4. MPI Communication vs. Move
5 Copyright © 2000 by ASME

Rice University [8] was in place. Shared memory emulation is
allows the operating system to address memory on other
machines just as it addresses its own. While an attractive idea,
shared memory emulation is probably not developed
sufficiently for production scientific computations at this time.

6. Comparison of MPI Communication
vs. Move

Figure 4. shows the time taken for moving data within the
shared memory machine to that of MPI communication for both
a shared memory machine as well as a cluster machine. We
notice that a move (write to memory) takes almost negligible
time when compared to the MPI Broadcast on a shared memory
machine. This is why in the Table 4 we see a gain of roughly
10% using the Thread communication. In addition, the time
taken by MPI communication on a clustered machine over the
network is almost 8 times more than that of MPI on a shared
memory machine. This explains the significant drop in
efficiency of clustered machines over stand alone shared
memory machines.

7. Conclusion

Solutions of Laplace�s equation with different numbers of
unknowns have been computed on four different hardware
configurations. Two of the hardware configurations (C and D),
require communication over a network and are representative of
small PC clusters. One of the hardware configurations (A) is
representative of shared memory multiprocessor machines. It
has been found that PC clusters connected via 100 Mbit
Ethernet are a viable hardware alternative for large scale
parallel computing. The important caveat being that for smaller
problem sizes, all communication has to be overlapped with
useful computation. Even small communication operations,
such as the dot product communication, which only adds four
real numbers, can have a severe impact on the performance of
the overall algorithm, if that communication is not overlapped
with calculation. While Conjugate Gradient and related Krylov
subspace methods are normally considered to be highly parallel
this is not the case when applied to PC cluster architectures due
to the presence of dot products.

At this time, scientific computations where all communication
can be overlapped with computation are well suited to PC
cluster architectures. However, overlapping of computation and
calculation is probably not possible to accomplish with an
optimizing compiler, and is not always possible in many
supposedly parallel algorithms, such as standard CG. Code
modification and possibly algorithm changes are required to
effectively use PC clusters. Faster networking can obviate the

necessity for this type of code modification and algorithm
changes. However, we believe that network speeds will not be
increasing significantly faster than CPU speeds in the near
future, and so the basic imbalance will probably remain for
some time unless expensive networking equipment is used.

References

1. James L. Tomkins, The ASCI Red Super computer,

www.llnl.gov/asci/sc96fliers/snl/ASCIred.html.

2. William H. Press, Brian P. Flannery, Saul A. Teukolsky &

William T. Vettering, Numerical Recipes, the Art of
Scientific Computing, Cambridge University Press.

3. Win32 Message Passing Interfaces (WMPI1.2)

dsg.dei.uc.pt/wmpi/intro.html.

4. A.Chronopoulos & C. Gear, s-step iterative methods for

symmetric linear systems, J. Comput. Appl. Math., 25 (
19), pp. 153-168

5. S. Ashby, T. Manteuffel, & J. Otto, A comparision of

adaptive Chebyshev and least squares polynomial
preconditioning for Hermitian positive definite linear
systems, SIAM J. Sci. Statist. Comput., 13 (1992), pp. 1 -
29

6. Seokkwan Yoon & Dochan Kwak ,Multigrid Convergence

of an LU Scheme, Frontiers of Computational Fluid
Dynamics,Wiley publications.

7. Giganet Inc., www.giganet.com/

8. Brazos Parallel Programming Environment, www-

brazos.rice.edu/brazos/

6 Copyright © 2000 by ASME

http://www.llnl.gov/asci/sc96fliers/snl/ASCIred.html
http://dsg.dei.uc.pt/wmpi/intro.html
http://www.giganet.com/
http://www-brazos.rice.edu/brazos/
http://www-brazos.rice.edu/brazos/

	S-300. TOC
	MAIN TOC

