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A stopping criterion for iterative solution methods is presented that accurately estimates 
the solution error using low computational overhead. The proposed criterion uses 
information from prior solution changes to estimate the error. When the solution changes 
are noisy or stagnating it reverts to a less accurate but more robust, low-cost singular value 
estimate to approximate the error given the residual. This estimator can also be applied 
to iterative linear matrix solvers such as Krylov subspace or multigrid methods. Examples 
of the stopping criterion’s ability to accurately estimate the non-linear and linear solution 
error are provided for a number of different test cases in incompressible fluid dynamics.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

The stopping criterion for iterative nonlinear equation solvers is an implementation detail that gets less attention than 
it warrants. This small aspect of the iterative solver can have an outsized impact on the overall performance of the im-
plementation because performing additional iterations due to overly conservative stopping estimates wastes computational 
resources. In most situations iteration of a partial differential equation (PDE) problem until errors or residuals are even close 
to machine precision is computational overkill because the solution already has some level of error due to the discretization 
process. An efficient solver implementation will stop the iterations once a level of error specified by the user is obtained. 
Therefore, an efficient implementation of an iterative solution method requires an estimate of the solution error.

Fig. 1 juxtaposes the stopping criterion proposed in this work with the classic 3 decade reduction in residual stopping 
criterion, in order to highlight the importance of a good stopping criterion. A well-chosen stopping criterion can result 
in either computational savings or improved solution quality. In this example the user considers a relative solution error 
below 1% to be sufficiently converged for their needs. The figure depicts the progress of the relative solution error (error 
norm/solution norm) and the normalized residual (residual/initial residual) as a function of the iteration number for a 
turbulent diffuser flow simulation (described in section 3.2).

Fig. 1(a) shows the evolution of the x-momentum solution. In this case the initial guess (potential flow) is sufficiently 
good that a 3-order reduction in the residual (thick black line) results in excessive iterations. In this particular case, the 
savings produced by stopping at the right time (circle on the thin red line) is around 20%. But it can often be much 
larger. Fig. 1(b) shows the evolution of turbulent kinetic energy for the same problem. In this case the initial guess for the 
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Fig. 1. Normalized residual (thick black lines) and relative error (thin red lines) for the diffusor problem described in section 3.2 (a) x-momentum conver-
gence showing the situation when waiting for a 3 order drop in residuals leads to excessive iterations, (b) turbulent kinetic energy convergence showing 
the situation when the residuals drops by 3 orders but the error in the solution is still very high.

turbulence solution is bad (it is initialized to a constant value) and a 3-order reduction is easily achieved resulting in an 
early exit but a final turbulence solution with an excessively large error.

It is important to note that errors in the solution of PDEs arise from different sources. Classical error estimation (some-
times called discretization error, or local error estimation) is used to implement grid refinement and coarsening algorithms. 
This sort of error estimation is concerned with the error between a discrete approximation and its continuous counterpart 
(the original PDE). Classical error estimation is a broad and well developed area of research (see references [1–3] for some 
examples) but is not the area of discussion in this paper. This work focuses on the iterative error (sometimes called lin-
earization error) that exists when an iterative method is converging to its discrete target solution. In the context of the 
present work, the PDE problem is already considered to be discretized, and the exact solution (when computing and dis-
cussing errors in this work) will be considered to be the exact solution to the discrete PDE problem. We are not concerned in 
this work, with how well that discrete solution approximates the continuous PDE solution (the realm of mesh adaptation). 
We are instead concerned with how close our current iterative solution is to the exact solution to the given discrete system.

Many stopping criteria are based on a norm of the residual vector [4–6]. But stopping iteration based solely on the 
residual is neither a safe nor a robust solution as shown in Fig. 1. The magnitude of any residual is totally arbitrary (see 
section 2.4 for details). Normalizing the residual can remove the magnitude problem, but (as shown in Fig. 1) is still prob-
lematic. If the initial guess is a good one, iteration may be incapable of achieving the prescribed relative reduction in the 
residual (due to reaching round-off). Or the iterations may just waste resources (as in Fig. 1(a)). If the initial guess is very 
bad, the iterative procedure will exit prematurely, when the solution error is still large (as in Fig. 1(b)).

Stopping criteria based on the residual and additional information about the problem perform better but still have issues. 
For example, a classic stopping criterion is to use the condition number of the Jacobian times the normalized residual to 
guarantee a certain reduction in the relative error ( e

x̄ ≤ κ r
r(0)

). There are two problems with this approach. First it requires 
a condition number estimate. Second, and much more importantly, the bound being used in this approach is excessively 
conservative so this stopping criterion can cause excessive iteration. Note that the problem of excessive iteration is more and 
more likely as mesh sizes (and therefore condition numbers) get larger. It is therefore only more recently, with the advent of 
large 3D meshes (and large condition numbers) that the inadequacy of this classic stopping criterion has become particularly 
pressing. The ultimate cost saving for high performance computing problems such as the direct numerical simulations in 
references [7] and [8] can be as large as 50,000 CPU hours.

This paper takes an unconventional approach to developing the stopping criterion, and abandons the residual (or its 
norm) as a useful starting point. Instead, the proposed stopping criterion looks at the size of the solution changes between 
each iteration. Error estimation based on progress (prior solution changes) is a non-trivial task because small changes in 
the solution do not necessarily mean the solution is converged, it may simply indicate that this is a difficult problem to 
solve and the method is converging slowly. Nevertheless, this approach is tenable and is not entirely previously unknown. 
In the past, classic linear iterative solvers such as Jacobi iteration and Gauss–Seidel iteration sometimes used prior solu-
tion changes and an extrapolation hypothesis to estimate progress [9,10]. Most modern matrix solution methods (such as 
Krylov subspace methods) typically have a far more erratic convergence behavior in both the residuals and the solution 
increments than Jacobi or Gauss–Seidel iteration. This has essentially led to the total abandonment of error estimation 
via progress extrapolation (though an exception is ref. [11]). However, in this work we will rejuvenate the extrapolation 
approach by using a robust and parameter-free smoothing approach. We will also focus primarily on the outer nonlinear 
iterations.

Section 2 of this paper presents the mathematical background for this work. It is shown that for PDE problems, certain 
vector and matrix norms are particularly attractive for performing the error estimation. Section 3 describes the test cases 
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and code that are used to demonstrate the usefulness of the proposed error estimator. Classic error estimators based on the 
residual norm are discussed in Section 4. These are used as the fallback for the smoothed extrapolation error estimation 
derived in Section 5. A few final considerations of the method, such as its application to linear solvers, are presented in 
Section 6, followed by a final discussion in Section 7.

2. Background

A nonlinear equation solver is designed to find the answer to the problem, f(x̄) = 0 where f is a vector of N nonlinear 
equations and x̄ is a vector of N solution unknowns. In this work we will assume the nonlinear problem is well posed and 
has at least one solution. We will also be interested in the case where N is large (at least a million). For some initial guess 
of the solution, x, the residual r = −f(x) tells us how well the equations are satisfied by the guess, and e = x̄ − x is the 
error in the guess. The essential idea of this work is that the residual (error in the equations) is fundamentally different 
from the error (error in the solution), and the residual is easy to compute but the error which is difficult to compute is 
what we actually need.

The error and the residual are related. The nonlinear functions can be expanded in a Taylor series about the guess 
value, 0 = f i(x̄) = f i |x + (

x̄ j − x j
)

∂ f i
∂x j

∣∣∣x + 1
2 (x̄ j − x j) (x̄k − xk)

∂2 f i
∂x j∂xk

∣∣∣
x

+ ... where Cartesian tensor notation has been used, 

and J =
[

∂ f i
∂x j

]
is the Jacobian matrix, and 

[
∂2 f i

∂x j∂xk

∣∣∣
x

]
is a third rank tensor. This expression can be reformulated in terms of 

the residual and the error and becomes r = J e + 1
2

[∣∣∣ ∂2 f i
∂x j∂xk

∣∣∣
x

]
: ee + O (e3). When the error is small enough the higher order 

terms can be neglected and

r ≈ Je (1)

to a good approximation. Since stopping criteria do not need to be perfect, this relation will be sufficient for our purposes.
If the Jacobian matrix is not singular, then this relation shows that as the residual goes to zero, the error also must go to 

zero. But the residual does not reveal much more than that. For example, this equation shows that controlling the residual 
(below a certain bound for example) does not necessarily control the error as well. In particular, consider an eigenvector 
decomposition of the error and residual vectors into the eigenvectors of the Jacobian matrix. That is, e =

∑
i

aivi where vi is 

an eigenvector of J and ai is the amplitude of that particular eigenvector. If the error vector is predominantly constituted by 
the eigenvectors associated with smallest sized eigenvalues (these are slowest spatially varying modes, or lowest frequency 
modes) then the residual will be small even when the error is not. r ≈ J e = J

∑
i

aivi =
∑

i

(λiai)vi . The small eigenvalues 

remove the low frequency modes from the residual, even when they are large in the error itself. This effect is even worse for 
least squares problems where eigenvalues are effectively squared [12]. Unfortunately, the scenario of error predominantly 
in low frequency modes is not an unusual situation. In most non-linear iterative methods, low frequency (small eigenvalue 
modes) errors that span the whole spatial solution domain, are the last to be removed during the iterative process. Despite 
the fact that equation (1) looks like a simple linear relation between the residual and the error it is deceptive (even for 
a constant Jacobian matrix). Due to the action of eigenvalues, a 3 order-of-magnitude drop in the residual during the 
iterative process does not imply that a 3 order-of-magnitude drop in the error has also occurred. As mesh sizes get larger 
(and condition numbers get larger), and the span between the largest and smallest eigenvalues increases, this disconnect 
between how the residuals and the errors behave becomes ever more exacerbated. The key take away is that residuals 
only reflect high frequency (large sized eigenvalue) error modes, and these modes are not the ones that usually present 
themselves in general problems.

Despite the fact that residuals as a proxy for errors constitutes a poor numerical practice, using iterative stopping cri-
teria based on residuals is still extremely common. Probably because residuals are very easy to compute and errors are 
difficult. It was shown above that prescribed residual drops do not imply corresponding error drops. In addition, prescribed 
residual values have no implied meaning about the error value. Finally, the magnitude difference between a residual and its 
corresponding error is completely arbitrary. Typically the two quantities don’t even have the same units.

2.1. Approach

There are two quite different approaches to estimating the error of a non-linear iterative process. By far the most com-
mon approach is to use ideas from linear systems. Taking the norm of the residual, and using the triangle inequality tells 
us that,

‖e‖ ≤ ∥∥ J−1
∥∥‖r‖ (2)

This relation provides an error bound from a residual calculation. Residuals are already widely used for stopping criteria, 
so this small modification allows existing methods to now bound the error more rationally. There are two difficulties with 
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this common approach. First, an error estimate, and not a bound, is what is really desired. This bound is overly conservative 
and therefore wastes real computational resources. Second, estimating the norm of a matrix inverse can be difficult because 
it is prohibitively expensive to compute the matrix entries for an inverse. This second problem is surmountable, and this 
work will address it. The first is a more serious issue.

The second approach to error estimation is essentially observational. By watching past iterative progress, and making 
the assumption that the future progress will behave similarly, it is possible to extrapolate and obtain an error estimate. 
This estimate is of course, not perfect, but our tests show that it is usually much better than the bound given by equa-
tion (2), and therefore saves substantial computational effort. Ultimately, the final proposed error estimator actually uses 
a combination of both approaches. The estimator defaults to extrapolation about 95% of the time, but resorts to the 
bounding approach (eqn. (2)) when extrapolation fails (such as during early iterations or when convergence stalls en-
tirely).

2.2. Vector norms

Equation (2) requires a discussion of vector and matrix norms, which are surprisingly important for this topic. An Ln

vector norm is classically defined as ‖e‖n =
(∑

i

|ei|n
) 1

n

where n is any integer from 1 up to and including infinity. The 

L1 norm is the sum of all the magnitudes of all the components in the vector. The L∞ norm is the maximum magnitude 
of all the items in the vector list. And the most commonly used norm is probably the L2 norm which simplifies to the 
relation ‖e‖2

2 =
∑

i

e2
i . These classically defined norms have nice mathematical properties (such as L1 ≥ L2 ≥ L3 ≥ · · · ≥ L∞ , 

and L1 ≤ N1/2L2 ≤ N2/3L3 ≤ · · · ≤ N L∞) where N is the number of items in the vector. But these classic norms are not 
very useful for discretized PDE solvers. The primary issue is that these classic norms are very mesh size dependent. So, for 
example, a large value for a classic error norm can tell you that the errors are large or alternatively that the number of 
mesh elements is large. Classical norms do not distinguish between the two possibilities.

The usual solution is to use size-normalized norms, L
1
N

n , where we use a superscript on the norm to indicate size-

normalization, so ‖e‖
1
N

n =
(

1
N

∑
i

|ei |n
) 1

n

where N is the number of items in the vector. This is typically the number of 

mesh points or unknowns in the PDE solution. These size-normalized norms work better for PDE discretization. For a given 
PDE problem, different mesh types (triangles, quads, etc.) and different mesh resolutions, produce roughly the same norm 
value for the size-normalized norm. However, size-normalized norms are still not good enough. For highly stretched or re-
fined meshes, size normalization is not sufficient and different meshes give order of magnitude different norm values for a 
nearly identical field solutions. This is not useful. A good definition for a norm of a field variable ‖x‖ should produce nearly 
the same value irrespective of the underlying discretization of that variable.

The better norms to use for PDE variables, and therefore for this work, are integral norms, LV
n , represented in this work 

with the superscript, V . So ‖e‖V
n =

( ∫
Ω |ei |ndV∫

Ω dV

) 1
n

where the integral is over the whole domain and the integral is normalized 
by the domain volume. In theory, computing this norm requires having a prescribed interpolation method available for the 
discrete unknowns (to be able to produce continuous functions that can be integrated). In practice, this norm is much 
simpler than it looks to compute. In this work we show that for the purposes of convergence estimation the lowest order 
integration rule (midpoint integration) is quite sufficient to determine this norm. This norm then becomes effectively a 
discrete volume weighted norm.

‖e‖V
n ≈

(∑
i |ei |n V i∑

i V i

) 1
n

(3)

where V i is the small volume associated with each unknown that is being integrated. For a cell or element based unknown 
this would be the cell/element volume. For a node based unknown it would the dual-volume surrounding that node (which 
is usually the summation of some fraction of all the cell/element volumes touching that node).

2.3. Matrix norms

For completeness we should also define the matrix norm that is compatible with the volume weighted vector norm 
given in equation (3). A consistent matrix norm is given in terms of the vector norm by the expression, ‖A‖V

n = max(w �=
0) 

( ‖Aw‖V
n

‖w‖V
n

)
where A is an N × N matrix [13]. By absorbing the 1/n power of the cell volume weights into the search vector 

w, this can be rearranged into an expression that uses the classical norms ‖A‖V
n = max(w̃ �= 0) 

( ‖V 1/n AV −1/nw̃‖n
)

where 
‖w̃‖n
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V 1/n is a diagonal matrix containing the 1/n power of each cell/element volume and V −1/n is its inverse. This expression is 
useful because explicit representations for the classical matrix norms are known.

We can therefore write that ‖A‖V
1 = max j

(∑
i

|V iai j V −1
j |

)
, which is the maximum of the sum of every matrix column. 

And ‖A‖V∞ = maxi

⎛
⎝∑

j

|V 1/∞
i ai j V −1/∞

j |
⎞
⎠ = maxi

⎛
⎝∑

j

|aij|
⎞
⎠, which is the maximum of the sum of every matrix row. And 

most useful for this work,

‖A‖V
2 = σmax

(
V 1/2 AV −1/2) (4)

where σmax(B) = {λmax(B BT )}1/2 is the maximum singular value of the matrix B (and λmax is the maximum eigenvalue). 
Note that volume scaling of the matrix, V 1/2 AV −1/2 (needed for the matrix volume-weighted norm) has no effect on the 
diagonal entries of the matrix, it only affects the off-diagonal entries (with the square root of a volume ratio).

The volume-weighted matrix 1-norm and infinity-norm look relatively easy to compute compared to the matrix 2-norm, 
which requires a singular value or eigenvalue calculation. However, this simplicity is deceptive because most often we 
are interested in the matrix norm of a inverse (such as in equation (2)). In that case computing the matrix 1-norm and 
infinity-norm are prohibitively expensive because forming the inverse matrix is prohibitively expensive (for N greater than 
a million), but computing the matrix 2-norm is still possible because ‖A−1‖V

2 = 1
σmin(V 1/2 AV −1/2)

is simply a matter of finding 
the minimum singular value rather than the maximum one.

2.4. Jacobian ambiguity

Cell/element volumes creep into the analysis in one more place. They appear in the Jacobian itself. We believe there is 
one version of the Jacobian that is particularly useful, especially in the context of convergence estimates. Specifically, for the 
case of PDE problems, one very particular scaling of the Jacobian matrix has a minimum singular value that is essentially 
independent of the mesh size and the discretization type (triangle, quad, etc.). For this specific Jacobian, the minimum 
singular value is purely a function of the problem physics.

If we apply equation (2) to the specific case of the volume weighted 2-norm (the 2-norm is the most common index 
choice in practice) then we have ‖e‖V

2 ≤ ‖r‖V
2

σmin(V 1/2 J V −1/2)
and it is clear why mesh independence of the minimum singular 

value is particularly attractive. For one specific Jacobian scaling choice, the constant of proportionality between the residual 
and the error is determined only by the physics. This could make its estimation much easier. The estimate is now problem 
dependent but discretization independent.

The scaling ambiguity of a Jacobian is clear. Each equation in the original system f(x̄) = 0 can be multiplied by a non-zero 
weight and the solution of the system, x̄, will remain unchanged. But the row in the Jacobian corresponding to that equation 
will change (it will be multiplied by the weight). In this work, we are only interested in this simple act of weighting each 
equation. But in general, the original equations can also be added together and even nonlinearly mixed together producing 
a fascinating variety of Jacobians.

The multiplicative scaling ambiguity in the equations is critical for systems that come from discretized PDEs. The issue 
is best discussed with a concrete example. The simple Laplace equation will suffice. On a simple 2D Cartesian mesh a finite 
difference (FD) discretization of Laplace’s equation produces a ‘neighbor stencil’ for the Jacobian that is not the same as the 
stencil that a finite volume (FV) or finite element (FE) method produces [14],

FD:

0 1
�y2 0

1
�x2 − 1

�x2 − 1
�y2

1
�x2

0 1
�y2 0

FE or FV:

0 �x
�y 0

�y
�x −�y

�x − �x
�y

�y
�x

0 �x
�y 0

The FE/FV version of the stencil (or matrix) is the FD version multiplied by the cell volume. In this Laplacian example, the 
matrices representing the Laplacian’s are identical except that each row has a different diagonal scaling. In the FE/FV version 
each row of the matrix is the FD row multiplied by the cell volume. The matrix formed by the FE/FV method has many 
attractive properties. For example, for a Laplacian PDE, the matrix is symmetric, even on unstructured and non-uniform 
meshes. However, the FD matrix also has one attractive property (possibly only this one). The FD matrix has a minimum 
singular value (and eigenvalue) that is independent of the mesh size and only depends on the problem physics. Formally, 
it is not perfectly independent of mesh size, there is a perturbation term that depends on the order of accuracy of the 
discretization. But the leading order term is independent, and this makes the minimum singular value constant enough for 
error estimation purposes.

The reason this mesh-independence happens for the FD matrix is not totally arbitrary. The FD form produces a set of 
equations f(x̄) = 0 in which each discrete equation has exactly the same units as the equations in the original continuous 
PDE. Similarly, the residuals in the FD method have the same units as the PDE equations. On the other hand, the equations 
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for the FV/FE approach have a cell/element volume lurking in them. The residual corresponding to a FE/FV solution is the 
error in the PDE equation integrated over (essentially multiplied by) the cell volume associated with that unknown. So 
FV/FE residuals have a dependence on cell/element volumes (and therefore on the mesh size).

2.5. Volume weighted error/residual relation

In this work we will continue to think of J as resulting from a FV or FE discretization. These discretization’s are the 
most common and have too many nice properties. But we will define a volume weighted Jacobian, Ĵ = V −1 J that has 
the same units as the FD version of the Jacobian (and the same units as the original PDE), and that therefore has mesh 
independent properties for the 2-norm of its inverse. When using a FV or FD discretization we will also define a volume 
weighted residual, r̂ = V −1r.

Note that the matrix volume-2-norm of the modified Jacobian is ‖ Ĵ−1‖V
2 = 1

σmin(V 1/2 Ĵ V −1/2)
= 1

σmin(V −1/2 J V −1/2)
. So the 

matrix volume-2-norm now modifies the FV/FE Jacobian, J , symmetrically when finding the necessary singular value. So 
if the original FV/FE Jacobian is symmetric (or antisymmetric) then the volume weighted matrix V −1/2 J V −1/2 is also 
symmetric (or antisymmetric).

For error estimation, and assuming a FE or FV discretization, the error expression using the appropriate norms and 
modified residuals for PDEs is therefore,

‖e‖V
2 ≤ ∥∥ J−1 V

∥∥V
2

∥∥V −1r
∥∥V

2 = ‖V −1r‖V
2

σmin(V −1/2 J V −1/2)
= ‖r̂‖V

2

σmin(V −1/2 J V −1/2)
(5)

The relevant residual for each cell is actually the FE/FV residual divided by the volume for that cell to produce the 
volume weighted (or modified) residual, r̂. This volume weighted residual has the same units as the equations of original 
PDE. The singular value in the denominator of equation (5) is now a mesh-independent quantity. It depends only on the 
physics and this will make it easier to estimate.

The correct way to volume weight both vector norms and residual/matrices for PDE derived problems is an important 
basis for the development of good error estimators.

3. Test cases

The performance of the stopping criterion will be evaluated by comparing the error estimator’s predictions with the 
exact error for a variety of test cases. The exact error is calculated by performing all the simulations twice and saving the 
final solution from the first simulation to calculate the error on the second simulation. The first simulation is typically run 
for 50% more nonlinear iterations on the first run than on the second run when the error is recorded.

The presented test cases all involve solutions of the incompressible Navier–Stokes equations or the incompressible 
Reynolds Averaged Navier–Stokes (RANS) equations that include turbulence. We will show error estimates for both the 
velocity components and for the turbulence model quantities. We hypothesize that the Navier–Stokes equations are a suf-
ficiently complex system to adequately test the proposed error estimator. The iterative method used for these tests is a 
segregated solver in which each field variable is solved uncoupled from the others sequentially inside each non-linear it-
eration. The incompressibility condition is enforced using a projection method. The scheme is very similar to the unsteady 
SIMPLE method [15].

The nonlinear iterative method is essentially a fixed-point iteration for the incremental unknowns. One iteration consists 
of the two steps.

J̃
(
xn)δxn+1 = rn

xn+1 = xn + δxn+1

where J̃ (xn) is an approximation to the Jacobian and xn+1 is the solution vector containing all the fields (velocity, pressure, 
total energy, and turbulence variables). Our particular approximation to the Jacobian drops all the matrix entries that couple 
different fields, so that the linear equation inversion process required in the first step can be performed for each field 
separately and individually.

The test cases used to test the error estimator are summarized and shown below.

3.1. Boundary layer

Incompressible turbulent flow over a smooth flat plate. The Reynolds number based on the plate length is 1.03 × 107. 
The simulation aims to reproduce the experimental data of Wieghardt [16]. The simulation is solved using two models, RNG 
K-epsilon [17] and Realizable K-epsilon [18]. The Realizable model converges while for the RNG version convergence stalls 
(due to highly non-linear turbulence positivity constraints). The RNG model case is used to highlight the strategies used by 
the error estimator to tackle convergence stall. See Fig. 2a.
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Fig. 2a. Boundary layer.

3.2. Diffuser

For the diffuser case, the K-omega SST turbulence model [19] is used at a Reynolds number based on the inlet opening 
of 20,000. The flow is based on the experiment referred to in [20]. See Fig. 2b.

Fig. 2b. Diffuser.

3.3. U-bend

The simulation calculates the turbulent flow through a two-dimensional duct with a U-turn. The simulation is solved 
using the Spalart–Allmaras turbulence model [21]. The Reynolds number based on the mean velocity and channel width 
is 106. See Fig. 2c.

Fig. 2c. U-bend.

3.4. Unsteady shedding

The flow simulated here is a two-dimensional laminar flow past a cylinder. The Reynolds number based on cylinder 
diameter is 100. The flow is unsteady and is characterized by vortex shedding with frequency that is characterized by 
a non-dimensional parameter known as the Strouhal number (St). Refer to references [22] and [23]. This simulation takes 
many timesteps. But in the following results, the convergence of only one of the timesteps of the evolving flow is considered 
(since it is representative). See Fig. 2d.

Fig. 2d. Unsteady shedding.

3.5. Conjugate Heat Transfer (CHT)

The flow simulated here involves the heat transfer between a thick conducting pipe (inner radius = 0.5 m, outer radius 
= 1.0 m, length = 2.0 m, outer wall at a fixed temperature = 400 K) and flow through the pipe (inlet of 1 m/s at 300 K). 
The problem is solved using the Realizable K-epsilon turbulence model. See Fig. 2e.
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Fig. 2e. CHT.

3.6. Cavity

The flow simulated here is a lid driven square cavity [24] at Re = 1000. To prove mesh independence the cavity is 
meshed with 32 × 32, 64 × 64, 128 × 128 resolution hexahedral mesh, and one 64 × 64 (approximately) mixed mesh. The 
lid velocity is 1 m/s and the domain size is 1 m. See Fig. 2f.

Fig. 2f. Lid driven cavity.

4. Classic error estimation

The most common method for estimating the error is to replace the bound given by equation (5) with an equality and a 
constant.

‖e‖V
2 = C

σmin(V −1/2 J V −1/2)
‖r̂‖V

2 (6)

where C ≤ 1. The hope with this approach is that the singular value encapsulates the most important information about 
the scaling of the problem and that the constant, C , is nearly universal and therefore mesh and iteration and problem 
independent. We will show via examples that the constant, C in this type of traditional stopping criteria is indeed often 
surprisingly mesh and iteration independent (varies by less than an order of magnitude) in many practical cases. But it is 
not independent of the problem.

Fig. 3(a) plots R ≡ ‖e‖V
2

‖r̂‖V
2

= C
σmin(V −1/2 J V −1/2)

versus the iteration number for a series of different meshes for the same 
problem (the cavity flow problem in section 3.6). The ratio of the error and residual of the x-component of the velocity is 
shown. The minimum singular value does not change with the iteration number at all and is constant for different meshes 
(using a volume weighting of the Jacobian) to within a perturbation term that is small and proportional to the mesh size 
(and discussed more in section 4.2). This means the variation with iteration number seen in this plot is almost entirely due 
to the variation in the constant C .
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Fig. 3(a) shows there is some dependence on the iteration number for early iterations. But very little variation in the 
value for C for different mesh sizes (and types) after many iterations. This is due to the fact that C represents how well the 
inequality in equation (5) can be represented by the equality assumption in equation (6). At early iterations, the equality 
level (the constant C ) is entirely dependent on the choice of the initial condition. After many iterations the residual and 
error are converging in a way that loses information about the initial condition and tends towards a constant ratio (that is 
problem dependent because of the singular value, but is largely iteration and mesh size/type independent).

While the result of an approximately mesh size/type and large iteration number independent C is universal to all our 
tested cases, it is not mathematically guaranteed. There are some exceptional linear problems where we know mathe-
matically that the residual is constant until the last iteration, when it suddenly drops to machine precision zero. Such a 
convergence behavior will not have a constant C that is independent of the large iteration numbers (particularly the last 
one). It is likely that C is largely constant in our test cases because we are looking at nonlinear iterations in these test 
cases (the performance of the error estimator for linear solvers is evaluated in section 6.2). The nonlinear solvers we use 
are either Richardson iteration (with under-relaxation) or residual based line-searches. These are robust but simple iterative 
methods.

Fig. 3(b) looks at the same ratio, R but for a number of different problems (problems 3.1–3.6). Again, the ratio is shown 
to be largely independent of the iteration number for all the different problems (except for the early iterations). But note 
the log scale for the y-axis of the plot, so the various values for the ratio vary quite considerably from one problem to 
another. This large variation is mostly captured by the variation in the minimum singular value, but we will show later that 
the constant C is also somewhat problem dependent as well.

Fig. 3. Ratio of error to residual for the x-momentum equation. (a) Cavity flow using different mesh sizes and shapes. (b) For a variety of different flow 
cases.

These results show that R is nearly constant as a function of iteration number. R differs only at very early iterations (that 
are sensitive to the initial guess) and sometimes at very late iterations (when machine precision in the error and/or residual 
have been reached). R is also seen to be nearly mesh independent (Fig. 3(a)). R is not problem independent because it 
contains the extremely problem dependent minimum singular value in its definition and a somewhat problem dependent 
constant C .

Note that the goal in error estimation is not perfection. Any error estimate that is within an order of magnitude of the 
actual error will be sufficient to produce a reasonably effective stopping criterion. So when we refer to C being “nearly” 
constant we mean that it varies within the order of magnitude range needed for an inexpensive stopping criteria.

4.1. Physical estimation

There are a number of ways to estimate σmin(V −1/2 J V −1/2). The simplest is physical intuition. Despite its mathematical 
look, the singular value σmin(V −1/2 J V −1/2) depends almost entirely on the physics of the PDE system and not on its 
numerics (this is shown in the next section). It can therefore be estimated from knowledge of the PDE.

Singular values (and singular modes) are similar to eigenvalues and eigenmodes. But the distinction is important for 
non-symmetric real matrices J , such as arise in PDEs with advection (such as the Navier–Stokes equations). The eigenvalues 
of non-symmetric real matrices are often complex-valued. Singular values and singular modes, on the other hand, are always 
real valued and have physical significance. A singular value σi and singular mode ui of the matrix B are the solution of the 
equation BT Bui = σ 2

i ui . This is an eigenvalue/eigenmode problem for the related matrix B T B . The smallest singular value 
therefore corresponds to the square root of the smallest eigenmode of the symmetric matrix B T B . The smallest eigenmode 
of a symmetric semi-positive definite matrix B T B is the “smoothest” eigenmode with the fewest zero-crossings. It therefore 
scales on the largest physical scales in the problem that generated the matrix B . Using this physical understanding of the 
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smallest singular mode and singular value allows one to make estimates of the smallest singular value, knowing the largest 
physical scales in the problem.

For example, for Laplace’s equation in a rectangular domain, the FD matrix (or the symmetrically normalized FV/FE 
matrix, V −1/2 J V −1/2) has a minimum singular value that is proportional to 1

L2
x

+ 1
L2

y
where Lx and L y are the size of the 

solution domain. This is because for the Laplace equation in a rectangle, the largest physical length scales are dictated by the 
domain boundaries. Using another example, for an advection dominated Navier–Stokes PDE matrix, the minimum singular 
value scales like ρ U

L where U and L are the characteristic velocity scale and characteristic length scale in the problem 
and ρ is the fluid density. So for the flow over an airfoil, the minimum singular value will be found to be proportional 
to the free-stream flow speed and inversely proportional to the boundary layer thickness (which depends indirectly on the 
viscosity).

However, results that demonstrate the validity of this physical estimation process are not provided in this work, because 
this approach is not general enough to be a valid method. This approach is impossible to implement for complex PDE 
systems and geometries where multiple velocity and length scales are present. We present this section, primarily to remind 
the reader that a PDE and the matrix mathematics underlying its numerical solution are not uncoupled. The minimum 
singular value appears in the mathematical bound (given by equation (5)) for a physical reason, and not just a mathematical 
one. It represents the largest physical scales.

For completeness of discussion, for a FD matrix (or symmetrically volume weighted FE/FV matrix) the maximum singular 
value scales like the maximum matrix entry (and is therefore extremely mesh dependent). For the Laplace equation this 
would scale like 1

�x2 + 1
�y2 (or equivalently the maximum matrix diagonal element). For an advection dominated Navier–

Stokes matrix the maximum singular value would scale as the maximum value for ρ u
�x where u is the local velocity at the 

mesh location of �x. The largest singular value is related to the smallest computable scales.

4.2. Coarse mesh estimation

Because R is mesh independent and nearly iteration independent (as shown in Fig. 3), one method to estimate the value 
of R (which includes the singular value and the constant C ) is to run one very coarse mesh simulation first. For the coarse 
mesh simulation, the initial residual and initial solution guess are saved. Once the coarse simulation completes the error for 
the initial guess can be computed, and the ratio determined.

The coarse mesh works because the minimum singular value is related to the smoothest and most slowly varying mode 
in the problem. So any coarse mesh that can reasonably resolve the smoothest possible eigenmode will be sufficient to get 
a good estimate for the ratio R .

Let us consider here, just how invariant the minimum singular value is to changes in the mesh size. To do this consider 
the modified PDE that the numerical method actually solves. This is sometimes called backward error analysis or modified 
equation analysis. If the exact PDE that we wish to solve is L(v) = b, then a numerical method actually solves a modified 
PDE L(v) + E(v) = b. If the numerical method is convergent then the perturbation of the PDE is E(v) ∝ (�x)p where p is the 
order of accuracy of the numerical method. The century old theory of Weyl [25] tells us that singular values are perfectly 
conditioned. The singular value of a perturbed matrix cannot be in error more than the norm of the perturbation itself. 
This means that |σ̃min − σmin| ≤ ‖E‖2 where σ̃min is the minimum singular value for the PDE (or equivalently the limit of 
the minimum singular as the mesh size of the discretization goes to zero). By its limit definition, this value is a constant 
independent of the mesh size. σmin is the minimum singular value for a particular mesh. Since the perturbation scales with 
the mesh size, the minimum singular value for any particular mesh behaves like σmin = σ̃min + O (�xp).

It is in this sense that this paper asserts that the minimum singular value is nearly mesh independent. The leading order 
term is mesh independent and the additional term is small (except in the case of very coarse meshes). Very coarse meshes 
are those for which the smallest singular mode (smoothest solution with the fewest zero crossings) is not well resolved by 
the mesh.

4.3. Rayleigh Quotient estimation

Another way to find a minimum eigenvalue (or singular value) is via repeated matrix inversion using what is referred to 
as ‘inverse power’ iteration. As above, this could be done with a coarse matrix in order to speed the process. However, we 
still consider this to be a fairly expensive operation for a convergence test and do not pursue this further.

An explicit and less expensive option for estimating an eigenvalue is the Rayleigh Quotient. Here the basic idea will be 
extended to find the minimum singular value (rather than eigenvalue). As noted earlier, the singular value, σi , and singular 
vector, ui , for a general matrix B is given by the equation, B T Bui = σ 2

i ui . This is closely related to finding the eigenvalues of 
the symmetric matrix BT B . Symmetric matrices have orthonormal eigenvectors ui , and real positive eigenvalues. Consider 
a test vector which is predominantly made up of one of these orthonormal singular vectors with small amounts of the 
others added in. Then this vector is given by t = ∑

aiui where the ai are all small except for the one ai corresponding 
to the dominant singular mode. The generalized Rayleigh Quotient ‖Bt‖2‖t‖2

is a then a good approximation for the singular 

value. Note that 
( ‖Bt‖2‖t‖2

)2 = tT BT Bt
tT t

=
(∑

akuT
k

)(∑
a jσ

2
j u j

)
(∑

a uT
)(∑

a u
) =

∑
a2

j σ
2
j∑

a2 ≈ σ 2
dominant where the summations are over all the singular 
k k j j j
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modes, and the third equality is a result of the singular modes being orthonormal. The final near equality is due to the fact 
that all the amplitudes ai are small except for the dominant one. Note that the Rayleigh quotient will find an approximation 
for any dominant singular mode in the test vector t. It is not restricted to finding the maximum or minimum singular mode.

One method to estimate the minimum singular value is to therefore to guess the vector t that approximates to the 
minimum singular mode. This seems a difficult task at first, unless we remember that we happen to know a great deal 
about the physics (and PDE) of where the matrix B came from. In particular, we are looking for the lowest frequency 
(smoothest) solution field that fits in the domain and satisfies homogeneous boundary conditions. The amplitude of this 
low frequency solution is not important (because of the normalization happening in the Rayleigh quotient), we just need its 
shape.

A constant field works OK for t, but has high frequency components near Dirichlet boundaries where the field values 
drop suddenly to zero. It tends to overestimate σmin quite a bit.

A better option is to use the solution change. Define δxn+1 = xn+1 − xn to be the change in the solution after the n + 1
iteration of the iterative method. After a few iterations of a nonlinear iterative solver, the high frequency components of 
the solution are often converged and only the slowly converging low-frequency modes remain. This is the observation of 
all our test cases. So δxn+1 often quickly becomes a good approximation for the smallest singular mode. For a non-uniform 
mesh t = V 1/2δxn+1 is a reasonable choice for the smallest singular mode. Then σmin(V −1/2 J V −1/2) = ‖V −1/2 J V −1/2 V 1/2δx‖2

D‖V 1/2δx‖2
=

‖ Ĵδx‖V
2

D‖δx‖V
2

is an inexpensive estimate for the minimum singular value (and D > 1). The Raleigh Quotient always over estimates 
the minimum singular value because it is slightly contaminated by the other singular values which are always larger than 
the minimum, hence the fact that the constant D > 1. With this estimate R = ‖e‖V

2
‖r‖V

2
= C

σmin(V −1/2 J V −1/2)
= C D

‖δx‖V
2

‖ Ĵδx‖V
2

.

Fig. 4 uses Rayleigh quotient estimates using the solution increment to compute R̃ = 15
‖δx‖V

2

‖ Ĵδx‖V
2

for a wide variety of 

test problems. In these tests the smallest singular mode estimate, t = V 1/2(xn+1 − xn), is being calculated between two 
non-linear outer iterations. Simple (under-relaxed Richardson) fixed-point iteration is being used for these iterations. This 
figure assumes that the constant, C D , is 15. This figure should resemble Fig. 3(b), which is the exact value of R for the same 
problems. The assumption C D = 15 gets us almost within an order of magnitude of the exact results. Our final estimate 
method will determine the value of C D more accurately from prior iteration information (and will not use a hard value 
of 15).

Fig. 4. Rayleigh Quotient estimates, R̃ for the same physics cases used in Fig. 3(b).

Note that if the iterative method uses fixed-point iteration on the incremental form of the equations then it solves 
J̃δxn+1 = rn at each iteration, where J̃ is some approximation of the actual Jacobian. If the approximation of the Jacobian 
is a good one, and the volumes don’t vary rapidly in the mesh then σmin ≈ ‖ Ĵδx‖V

2
D‖δx‖V

2
= ‖r̂‖V

2
D‖δx‖V

2
and equation (6) becomes 

approximately,∥∥en+1
∥∥V

2 ≈ (C D)
∥∥δxn+1

∥∥V
2 (7)

That is, Rayleigh quotient estimation of the minimum singular value is roughly equivalent to the assumption that the 
error is roughly some multiple, C D , of the current solution change.

The primary issue with all the classical approaches for error estimation described above (except running a coarse mesh 
simulation) is that they provide the minimum singular value, but not the constant C or C D , that is necessary in order to 
turn the error bound into an error estimate. This weakness of the classic methods is overcome in the next section.
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5. Extrapolation error estimates

A completely different approach to error estimation is to watch the iterative progress and extrapolate it to deduce 
the error. Fig. 5 shows plots of the solution increments for different problems as a function of the iteration number. On 
a log–linear plot there are many regions where the convergence is reasonably well approximated locally by a straight 
line.

Fig. 5. Change in the solution as a function of iteration number for various problems. (a) Change in the x-momentum (b) change in the turbulent kinetic 
energy solution.

A straight line on a log plot implies that ‖δxn+1‖V
2 = α‖δxn‖V

2 where α < 1. Alternatively this implies ‖δxn‖V
2 =

α(n−1)‖δx1‖V
2 and therefore log ‖δxn‖V

2 = log ‖δx1‖V
2 + (n − 1) logα. So the slope of the line on the log–linear plot is equal 

to logα.
We also know that the error at step n + 1 is equal to all future increments that must be taken. Assume that all future 

increments will drop by the same value α. Then

∥∥ẽn+1
∥∥V

2 = ∥∥δxn+2
∥∥V

2 + ∥∥δxn+3
∥∥V

2 + · · · = (
α + α2 + · · ·)∥∥δxn+1

∥∥V
2 = α

1 − α

∥∥δxn+1
∥∥V

2 . (8)

Is a closed form extrapolation estimate for the error. The tilde on the error indicates that this is an estimate, not the 
actual error. All that is need to determine the current error estimate from the existing solution increment is some knowledge 
of the convergence slope (α) in Fig. 5. Also note that | α

1−α is also an estimate for the unknown constant (C D) needed by 
the classical error estimators described in section 4.

5.1. Two increment extrapolation

In the simplest case the previous increment can be used to estimate the slope, so α = ‖δxn+1‖V
2

‖δxn‖V
2

. Then using two incre-

ments of the solution, the extrapolated error estimate is

∥∥ẽn+1
∥∥V

2 =
(‖δxn+1‖V

2

)2

|δxn‖V
2 − |δxn+1‖V

2

(9)

In this work we make a clear distinction between the actual error (no tilde) and the error estimate (tilde). The actual error 
is measured using a prior solution of the problem (every test problem is solved twice). The error estimate (tilde) is the goal 
of the paper, since most application do not want to solve the problem twice in order to get the actual error.

Fig. 6 shows the 2-increment extrapolated error (equation (9)) with a thick blue line versus the actual error (with the 
smooth thin black lines) for all six test cases. The error estimate can be noisy, but it is usually an over-estimate when it is 
having trouble extrapolating. This is good for a convergence test because it means the estimator does not give false exits 
from the iterative procedure when it is having trouble estimating. Other than the noise issue, this simple extrapolation is 
remarkably accurate.

When there is noise in the convergence of the solution the solution increments can grow in magnitude momentarily 
rather than decrease. In that situation, the result of equation (9) is a negative error estimate which is easy to ignore/filter. 
This is why Fig. 6 shows some regions with no estimate shown. Similarly, when convergence stalls and the increments do 
not change much from one iteration to the next, the denominator gets small and the error estimate tends to become large 
(overestimates the error). An example of this is the right-hand side of Fig. 6(c).

In what follows we show a reasonable method to smooth the estimator predictions using more data points.
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Fig. 6. The 2-increment predicted error (equation (9), thick dotted blue lines) versus the actual error (thin black lines) of the x-momentum for the six test 
cases: (a) Unsteady shedding, (b) Diffuser, (c) Boundary layer with realizable K-Eps, (d) U-Bend, (e) CHT, (f) Cavity 64 × 64.

5.2. Smooth increment extrapolation

A smooth extrapolation uses more data points. One approach is to use the two-increment estimate of the convergence 
rate α at many previous locations (αn+1 = ‖δxn+1‖V

2
‖δxn‖V

2
, αn = ‖δxn‖V

2
‖δxn−1‖V

2
, αn−1 = ‖δxn−1‖V

2
‖δxn−2‖V

2
, . . .) and take some average of these 

estimates. There is ambiguity in what sort of average to use. There also remains a strong (and noisy) dependence on the 
most recent solution increment, ‖δxn+1‖V

2 , because the estimate is given by ‖ẽn+1‖V
2 = ᾱ

1−ᾱ ‖δxn+1‖V
2 .

Much of this ambiguity can be removed by noting that the goal is to curve fit a line on a log–linear plot. The proposed 
smooth extrapolation approach therefore uses a least squares best-fit line through the data to extrapolate the slope and 
the intercept (which is approximately ‖δxn+1‖V

2 ). The error is then estimated from both these smooth data values. A least 
squares fit of exponentially varying data is not common so we repeat the derivation here.

Starting from the previous expression, ln‖δxn‖V
2 = ln ‖δx1‖V

2 + (n − 1) lnα that is the assumed behavior for the incre-
ments, the goal is to find two constants, a and b, that best fit that equation. So
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ln
∥∥δxn+1

∥∥V
2 = a

ln
∥∥δxn

∥∥V
2 = a − 1b

...

ln
∥∥δxn−M

∥∥V
2 = a − (M + 1)b

where eb is the best fit for the slope α, and ea is the best fit line’s approximation for the most recent solution increment 
‖δxn+1‖V

2 . This could be done just as easily with base-10 logs (and then α = 10b and 10a ≈ ‖δxn+1‖V
2 ), or base-2 logs for 

faster computation (using shift operations).
Note that M + 2 is the number of data points being used in the curve fit. So M = 0 for the 2-increment extrapolation 

(of the previous section). And M = 2 for a 4 data-point smoothed extrapolation. M is the number of interior (or extra) 
smoothing data points.

This is an over-determined problem that is solved using least squares⎡
⎢⎢⎢⎢⎣

M+1∑
i=0

1 −
M+1∑
i=0

i

−
M+1∑
i=0

i
M+1∑
i=0

i2

⎤
⎥⎥⎥⎥⎦

(
a

b

)
=

⎛
⎜⎜⎜⎜⎝

M+1∑
i=0

ln‖δxn+1−i‖V
2

−
M+1∑
i=0

i ln‖δxn+1−i‖V
2

⎞
⎟⎟⎟⎟⎠ (10)

The right-hand side vector can be simplified to reduce the number of expensive log operations to just two. For exam-

ple, 
M+1∑
i=0

i ln‖δxn−i‖V
2 = ln

[
M+1∏
i=0

(‖δxn−i‖V
2 )i

]
. But this is a false optimization because the product rapidly causes underflow 

errors. So the form in equation (10) is retained.
The smooth estimated error is the sum of all future increments.

‖ẽ‖ = ea+b + ea+2b + . . . = ea+b(1 + eb + e2b + . . .
) = eb

1 − eb
ea (11)

Remember that eb = α and ea ≈ ‖δxn+1‖V
2 (the best fit line estimate for this value). The 2-increment extrapolation 

(equation (9)) from section 5.1 is equations (10) and (11) with M = 0.
Fig. 7 shows this smooth error estimate compared to the actual error using different numbers of data points for the 

extrapolation. In order to better see the behavior a reduced range of iterations (400 to 700) is shown in the figure. This 
case is the noisiest case from Fig. 6, the boundary layer case (6c) and looks at the x-momentum error. The only free param-
eter in the least squares approach is the number of points to average over. An obvious trade-off exists here. More points 
gives smoother results, but takes longer to respond to the changes in the convergence behavior (changes in slopes) that 
occur as the iterations progress. Fewer points gives more locations where the extrapolation cannot make a good estimate 
but responds faster. For all averaging intervals, when the extrapolation has trouble it usually defaults to an overly conser-
vative estimate that suggests that iterations should continue to proceed. This does not mean that the estimator can never 
under-predict the error. It can, but it does not do this by large amounts (that would cause premature stopping).

In this difficult boundary layer problem up to 50 prior points are needed to produce an extremely robust extrapolated 
error estimate. This interval size (50 iterations) is comparable to the scale at which the error (and solution changes) oscillate 
during the convergence. We do not suggest that it is imperative that such a long smoothing interval be used in general. The 
iterations can always continue when the estimator is not producing a reasonable (positive) result.

Fig. 7. 2, 5, 25, 50 and 100 – increment extrapolated error versus actual error in the x-momentum for the boundary layer problem with the realizable 
K-Epsilon turbulence model.
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Note that this extrapolation approach differs from the classic approach in that it has completely abandoned the residual 
as a useful parameter as input for error estimation. It only uses the prior solution increments.

5.3. Hybrid methods

The smoothed extrapolation method of the previous section works remarkably well when it works. But there are a 
few situations when extrapolation doesn’t work well. In most cases the extrapolation then returns an overly conservative 
estimate of the current error (which is the desired fault behavior for a stopping criterion). But the estimate can be further 
improved in situations where extrapolation fails by combining the classic estimator ideas from section 4. The primary 
problem with the classic estimators of section 4 is that the ratio R ≡ ‖e‖V

2
‖r̂‖V

2
= C

σmin(V −1/2 J V −1/2)
= C D

‖δx‖V
2

‖ Ĵδx‖V
2

requires a good 

estimate for the constants C or C D . In the hybrid method used in this work, the constant C D is determined when the 
extrapolation approach is working well, and then the saved (and averaged) values of C D are used with classic estimation 
whenever the extrapolation method is not working well.

The key issue in the hybrid method is therefore determining when the extrapolation is, or is not, working well. This 
is determined by running multiple error estimators (with different numbers of points). When these estimators produce 
similar (within 50%) and positive results, extrapolation is used. When they do not agree, the classic estimator is used (using 
previously calculated and saved values of C D).

Multiple error estimators do not necessarily involve significantly more computational work as many of the calculations 
overlap. In our estimator we use a 2-interval extrapolation and a 25-interval extrapolation. The 25-interval results are used 
for the stopping decisions and for calculating C D . The 2-interval extrapolation is used to test if the 25-interval method is 
working well. The 25-interval extrapolation uses fewer than 25 intervals if 25 intervals are not yet available. When either the 
2-point or 25-point extrapolation calculation fails (produces a negative estimate or does not agree within 50% of the other) 
the algorithm assumes extrapolation is not working well. When extrapolation is not working well, C D is not calculated, and 
classic error estimation

‖e‖V
2 = C D

‖δx‖V
2

‖ Ĵδx‖V
2

‖r̂‖V
2 (12)

is used, and is based on the average of all previously calculated (from extrapolation) C D values.
With the hybrid method we are particularly interested in being able to capture convergence stall. Fig. 8 shows stall 

behavior for a turbulent boundary layer when the RNG K-epsilon turbulence model is used. This particular turbulence 
model causes a “chatter” in the solution. From iteration to iteration the solution flips back and forth but does not converge. 
Because of chatter, the residual, error, and solution changes do not decrease after roughly iteration 150. They are actually 
converging, but extremely slowly.

Fig. 8. x-Momentum convergence stall for the boundary layer problem using the RNG k/epsilon model.

The reasons for convergence stagnation are complex. It can be caused by discontinuous terms in the equations, which 
happens from slope limiters and from some turbulence models. It can also be a result of the underlying physics, when a 
steady solution is sought from an inherently unsteady or chaotic dynamical system. However, the task of the error estimator 
is not to diagnose why stagnation happens but to estimate the error reasonably when it does happen and present that 
information to the user.

Fig. 9 shows how the simple 25-interval estimator and the hybrid error estimator perform in this extreme situation. 
The figure shows that the actual error in the x-velocity component (thin black line) stagnates and does not converge with 
more iterations. The original 25-interval extrapolated error estimate (equations (10) and (11)) is the red line with diamonds. 
That error estimate is now growing with the iteration count. This is because the 25-interval extrapolation still produces a 
positive estimate in this situation because the solution is converging – just extremely slowly. But the 25-pt estimate is now 
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an increasingly poor estimate due to the stalled behavior of the solution changes. The estimator is correctly seeing that the 
error is not converging well but then it is extrapolating that this implies that the error must therefore be very large when 
it really the actual error is still only O(1). Finally, the Hybrid approach is also shown on Fig. 9 (as blue line with circles). In 
this case, the 2-interval extrapolation fails (gives a negative result) around iteration 125, so the hybrid method then resorts 
to a classic error estimator using the average C D found in the first 125 iterations.

Fig. 9. Comparison of hybrid error estimate (blue circles), simple 25-interval error estimate (red diamonds) and actual error (black).

The predictions of the hybrid method are shown for all the test cases in Fig. 10. This is essentially Fig. 6 but with 
25-interval smoothing implemented in the extrapolation (rather than using 2-interval extrapolation as in Fig. 6), and with a 
reversion to the classical estimation formula (equation (12)) when extrapolation is not working well.

6. Other considerations

6.1. Start-up

Most of the error estimators have large inaccuracy in the early iterations. The extrapolation procedure, for example 
requires a minimum of 2 iterations before it can even produce a result. For the classic estimators the constant, C , that turns 
the bound into an estimate is highly initial condition dependent during early iterations. If high predictive accuracy at early 
iterations is required, probably the only robust solution is to run a coarse mesh problem in order to estimate R . Fortunately, 
for a stopping criterion application, early iteration accuracy is usually not required. The errors are typically very large. The 
estimates, while inaccurate, are also very large, so stopping does not occur. A common practice is to put both a minimum 
and maximum number of iterations on the solver that overrides any error estimates.

6.2. Linear solvers

Non-linear PDE solvers often have one or more linear solvers as the core operations within one non-linear iteration. The 
linear solvers are also often iterative and also require a stopping criterion. The stopping criterion for the linear solvers is 
typically less stringent and less critical, because these linear solvers are embedded within a larger non-linear solver which 
will eventually enforce convergence even if the linear solvers do not. Nevertheless, there still are advantages to precise 
exiting from the linear solvers, and the stopping criterion methodology developed in this work can also be directly applied 
to those linear solvers. There is extensive prior work on stopping criteria for linear solvers. Two examples are references 
[26] and [27]. These methods often use scalars computed within the Krylov method itself [28,29], and often use error 
norms that include the matrix and the matrix preconditioner [30] which implies they use the residual. These approaches 
are very clever but are often specific to the particular Krylov solver. They typically estimate the matrix condition number 
(or minimum singular value) but not the constant C that turns the bound into an estimate. They also require additional 
coding, whereas the proposed method can be applied to all the solvers in a code, including the nonlinear outer iterations.

Given the linear problem, Ax̄ = b where A is a square invertible matrix, x̄ is the solution vector, and b is the input data. 
The residual for an inexact solution guess, x is given by r = b − Ax. And the error in the solution is given by e = x̄−x = A−1r. 
The triangle inequality then gives the classic relation for the error norm, ‖e‖ ≤ ‖A−1‖‖r‖. So the matrix A replaces the 
Jacobian matrix. We now understand that even for linear systems, it is advantageous to use the volume norms and write,

‖e‖V
2 ≤ 1

σmin(V −1/2 AV −1/2)
‖r̂‖V

2 (13)

if the matrix A is a FE or FV discretization (with a cell/element volume included in each matrix row).
All the methods discussed previously, including extrapolation, continue to apply. Some Krylov methods for unsymmetric 

matrices (such as BiCGStab and its variants) can have very noisy residual convergence. But it appears the solution increments 
are less noisy and smoothing over about 25 points can still provide useful extrapolation estimates. Methods like multigrid 
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Fig. 10. The 25-increment hybrid error estimator (equation (10)–(12), blue lines with circles) versus the actual error (thin black lines) of the x-momentum 
for the six test cases: (a) Unsteady shedding, (b) Diffuser, (c) Boundary layer with realizable K-Eps, (d) U-Bend, (e) CHT, (f) Cavity 64 × 64.

and GMRES (or CG for symmetric matrices) tend to show much smoother (but not uniform) convergence. For many Krylov
methods, the solution convergence is initially slow and then accelerates at the end. The means the extrapolation methods 
will over-estimate the error in the early iterations and will estimate it very well when it gets close to the actual stopping 
point. Note that there is a great deal of information and experience about how residuals behave for linear solvers, but the 
extrapolation estimates use solution increments where less has been published.

Fig. 11 shows the hybrid error estimator applied to various different linear solver cases. These results are for the 300th 
iteration of the nonlinear solver in the diffuser problem solved with the K-omega turbulence model (Section 3.2). Figs. 11(a) 
and 11(b) demonstrate the accuracy of the hybrid error estimator when using a preconditioned GMRES solver. Similarly 
Figs. 11(c) and 11(d) are error predictions using preconditioned AMG solver and finally Figs. 11(e) and 11(f) have been 
plotted using a preconditioned BiCGStab solver. All linear solvers use the PetSc implementation.

From the figures it can be seen that the classic estimate (with an assumed value of C D = 15, red line with circles) is fairly 
inaccurate and tends to under predict the error (note the use of a semi-log scale and the large range on the y-axis). On the 
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Fig. 11. This figure plots error and estimates for various linear solvers. All figures show the linear solver iterations for the 300th non-linear solver iteration 
for the diffuser problem using the K-omega turbulence model (discussed in Section 3.2). The actual error is the thin black line. The classic error estimator 
(eqn. (12) with C D = 15) is red circles. The hybrid method is shown with blue crosses, and the two-point extrapolation is shown with green diamonds. 
(a) Error in the x-momentum using GMRES, (b) error in the omega variable using GMRES, (c) error in the x-momentum using AMG, (d) error in the omega 
variable using AMG, (e) error in the x-momentum using BiCGStab, (d) error in the omega variable using BiCGStab.

other hand, the hybrid extrapolation estimate (blue line with crosses) and the simple 2-point extrapolation (equation (9)) 
(green line with diamonds) produce quite accurate error estimates. The only large deviations for the extrapolation estimates 
occur when the error has reached machine precision, or for the first 2 or 3 iterations of the solver. The results for the 
BiCGStab case are particularly notable because the erratic residual convergence is present in this test, but the increment and 
error convergence is much smoother (though sometimes not monotonic) and the method continues to produce useful error 
estimates.

6.3. Machine precision

Error that has a size roughly equal to machine precision, μ, produces a residual of size ‖r‖ ≈ μ‖b‖. It is therefore 
impossible for the residual to go below this level, so a stopping criterion should also always terminate when the residual 
goes below some slightly higher level, such as 1000μ‖b‖. The equivalent lower limit for the error is 1000μ‖x‖. In double 
precision this is a minimum relative error, ‖e‖/‖x‖, of about 10−13. The iterative solver should not allow the user to request 
a relative error lower than this level. It can be seen that both the linear solvers (Fig. 11(a) and 11(b)) and non-linear solvers 
(Fig. 10(c)) can be impacted by this machine precision lower bound on the error.

7. Discussion

Stopping criteria for iterative methods are a very small but surprisingly important part of iterative numerical methods. 
Prior work on the stopping criteria has perhaps been hindered by the desire to black box this problem and treat it purely 
as a mathematical/numerical issue. In this work, we have attempted to do just the opposite, and use information about the 
context of the larger problem (PDE solution) to aid and enhance the error estimation process.
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The first important manifestation of including the PDE information into the stopping criteria problem was the emphasis 
on volume norms. These norms are well known to the FE literature, which often present error analysis in terms of integral 
norms. The volume norms presented in this work have a very similar theoretical basis to integral norms, but are less costly 
to compute. Cost is always an important consideration when dealing with problems (such as PDEs) that involve a million or 
more unknowns. Volume norms are simply volume-weighted dot products. Volume norms are useful because they produce 
a number that depends on the problem but does not depend on the mesh size and type.

Similarly, PDE context was found to be just as important for matrix norms. The popular PDE discretization methods, such 
as FV and FE methods, produce a discretization in which the matrix (and also the residual) has a cell/element volume in 
it. There is a great advantage to removing this cell/element volume (or dual element volume depending on the variable in 
question) from the matrix norm and from the residual norm. The resulting minimum singular value then reflects only the 
physics of the PDE and not the mesh size or its discretization.

Mesh independence of the matrix and vector norms has numerous advantages. First, it significantly aids the search for 
an error estimation method that can be universally applied. Second, it allows coarse mesh estimation to be used. Third, 
it means that on a highly stretched mesh the norm closely aligns with our physical intuition of the “solution variable’s 
magnitude” (that the norm properly accounts for the contributions of the relatively few cells which still cover a large 
portion of the physical domain).

PDE context (and mesh independence) was used again when showing how the Rayleigh Quotient can be used to estimate 
the smallest singular value (of the volume weighted Jacobian). In the context of PDEs, the singular values have a physical 
meaning, and the smallest singular value is the lowest frequency mode of the PDE associated with the slowest spatially 
varying mode of the PDE. This work suggested using the solution increment as a proxy for this lowest frequency mode and 
this work demonstrated the surprising error prediction accuracy that such a crude (but physically reasonable) guess, can 
provide.

Finally, this work demonstrated how well error extrapolation from current iterative progress can work if the extrapolation 
is appropriately smoothed. In particular, our algorithm performs a least-squares curve fit to an assumed local exponential 
solution convergence. As a result there is no arbitrariness to the smoothing or averaging of the extrapolation. The only free 
parameter in the extrapolation error estimate is the number of prior data points to use for that extrapolation. We use this 
one free parameter to our advantage by computing multiple error estimates with different numbers of data points. Large 
variation between two extrapolation estimates provides a sanity check on the extrapolation procedure’s effectiveness.

Extrapolation estimates differ fundamentally from classical stopping criteria in that they do not use the residual. We 
have used the fact the methods are fundamentally different to develop a hybrid method that reverts to the classic estimator 
when the solution convergence is too noisy for extrapolation. This often happens at early iterations or when the convergence 
stagnates or reaches machine precision. This hybrid method uses the good extrapolation estimates to precompute and store 
the ratio of the error to the residual, R, so that this constant is available if/when the reversion to classical (residual based) 
estimation is needed.
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