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ABSTRACT

Numerical simulation of the turbulent flow around a
triangular cylinder at a Reynolds number of 45,000 is
presented in this paper. Both steady and unsteady vortex-
shedding results are presented. A body force potential
model is used to model the turbulent motion. This
approach is able to model non-equilibrium turbulence
accurately at a cost and complexity comparable to k-&
models. The numerical method used in this calculation is
an unstructured staggered mesh scheme. The property that
this method conserves kinetic energy both locally within
cells and globally makes it a good choice for performing
turbulence modeling.

For the unsteady solution, the Strouhal number and
time-averaged velocity profile agree well with
experiments. However, the steady solution that was
obtained by using a symmetric boundary condition at the
centerline leads to poor predictions of the time-averaged
mean velocity profile.

INTRODUCTION

The flow around a triangle provides an example of
bluff body flow with fixed separation points. If the
Reynolds number is not too small the flow is inherently
unsteady and a Von Karman vortex street appears with a
well-defined frequency. If the Reynolds number is
sufficiently high the flow will be turbulent and a
turbulence model must be included to model the turbulent
fluctuations. In the case of turbulent vortex shedding, we
have the option of including the large scale vortex
shedding in the turbulence model and calculating a steady
mean flow, or of solving for the large scale vortex

shedding by numerical scheme while only including the
small scale turbulence in the model. The former approach
is less expensive, but we show here less likely to give
accurate predictions. This is hypothesized to be due to the
fact that the large-scale vortex structures do not behave
like equilibrium turbulence.

Sjunnesson (1991) measured the flow of a triangular
cylinder in a duct. Their experimental study was
motivated by the application to flame holders. Johansson
et al. (1993) carried out numerical simulation of this flow
using a k-&¢ model. Durbin (1994) also carried out the

same simulation using a k-e-v> model. Franke et al.
(1991) compared the ability of different models to predict
turbulent vortex shedding from a rectangular cylinder.
Franke’s conclusion is that some k-€ models do not
predict the right shedding frequency and Reynolds stress
transport models can produce results in good agreement
with the experiments. The turbulent potential model is a
simplified Reynolds stress transport model, which has the
ability of modeling non-equilibrium turbulence with the
computing cost and complexity comparable to k-€ model.

TURBULENCE MODEL AND NUMERICAL SCHEME

The primary difficulty of modeling unsteady
turbulent vortex shedding is thought to be that the
turbulence is not in equilibrium with the mean flow,
because the large vortices move and decay at the same
time-scale as the turbulence. The most common
constitutive relation, the eddy viscosity hypothesis (or
linear Boussinesq hypothesis) is probably incorrect in
this case.
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In the past, avoiding an algebraic constitutive relation
for the Reynolds stresses required solving coupled
transport equations for the Reynolds stress themselves.
Recently, a new modeling approach, the turbulence
potential model has been developed. It is capable of
modeling the complex turbulent physics associated with
separation and unsteady flow. This turbulent potential
model is well suited to vortex shedding problem because it
does not require a constitutive relation relating the
Reynolds stress tensor to the mean flow. The model
hypothesizes evolution equations for the scalar and vector
potentials of the turbulent body force (the divergence of
the Reynolds stress tensor). It has the accuracy of a
Reynolds stress model, at a cost comparable to modern
two equation models. The governing equations of the
turbulence potential model will not be presented here.
Their initial development is described in Perot (1999).

Our numerical method uses an unstructured staggered
mesh scheme which can conserve mass, momentum, and
kinetic energy to machine precision. The turbulence
quantities are advected using an unwinding scheme to
guarantee positivity constraints. The model integrates up
to the wall, so wall functions are not used, but the first
grid point should be in the laminar sub-layer to obtain
accurate predictions. The details for this numerical
method, including accuracy analysis and conservation
property are discussed in Perot & Zhang (1999).

FLOW OVER A TRIANGLE

In order to compare with the experimental data, we
select a computational domain that is the same as the
configuration of Sjunnesson’s experiment. The mesh is
generated by TRIANGLE - an automatic 2D-Delaunay
mesh maker. There are approximately 25,000 triangles in
our calculation (see Figure 1).

Figure 1. Computational domain and mesh.

In the present calculation, the inlet mean stream-wise
velocity is a constant value, the vertical velocity is zero.
For turbulent kinetic energy and dissipation rate, we use
the same conditions described in Johnasson’s paper.
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The total mass flow was n1, =0.6 kgs' in their

experiment, and the inlet velocity is evaluated based on
that value. These values are also used as the initial value
for the whole domain. ¢ is the height of the duct. A
zero gradient boundary condition is used for all the
variables at the outlet. Slip-wall boundary conditions are
used for the duct wall.

In the steady calculation, we use half of the domain
mentioned above and imposed a symmetric boundary
condition along the centerline.

RESULTS
Calculation of 2D unsteady turbulent flow around a
triangle cylinder with Reynolds number

Re = Lufl _ 45 000 is presented, where H is the height
v

of the triangle. Unsteady behavior is due to vortices
alternately shedding from the upper and lower edges of the
cylinder, forming a Von Karmann vortex street behind the
triangle.

No special triggering measure is taken to start the
vortex shedding, the unsteadiness in the computational
result evolved naturally. It was triggered by the machine
error and asymmetry of the mesh.

To illustrate the periodicity of the flow, the stream
function of a point about one triangle height behind the
triangle near the centerline is shown in Figure 2. It can be
seen that an almost perfect periodicity exists. The
shedding frequency is 109.3 (s"). The corresponding
Strouhal number defined by,

is 0.257, which should be compared with experimental
data of 0.25 and the computed value of 0.27 in
Johnnasson (1991). Figure 3 shows an instantaneous
velocity vector plot, we can see that the center of a vortex
is rolled up at the lower edge and a new vortex is
beginning to roll up at the upper edge. The vortex street
can also be seen in the instantaneous vorticity contours
plot shown in Figure 4.
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Figure 2. The stream-function of one point about one cylinder
height behind the triangle near the centerline.

Figure 3 Instantaneous velocity vector plot.

Figure 4. Instantaneous vorticity contours plot.
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Although the instantaneous flow is asymmetric, the
time-averaged fields are always symmetric or anti-
symmetric. Figure 5 shows the stream-wise velocity at
different locations behind the triangle. The calculated
velocity profiles are in reasonable agreement with the
experiment. However, it is hypothesized that the
boundary layer on the triangle is not fully resolved due to
mesh size restrictions. The computed boundary layer is
much thicker than the real one, thus close to the back of
the triangle, the fluid is slowed down and driven
backwards more than it should be. This would explain the
mean velocity profile close to the centerline at x=15mm
where the velocity is under-predicted. Figure 6 shows the
mean stream-wise velocity at the centerline. The length
of recirculation zone is accurately predicted, while the

0.06

0.06

location of the maximum negative velocity is slightly
upstream compare with the experiments. The magnitude
of the maximum negative velocity is also a little lower
than the experiment data.

Figure 7 shows comparison of the mean stream-wise
velocity contour plots between the time-averaged and the
steady solution. The contour levels in each plot are the
same. The predicted “steady-state” recirculation zone is
much longer than the time-averaged unsteady solution.
The reason for this is that the unsteady flow increases the
momentum exchange between the wake and its
surrounding, thus reducing the recirculation zone. The
turbulence model does not adequately represent the
momentum exchange due to these very large eddies

o
o
»

Hm% ERRRELER
0.04 0.04 — @i — 0.04 % —
0.02 0.02 - % - 0.02 - ¢ -

—_ —_ ¥ —_

E 0 E 0 %@ - £ 0 — _

> > %ﬁ% > “.

-0.02 0.02 - R - 0.02 - By
DD% ‘-'-‘
-0.04 -0.04 |- gg . -0.04 |- .
-0.06 -0.06 -0.06 5
-10 10 30 -10 10 30 -10 10 30
U [m/s] U [m/s] U [m/s]
(a) (b) (©)
0.06 77y 0-06%
0.04 0.04 .
:
0.02 0.02 ig —

E E B :

— 0 — 0 *

> > %

-0.02 | -0.02 — * —
5
-0.04 % -0.04 - & —
-0.06 = -0.06 §
-10 10 30 -10 10 30
U [m/s] U [m/s]
(d (e)

Figure 5. Mean stream-wise velocity behind the triangle:

, calculations; *, experiments.

(a) 15mm, (b) 38mm, (¢) 61mm, (d) 150mm, (e) 376mm
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Figure 6. Mean stream-wise velocity at centerline.

Figure 7. Mean stream-wise velocity contours of the time-averaged and steady solution

CONCLUSIONS

In this paper, numerical simulation of flow past
triangular cylinder at high Reynolds number (45,000) is
presented. The instantaneous flow situation is very
complex due to the presence of vortex shedding and
turbulence.

The calculation was performed using an unstructured
staggered mesh scheme. A turbulent potential model is
used to model the small-scale fluctuation motion.

The capability of the turbulent potential model to
predict turbulent vortex shedding has been demonstrated
in this calculation. Computed Strouhal number and mean
velocity profiles down stream of the triangle cylinder are
in agreement with experiment data. In addition, it has
been shown that statistical unsteadiness produced by
vortex shedding must be resolved in order to simulate the
flow correctly. The steady state computation of this flow
will lead to poor predictions.
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