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A fractional step method for solving the steady-state, incompressible, Navier-Stokes 
equations is presented. The proposed iterative method uses an estimate for the optimal 
under-relaxation coefficient at each iteration. This estimate uses prior information that is 
already available in the iterative method so the calculation has negligible cost. Numerical 
tests show that the convergence rate of the fractional step method using this optimal 
relaxation parameter is nearly independent of the mesh size, resulting in significant cost 
savings for problems with fine meshes. The ideas demonstrated in this paper are general 
and can be used to improve many existing iterative methods for steady flows, as well 
as methods for the unsteady Navier-Stokes equations and methods for other saddle-point 
problems.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

Fractional-step methods [1] are an approach to solving complex partial differential equation (PDE) problems in which 
various coupled physical processes are treated uncoupled and sequentially. The original formulation was used to split ad-
vection and diffusion processes, or just the diffusion process in different directions [2]. However, fractional-step methods 
have now found their most lasting appeal in the context of saddle-point PDE problems and are used to split dynamics 
equations from kinematic constraints. The saddle-point problem of primary interest in this work is the incompressible 
Navier-Stokes equations for fluid flow. In these equations the dynamics are given by the conservation of momentum and the 
kinematic constraint is that the velocity field should be divergence-free (conservation of mass). In the context of constraint 
satisfaction, the fractional-step method is essentially identical to the projection method which was developed separately [3].

Fractional-step methods for incompressible flow were originally developed for unsteady applications, such as the direct 
numerical simulation (DNS) of turbulence [4–7]. The steady-state analog of the fractional-step method, in which the time 
derivative is absent but it is replaced by an under-relaxation term, is a solution approach typically referred to as “segregated” 
methods. Well known examples of segregated algorithms are SIMPLE [8] and its family of derivatives such as SIMPLEC [9]
and SIMPLER [10]. These algorithms have even been extended to the unsteady case by treating the unsteady term as yet 
another source term. Similar to dual-time-stepping methods, the unsteady versions are useful for transient problems where 
the time scales are larger than time-step size required by the time-accurate fractional-step approach. The PISO [11] method 
is a modification of segregated methods that is more efficient for smaller time scales by reducing or eliminating the need 
for sub-iteration, similar to the classic fractional step method.

In this work, the mathematical analysis used in the fractional-step method [12][13] is used to develop a new algorithm 
with superior convergence. It is important to mention that the mathematical analysis and insight developed in this work 
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can be applied to other segregated algorithms. In addition, the proposed steady-state fractional-step method (termed the 
M-method) has the desirable characteristic of automatically reverting to the classical unsteady fractional-step method in 
the limit of small (time accurate) time steps. The method presented herein is regarded as a steady-state version of the 
fractional-step method even though the classical fractional-step method cannot be applied to the steady limit. In this work, 
the fractional-step (developed for unsteady and time-accurate) and segregated approaches (developed primarily for steady 
or large timesteps) are considered to be different historically, and we show how theoretically they are very similar and can 
be seamlessly unified.

Classical segregated methods (such as SIMPLE) have traditionally been the workhorse of most commercial and open-
source computational fluid dynamics (CFD) software. They have been applied to industrial simulations all over the world, 
and likely consume an extraordinarily large number of CPU cycles today. However, they suffer from two major drawbacks. 
The primary deficiency is that the classical segregated methods exhibit mesh-dependent convergence rates. This means that, 
for the same problem (flow conditions do not change), high spatial accuracy and fine-mesh resolution simulations converge 
far more slowly than their coarse mesh counterparts. This behavior is shown in Fig. 1a for the SIMPLE method applied to 
steady 2D cavity flow at a Reynolds number of 1000 (more details on this test case are found in section 6).

Fig. 1 shows the error norm (not the residual) of the velocity (the primary variable in equation (1) below) as a function 
of the iteration number for the same physical problem using different-sized uniform triangular meshes. It is important to 
highlight that the residual has different convergence properties than the error. Observations of the residual can be deceptive 
about the actual method performance, because the error is the true measure of solution convergence. As a result, errors 
(and not residuals) will always be used in this paper. The mesh sizes in the legend refer to the number of triangles in the 
domain. The figure shows that the convergence rate of SIMPLE is roughly inversely proportional to the number of unknowns. 
For example, the 24k mesh (green triangles) takes 3x more iterations than the 8k mesh (blue squares) to obtain the same 
error level. So with classic segregated methods like SIMPLE to achieve the same error level, doubling the number of mesh 
cells requires doubling the number of iterations (as well as doubling the work per iteration). So to achieve a fixed error 
level, the CPU time is O (N2) where N is the number of unknowns. All the existing segregated algorithms show this type 
of convergence and cost behavior for high Reynolds number steady flows. One possible remedy is to use a coupled solution 
algorithm, but this adds a significant overhead in terms of memory and the computational cost per iteration. Additionally, 
any bottleneck in convergence affects all the equations being solved.

Mesh dependency means that existing segregated solution methods, which once were reasonably efficient when compu-
tations only used moderate mesh sizes, have become less practical now that mesh sizes have increased to take full advantage 
of modern hardware and to solve problems of increasing geometric complexity and with higher accuracy. Iteration counts 
in the many thousands are now routine in commercial CFD applications where element counts number in the millions. In 
contrast, the M-method described in this work converges at rates that are nearly mesh independent, as shown in Fig. 1b. 
Like coupled methods, CPU costs for the proposed method are nearly the optimal order, O (N). But the cost per iteration is 
expected to be far less than a coupled method.

Another major drawback of the classical segregated solution methods is that under-relaxation factors need to be speci-
fied by the user. For example, SIMPLE has two user-specified under-relaxation parameters, and PISO has four. In Fig. 1a, the 
velocity under-relaxation is set to 0.8 and the pressure under-relation is set to 0.2. These are typical default values found in 
many commercial and open-source codes. However, those default values are not guaranteed to give convergent answers and 
often have to be changed for problems with difficult physics (for example flow in porous media), resulting in slower conver-
gence. The steady-state fractional-step method (M-method shown in Fig. 1b) has no parameters to specify, although it can 
be tuned if needed. The M-method behaves similarly to the classical segregated methods, but with optimal under-relaxation 
parameters calculated automatically at each iteration.

Fig. 1. Steady cavity flow at Reynolds number of 1000. Error versus iteration number for a variety of nearly uniform triangular meshes. Mesh size is given 
by the number of triangles. (a) SIMPLE algorithm showing strong mesh dependence. (b) M-method showing only mild mesh dependence. (For interpretation 
of the colors in the figure(s), the reader is referred to the web version of this article.)
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Note that there are two convergence regimes for the velocity error. SIMPLE typically converges slowly at first and then 
speeds up as the iterations progress. The 8k mesh shows this behavior the most clearly in Fig. 1a. On the other hand, the 
M-method (Fig. 1b) shows rapid convergence of the error at early iterations, and a slowing of the convergence and the 
appearance of mesh dependence towards the end (after about iteration 100). This work presents a mathematical analysis 
that explains these behaviors. The analysis shows that the early iterations are controlled by velocity (or primary unknown) 
error and the later iterations by pressure (or constraint) error. The various segregated solver methods affect these two 
coupled errors in different ways that can be mathematically analyzed. Also note that it is only important to reduce the 
convergence error to a level that it is commensurate with the other modeling errors in the problem, and not to machine 
zero. Practical applications will often terminate at a relative error of 10−3 or 10−4.

Section 2 of this paper provides the mathematical background of the saddle-point problem and section 3 the direct re-
lationship to the incompressible Navier-Stokes equations. In section 4, a general linear algebra framework for understanding 
the performance of all segregated solution methods for the saddle-point problem is presented, and section 5 relates the 
most widely known segregated solution methods to this single unified framework. Section 6 uses the mathematical frame-
work to derive the M-method, and section 7 shows the performance of the M-method. In section 8, the M-method is shown 
to be insensitive to the two possible tunable parameters.

2. Background

The specific problem of interest for all segregated and fractional-step methods (steady and unsteady) can be represented 
as a non-linear block-matrix problem,[

F (u) G
D 0

](
u
p

)
=

(
b
c

)
(1)

The matrix F is invertible. The matrices G and D are rectangular and not invertible, and the matrix 0 is a large block of 
zeros. The vector-valued array, u, is the list of primary unknowns, and the scalar array, p, is the list of Lagrange multipliers 
that enforce the constraints. Linear algebraic systems of equations of this type can arise from any physical problem with 
constraints. Although the present focus is on the application of these ideas to incompressible fluid flow, the M-method is 
just as applicable to the solution of any block matrix problem of the form given by equation (1).

Saddle point equation systems such equation (1) are difficult to solve because they are indefinite (both positive and 
negative real-parts to the eigenvalues). In addition, the system is not diagonally dominant because of the zero block on 
the diagonal, so methods like Gauss-Seidel and Jacobi iteration and their fast descendants like multigrid methods, cannot 
be directly implemented. Because the system is assumed to be large and sparse, it also cannot be efficiently solved with a 
direct Gauss-elimination method.

This system can be solved as a fully coupled system (such as in [14]) using some specialized iterative methods such 
as BiCGstab or GMRES. But the fully-coupled approach also has some practical drawbacks. The fully coupled system con-
verges at the rate of its weakest link, which happens to be the scalar pressure, p. This forces the more complex velocity 
vector, u, part of the problem (with the expensive nonlinear F matrix), to be solved far more often than it needs to be. Un-
coupling (or segregating) the system allows existing and well understood solution methods for Poisson’s equation and the 
advection-diffusion equations to be applied separately to each part of the uncoupled problem. With a segregated algorithm, 
computational power is thus directed most efficiently to each part of the problem.

In practice, even when the fully coupled system is solved, a preconditioner is used. The best preconditioners have been 
shown to be the segregated or fractional-step methods [15,16], such as those that are discussed in this paper. So the 
innovations described below are directly applicable whether the system is solved fully coupled or segregated. An interesting 
exception to the applicability of this paper is the exact fractional-step method [17]. That approach uses special properties 
of the operators G and D (if those properties exist, i.e., the discretization is mimetic [18–20]) to transform equation (1) into 
a basis where the constraints are automatically satisfied.

3. Application to fluid dynamics

For those with an interest in the application to fluid dynamics, the direct connection with equation (1) is presented in 
this section. In the context of incompressible fluid dynamics, the vector valued unknowns u are the velocity and the scalar 
Lagrange multipliers, p, are the pressure unknowns. The first row of equation (1) is the momentum equation,

Mn+1un+1 − Mnun

�t
+

∑
f

(u · n f ρun+1 − μ
∂un+1

∂n
)A f = −Gpn+1 + f (2a)

where G is the discrete gradient operation, μ is the non-constant dynamic viscosity, ρ is the density which is not necessarily 
constant (such as in an incompressible oil/water situation), M is the mass in a control volume formulation or a mass matrix 
for a finite element (FE) method, f represents all additional forces such as gravity or surface tension, A f are the control 
volume face areas and n f are the control volume outward face normal vectors. Although a finite element method might 
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represent the advection and diffusion terms slightly differently, those differences are irrelevant to the discussion presented 
in this work. A different time advancement scheme (than the implicit Euler method shown in equation (2a)) would also not 
affect the results of this paper.

Equation (2a) can be rearranged to collect the unknowns and isolate the operators,

[ Mn+1

�t
+

∑
f

A f (u f · nρ f − μ
∂

∂n
)]un+1 + Gpn+1 = Mn

�t
un + f (2b)

So the matrix F in this example is the unsteady advection-diffusion operator,

F (u) =
[

Mn+1

�t
+

∑
f

A f (u · nρ f − μ
∂

∂n
)

]
(3a)

In the case of steady-state flow, which we focus on in this work, the matrix F is the sum of all the face flux terms (hence 
the name F ). The steady-state case is the unsteady system in the limit of �t → ∞. Note that the matrix F is not constant 
in the fluid flow example, but is a function of the solution due to the advection term. This nonlinearity is also a reason why 
the fully coupled solution of equation (1) may be less advantageous than a segregated approach. Since nonlinear iteration is 
also required, high accuracy solution of equation (1) is unnecessary, and uncoupled solution methods have the advantage of 
being able to control the velocity and pressure error levels independently. The known vector on the right-hand side in the 
first row of equation (1) is,

b = Mn

�t
un + f (3b)

Boundary conditions terms also appear in this vector.
The second row of equation (1) represents the constraint equations in block form,

Dun+1 =
∑

f

A f n f · un+1 = 0 (4)

where D is the discrete divergence operator. The right-hand side of equation (1), the scalar list c, is mostly 0 with the 
exception of Dirichlet boundary condition entries for the normal velocity on boundaries. In a well-constructed discretization, 
G = −DT which mimics the underlying symmetry of the continuous gradient and divergence operators. However, this 
property is not a requirement of the analysis in this paper, because it is not true in most commercial or open-source CFD 
codes (where the proposed technology might be adopted).

The literature on segregated methods would tend to write equation (2a) or (2b) as,

ap un+1
p +

∑
nb

anbun+1
nb + Gpn+1 = b (5)

where ap is the diagonal value of the matrix F , and anb are the off-diagonal entries of the matrix F on the same row as 
ap . Often, the derivation is also for a Cartesian mesh where the gradient operator simplifies further, but we leave it general 
to illustrate the connection with equation (2a) or (2b). The various segregated methods differ in their approximation of the 
off-diagonal term in (5).

Segregated solver algorithms rarely frame the algorithm in terms of linear algebra as is done in equation (1). Similarly, 
early fractional-step papers focused on time advancement as the issue, and did not use a matrix representation of the 
problem. However, references [12] and [17] show how posing the problem in terms of a matrix representation can provide 
significant insight into the fractional-step method and its properties. In this paper, the matrix formulation of the problem 
enables the derivation of the optimal under-relaxation parameter.

4. General framework and insights

The key insight of reference [12] was that the fractional-step method can be formulated as an approximate block LU 
factorizations of equation (1). This section will show that all segregated solution algorithms can also be described and ana-
lyzed in this same way. Using this general framework, this paper identifies the three key approximations that parameterize 
all such methods, including the new steady-state fractional step method (M-method) which is discussed in this work.

The approximate block LU decomposition that captures many well-known segregated solution methods is,[
Q 1 + F 0

D −D Q −1
2 G

][
I Q −1

2 G Q −1
3

0 Q −1
3

](
δu
δp

)
=

(
ru

rp

)
=

(
b − F u − Gp

c − Du

)
(6)

This is posed in incremental form, where the goal is to find the corrections δu and δp to an existing solution guess u
and p. If the incremental form is iterated, and it converges, it will always converge to the solution of equation (1). This is 
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because the right-hand side of the incremental form is the residual of equation (1). In incremental form, the matrix on the 
left-hand side does not need to be exact for convergence to the solution of equation (1) to occur. Segregated solvers take 
advantage of this fact, and use lower and upper triangular block approximations of the matrix that are easier to invert.

Equation (6) represents the subset of segregated solution methods that exactly enforce the discrete divergence con-
straint at the end of every iteration. Methods that allow error in the divergence constraint can be thought of as pseudo-
compressible approximations, and those approximations have been explored extensively by Quarteroni et al. [21] and by 
Elman et al. [15]. In our experience, methods that do not exactly conserve mass can cause odd and unphysical numerical 
effects, so segregated methods based on artificial compressibility are not included in the decomposition given by equation 
(6).

Equation (6) is solved using an iterative scheme, which accomplishes two very different goals. It is iterated to address 
the non-linearity in F , and it is also iterated to eventually satisfy both the top row of equation (1) (the dynamics) and the 
bottom row of equation (1) (the constraints), without solving them both at the same time.

The three Q matrices define the different segregated solver methods. In many segregated solver derivations, the Q ma-
trices are equal to each other, which can lead to a loss of clarity about what is occurring, as the three approximations 
act in very different ways. Note that Q 2 should be easy to invert for practical reasons because it occurs inside a pseudo-
Laplacian, L = D Q −1

2 G ≈ ∇ · Q −1
2 ∇ . Viguerie and Veneziani [22] explore the possibilities when Q 2 is the viscous term in 

the Navier-Stokes equations. But in this work, and most segregated methods, Q 2 is restricted to be a diagonal (or easy to 
invert) matrix. In contrast, Q 3 does not need to be easy to invert because in actual implementation we will show that it 
does not appear as an inverse.

Segregated and fractional step methods are usually described in terms of four steps. It is useful to see that those four 
steps actually come from equation (6) which is a block LU problem that contains two sub-problems,[

Q 1 + F 0
D −D Q −1

2 G

](
δu∗
δp∗

)
=

(
ru

rp

)
and

[
I Q −1

2 G Q −1
3

0 Q −1
3

](
δu
δp

)
=

(
δu∗
δp∗

)
(7)

The first problem expands into the first two steps, and the second problem expands into the last two steps,

(Q 1 + F )δu∗ = ru = b − F u − Gp

(D Q −1
2 G)δp∗ = D(δu∗) − rp = D(δu∗) − c + Du = D(u + δu∗) − c

δu = δu∗ − Q −1
2 Gδp∗

δp = Q 3δp∗

(8)

The first step is the solution of a modified advection diffusion problem, F , with a lagged constraint force term (the 
pressure gradient term in this case). This is segregated from the second step which is a pseudo-Poisson problem for the 
pressure correction. Well-developed and fast methods, such as multigrid, exist for the segregated pseudo-Laplacian problem 
in step 2. The final two steps are often explicit and therefore fast. They are the corrections to the two uncoupled solves.

Numerical or mathematical processes are often better understood when there is a physical analogy to accompany the 
mathematics. For this reason, we provide such an analogy here for segregated methods given by equation (8), in the form 
of calculating the motion of a simple pendulum using Cartesian (x,y) coordinates for the pendulum position. This is an 
appropriate analogy because it involves dynamics (like the first row of equation (1)) and a constraint that the pendulum 
length is fixed (like the second row of equation (1)). Fig. 2a shows the exact pendulum position at time n and time n+1.

The segregated solver methods first move the pendulum without enforcing the constraint. They include the tension force 
at time n in that calculation (the pressure gradient force in our case), but the tension force at time n is not correct for 
enforcing the pendulum length constraint at time n+1. This step is shown in Fig. 2b. In the second step the segregated 
solver evaluates how far from the constraint it is, and calculates the force that is required to move the pendulum onto the 

Fig. 2. (a) Exact motion of a pendulum. (b) Step 1 of a segregated solver. Motion without constraint. (c) Step 3 of a segregated solver. Correction onto the 
constraint using the information that was calculated in step 2. This figure visualizes the variable u (as position) but not the rod tension, p.
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constraint (this is the elliptic equation for δp∗ in our case). The third step uses this newly calculated tension force to move 
the pendulum and, as planned, that motion will now put the pendulum back onto the constraint. This is shown in Fig. 2c. 
However, note that the tension force required to move a misbehaving pendulum onto the constraint, is not the same as the 
tension force found in a properly behaving pendulum, even though they are related. The fourth step attempts to get the 
actual pendulum tension δp from the tension force required to push the pendulum back onto the constraint, δp∗ .

The exact fractional step method [17] may also be explained using this analogy. Exact fractional-step methods change 
the coordinate system of the saddle-point problem so that the constraints are trivial to satisfy. In the case of the pendulum 
this means changing the equations of motion into radial coordinates r, θ . Then any numerical approximations to the solution 
for θ has no impact on the trivially enforced constraint that r is constant. That change of coordinates in the saddle-point 
problem (and incompressible Navier-Stokes case) is always possible using the Helmholtz decomposition, but it is simple 
numerically only if the discrete gradient and divergence operators behave fundamentally like their continuous counterparts 
(that is, they are mimetic, [20]).

By multiplying the block LU components in equation (6), it is seen that the segregated methods given by the four steps 
of equation (8) only approximate equation (1) on each iteration. The segregated methods actually invert a related matrix,[

Q 1 + F (Q 1 + F )Q −1
2 G Q −1

3
D 0

](
δu
δp

)
=

(
ru

rp

)
(9)

The divergence equation (constraint equation) on the second row is satisfied perfectly, but the momentum equation (top 
row) is approximated during each iteration, The matrix Q 1 is added to remove the near-singularity in the matrix F that 
sometimes occurs at steady state as well as to achieve non-linear convergence by adding necessary under-relaxation.

5. Segregated methods

The major segregated methods are tabulated in Table 1 in terms of their block LU splitting (equation (6)). This makes 
them easier to compare to each other. In all these methods, Q 1 and Q 2 are diagonal matrices although this is not a 
requirement of segregated methods. Additional methods, which are variations on these primary approximation themes, are 
summarized in the review paper of reference [23].

Table 1
Summary of segregated-solver approximations in the general splitting framework given by 
equation (6) (or equation (8)).

Q 1 Q 2 Q 3

Classical Fractional-Step 0 Mn+1

�t I
SIMPLE 1−ωu

ωu
F D Q 1 + F D ωp I ωp ≈ (1 − ωu)

SIMPLEC 1−ωu
ωu

F D Q 1 + Mn+1

�t ωp I ωp ≈ 1

SIMPLER 1−ωu
ωu

F D Q 1 + F D (D Q −1
4 G)−1[D Q −1

4 (Q 1 + F )Q −1
2 G]

M-Method αF D Q 1 + Mn+1

�t Q 3 = ωp(I − β D̃ μ
Q 2

G̃)

5.1. Classical fractional-step method

This method is the simplest of the segregated methods. Classical fractional-step methods are restricted to unsteady 
situations because the limit �t → ∞ makes the inverse of Q 2 = Mn+1

�t , ill-defined. Q 1 can be zero because the small and 
time-accurate time-steps used by classical fractional-step methods means that nonlinearity will not cause a convergence 
issue. Similarly, the projection onto the constraint (step 3 of equation (8)) is small for small time-steps, so Q 3 = I (identity 
matrix) is sufficient.

Since F = [ Mn+1

�t + ∑
f A f (u · nρ f + μ ∂

∂n )], the approximation (equation (9)) being used for fractional-step methods is [
F Z G
D 0

](
δu
δp

)
=

(
ru

rp

)
where Z = I + �t(Mn+1)−1 ∑

f A f (u · nρ f + μ ∂
∂n )] is reasonably close to the identity matrix. 

Note that the size of the dimensionless matrix entries in Z that are due to the advection term are O (�tu·n
�x ) and those due 

to the diffusion term are O (
μ�t
ρ�x2 ). If the method is time accurate, then all these matrix entries are on the order of 1 or 

less, because those dimensionless parameters also define time-accuracy.
The classical fractional-step method does not typically use iteration (though it can). So one application of equation (8)

(steps 1 through 4) yields the solution at the next time step after the corrections are added to the time n values.
When there is no iteration, the extra terms in Z beyond the identity matrix lead to first-order accuracy in time. This extra 

error is referred to as splitting error, and higher order time-accuracy may be obtained by improving the approximation [12]. 
For example, Q 2 = Mn+1

�t (2 Mn+1

�t − F )−1 Mn+1

�t gives second order accuracy (but can produce an indefinite pseudo-Laplacian in 
step 2). Third-order (and positive definiteness) can be achieved using Q 2 = Mn+1

�t (3 Mn+1

�t − 3F + F �t
Mn+1 F )−1 Mn+1

�t . In practice, 
iteration is probably easier than including these approximations inside the pseudo-Laplacian in step 2, because these make 
the pseudo-Laplacian asymmetric when advection is present in F .
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5.2. SIMPLE

The diagonal of the matrix F is a critical parameter for SIMPLE and its derivatives. We will call this diagonal matrix, F D . 
The diagonal matrix scales like F D ≈ Mn+1[ 1

�t + O ( u·n
�x ) + O (

μ
ρ�x2 )]. If central differencing is used for advection there is 

zero advection contribution to the matrix diagonal. However, most commercial and open-source implementations of SIMPLE 
use full upwinding for the advection term in F and then the diagonal of the matrix gets an advection contribution from all 
downwind faces. We recommend using the upwind version of F D even if central differencing is actually used in F (though 
this means F D is now only a representative large frequency, and not precisely the diagonal of F ).

SIMPLE introduces two relaxation parameters. The velocity under-relaxation ωu is typically less than, but close to, 1, and 
the pressure relaxation ωp is typically greater than, but close to, zero. The default values are usually 0.7 or 0.8 for ωu and 
0.3 or 0.2 for ωp . The choice of ωp = 1 − ωu is commonly regarded as optimal.

The velocity under-relaxation term Q 1 = 1−ωu
ωu

F D is necessary because F is close to singular in the steady-state limit 
and non-linear iterations require some under-relaxation. It is appropriate to base the amount of under-relaxation on the 
problem itself. When equation (1) is linear (such as for Stokes flow with no advection), velocity under-relaxation is not 
necessary for the non-linearity, but is still required to converge the segregated iterative method that solves the dynamics 
and the constraint separately.

SIMPLE also uses the diagonal of the matrix F for the approximation of Q 2. However, the two approximation matrices 
actually have actions that are entirely different, and the overlap in the two approximations is not required (and leads to 
confusion in some analyses of SIMPLE).

For SIMPLE, the iteration matrix is now, 

[
1−ωu
ωu

F D + F ( 1−ωu
ωp

I + ωu
ωp

F F −1
D )G

D 0

](
δu
δp

)
=

(
ru

rp

)
. Since F is diagonally 

dominant, the matrix F F −1
D has entries which are 1 on the diagonal and have magnitude less than 1 for the off-diagonal 

contributions. The error matrix Z = ( 1−ωu
ωp

I + ωu
ωp

F F −1
D ) is therefore also always equal to 1

ωp
on the diagonal and has mag-

nitude less than ωu
ωp

on the off-diagonals. While ωp → 1 appears to be attractive, it is not stable. On the other hand, the 
common choice of ωp = 1 −ωu gives an error term, Z , for the pressure gradient that is a perturbation of the identity tensor 
(similar to the classical fractional-step method) that is always stable (if ωu is small enough).

The approximation 1−ωu
ωu

F D in the momentum equation (top left block of the matrix) can be interpreted as a pseudo-time 

step that varies locally with the mesh size. Define a local time step τ as Mn+1

τ = 1−ωu
ωu

F D then, 1
τ ≈ 1−ωu

ωu
[ 1
�t + O ( u·n

�x ) +
O (

μ
ρ�x2 )] and the local time step is based on the sum of the local diffusion and CFL numbers, [ τ

�t + O ( u·nτ
�x ) + O (

μτ
ρ�x2 )] =

ωu
1−ωu

. For ωu = 0.8 the total-CFL number (left hand side of the equation) using the effective local time step is always 
required to be equal to 4. Fine meshes therefore always result in smaller pseudo-time steps and produce slower convergence 
rates (as seen in Fig. 1a). This behavior, though undesirable, is inherent to all of the classical segregated methods. All classical 
segregated methods are therefore stepping in pseudo time to steady state, using local timesteps set by the local CFL number.

We note that, in SIMPLE, the pseudo-time step varies spatially but is roughly inversely proportional to the largest singular 
values of the matrix F . In contrast, the M-method proposed in this paper attempts to choose the local time step so that 
it is roughly inversely proportional to the smallest non-zero singular value of F . The smallest singular value of F does not 
vary with mesh size (as shown in [27]) and allows for much larger time-steps while still allowing convergence. However, 
the smallest singular value is much more difficult to estimate, which possibly explains why this approach has not been 
proposed before.

5.3. SIMPLEC

SIMPLEC uses a different Q 2 than SIMPLE, but it performs similarly in the steady-state limit. It uses the approximations, 
Q 1 = 1−ωu

ωu
F D , Q 2 = Q 1 + Mn+1

�t , Q 3 = ωp I . This version of Q 2 is a result of lumping the Q 1 + F matrix rather than 
taking its diagonal as in SIMPLE. Lumping adds all the values in a matrix row together. Lumping is the typical way that 
finite element mass matrices are diagonalized to preserve the underlying essential physics. Lumping is the equivalent of 
multiplying the matrix by an array of ones. A constant field (equal to 1) applied to the advection and diffusion terms 
produces zero result for all internal cells and cells with Neumann boundary conditions. The advection and diffusion terms 
therefore do not contribute to Q 2.

The variation of SIMPLEC used in this paper ignores the advection and diffusion terms entirely in computing Q 2, even 
on the boundaries. This is perhaps even more physical than pure lumping. In this paper, the SIMPLEC (and M-method) Q 2
is purely the physical time stepping term and the pseudo-time stepping term added together, to make a total time stepping 
term. This is a straight-forward extension of what the classical fractional-step method does for Q 2 .

The iteration matrix for SIMPLEC is[
1−ωu
ωu

F D + F 1
ωp

{I + (F − Mn+1

�t )( 1−ωu
ωu

F D + Mn+1

�t )−1}G

D 0

](
δu
δp

)
=

(
ru

rp

)
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In the steady state limit Z = 1
ωp

{I + ωu
1−ωu

F F −1
D } which is the same as for SIMPLE if ωS I M P LE

p = ωS I M P LEC
p (1 − ωu). This 

means that the standard value for pressure under-relaxation in SIMPLEC is ωS I M P LEC
p = 1. Note that pressure over-relaxation 

(up to a value of 2) can be used with SIMPLEC if desired, but normally the under-relaxation of pressure is 1 (no under- or 
over-relaxation at all).

In the unsteady limit, SIMPLEC and SIMPLE differ. SIMPLEC naturally goes to the classical unsteady fractional-step method 
with Z F S = I + (F − Mn+1

�t ) �t
Mn+1 if both under-relaxation parameters go to 1 in the unsteady limit. SIMPLE does not transition 

to the unsteady case as trivially as SIMPLEC does and produces less accurate answers than both the fractional-step method 
and SIMPLEC at CFL numbers on the order of 1. For this reason, the M-method derived below more closely resembles 
SIMPLEC than SIMPLE.

5.4. SIMPLER

SIMPLER solves two elliptic pseudo-Poisson equations per iteration, resulting in roughly twice the cost of SIMPLE and 
SIMPLEC. It must therefore converge twice as fast to be competitive. It performs a second elliptic solve (in step 4 of equation 
(8)) in an attempt to improve the pressure solution. If the pressure error is not controlling the convergence (which is often 
the case), then SIMPLER is not advantageous and can be more computationally expensive.

SIMPLER attempts to approximate, Q 3 = (D Q −1
4 G)−1 D Q −1

4 (Q 1 + F )Q −1
2 G . Both SIMPLER and PISO also both use Q 4 =

Q 2. However, any Q 4 is technically possible, so that fact has been highlighted in the equation. The only difference between 
SIMPLER and SIMPLE is the Q 3, so this idea can therefore also be applied to the SIMPLEC versions of Q 3, which has been 
done in reference [24]. The actual implementation of SIMPLER is far less complicated than implied by the complexity of the 
expression for the target Q 3. Step 4 of equation (8) (the segregated approach) becomes an elliptic equation (similar to step 
2, but with a different right-hand-side),

(D Q −1
4 G)δp = D Q −1

4 (Q 1 + F )Q −1
2 Gδp∗ = D Q −1

4 (Q 1 + F )(δu∗ − δu) = D Q −1
4 [ru − (Q 1 + F )δu].

The classic version of SIMPLER neglects Q 1 in the right-hand-side (and uses Q 4 = Q 2), so step 4 becomes, (D Q −1
2 G)δp =

D Q −1
2 rnew

u . Classic SIMPLER also presents this as step 0 of the algorithm (and step 4 is dropped) but, since it is an iterative 
loop, that ordering detail is immaterial in actual practice.

Although SIMPLER was derived intuitively and not using matrix algebra, the linear algebra iteration matrix shows why 
this approximation is a good one for the pressure. The approximation term for the gradient now has an error term of 
Z = (Q 1 + F )Q −1

2 G[D Q −1
4 (Q 1 + F )Q −1

2 G]−1 D Q −1
4 . Although complex, this term is actually a pseudo-identity matrix. If D

and G could be inverted, then Z would be the identity matrix and the gradient term in the iteration matrix would be exact. 
Note that D Q −1

4 Z = D Q −1
4 and Z(Q 1 + F )Q −1

2 G = (Q 1 + F )Q −1
2 G is the sense in which Z is formally a pseudo-identity 

matrix. Any vector array that can be formed by v = (Q 1 + F )Q −1
2 Gφ, for any choice of the array phi, will see multiplication 

by Z as an identity matrix.
Note that SIMPLER and the extra elliptic solve improves the pressure approximation significantly but does not remove 

the error induced by Q 1 in the momentum equation. This, not the pressure solution, is the pseudo-time step approximation 
that limits time steps to a total CFL of roughly 4, resulting in a significantly slowed convergence rates on fine meshes on all 
segregated solvers. From the linear algebra perspective, SIMPLER addresses the wrong problem.

5.5. M-method

The M-method’s primary improvement comes from the approximation Q 1 = αF D . The paper will also discuss an im-
proved version of the pressure approximation

Q 3 = ωp(I − β D̃
μ

Q 2
G̃) (10)

which is inexpensive to compute and does not require an extra elliptic solve like SIMPLER does.
The key aspect of the M-method (derived in section 6) is the automatic calculation of the parameter α which for steady 

state is,

α = 1

2m

(∑
F −1

D ru · F −1
D ru V c∑

δu∗
u · δu∗

u V c

)1/2

(11)

which is calculated using data saved from step 1 of equation (8) of the prior iteration. V c is the cell volume, and the 
summation is over all the cells in the domain, so the dimensionless α is a single number (roughly proportional to the 
inverse of the condition number of F ). On the first iteration, α = 0.5 is used in the results in this paper (numerical tests, 
not shown, suggest that any value in the range 0 to 1 works). The parameter m = 2 is used in this work, however it can 
be adjusted by the user. Theoretically m must be greater than 1, and 1 will always work (but converges slightly slower). 
Too large a value for m (greater than 10), could slow the convergence rates or potentially cause a lack of convergence (see 
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section 8). The value for ωp is safely set to 1 (like in SIMPLEC), but it is more aggressively set to 1.8 (under the neutral 
stability limit of 2) for all the cases tested in this paper (see section 8).

The approximation for Q 3 has a viscous correction. But many of the results (such as Fig. 1b) are shown using β = 0. The 
formula for Q 3 is not a critical aspect of the M-method. Equation (11) is the key result. The viscous correction in Q 3 has 
tildes on the divergence and gradient operators because this matrix operates on quantities like pressure corrections, which 
may require different approximations for those operators than those used for the velocity unknowns.

Unlike classical segregated solvers, the M-method self-calculates the velocity under-relaxation factor and varies it with 
every iteration. The effective under-relaxation is therefore ωu = 1

1+α . When α varies from 0 to infinity, the effective under-
relaxation varies from 1 to 0 (which is the correct bounds). In most test cases α � 1. The physical meaning of α is that 
it is an easily-computed approximation for the smallest singular value of F F −1

D . This causes the pseudo-time step to be 
proportional to the smallest singular value of the problem (which is the largest physical timescale in the problem). So 
the pseudo-time steps are of the order of the flow evolution and have no relationship to the mesh size. This makes the 
M-method converge at a nearly mesh independent rates.

Note that the version of the M-method presented herein is closest to an extension of SIMPLEC because of the form used 
for Q 2 = αF D + Mn+1

�t which is a matrix lumping (which is typically much smaller than the matrix diagonal). However, 
equation (11) can be applied to any segregated solver to significantly improve its convergence rates.

The objective of finding a useful functional expression for the velocity under-relaxation parameter has been attempted 
in the past by [25] and [26]. However, none of those prior methods has any overlap or similarity with the M-method. 
Optimization methods have also been used for segregated methods in the past. Viguerie, A. Veneziani [22] lagged the some 
of the advection term in their approach and found an optimal value for the amount of advection lagging.

6. Error analysis

In this section, the formula for calculating the optimal under-relaxation parameter (equation (11)) is derived. Given 
a matrix problem, A, which iterates using an approximate inverse Âδxn+1 = rn (such as the segregated methods), then 
Â(xn+1 − x̄ + x̄ − xn) = A(x̄ − xn) and therefore en+1 − en = − Â−1 A(en), which produces the well known result for iterative 
methods that,

en+1 = (I − Â−1 A)en (12)

The M-method chooses the under-relaxation parameter to reduce the error as much as possible on each iteration. It 
therefore focuses on the properties of the matrix I − Â−1 A.

For segregated methods, the approximate matrix is given by equation (6) and is repeated below,

Â =
[

Q 1 + F 0
D −L

][
I Q −1

2 G Q −1
3

0 Q −1
3

]

where L = D Q −1
2 G is the pseudo-Laplacian that determines the first pressure correction, δp∗ .

The inverse of a block LU decomposition can be computed explicitly and is,

Â−1 =
[

I −Q −1
2 G

0 Q 3

][
(Q 1 + F )−1 0

L−1 D(Q 1 + F )−1 −L−1

]
(13)

So the error reduction matrix is,

I − Â−1 A =
[

I 0
0 I

]
−

[
I −Q −1

2 G
0 Q 3

][
(Q 1 + F )−1 0

L−1 D(Q 1 + F )−1 −L−1

][
F G
D 0

]

Multiplying everything gives a daunting expression,

=
[

I − (Q 1 + F )−1 F + Q −1
2 GL−1 D{(Q 1 + F )−1 F − I} −(Q 1 + F )−1G + Q −1

2 GL−1 D(Q 1 + F )−1G
Q 3L−1 D{I − (Q 1 + F )−1 F } I − Q 3L−1 D(Q 1 + F )−1G

]

which can be simplified slightly to give,(
en+1

u
en+1

p

)
=

[ {I − Q −1
2 GL−1 D}(Q 1 + F )−1 Q 1 −{I − Q −1

2 GL−1 D}(Q 1 + F )−1G
Q 3L−1 D(Q 1 + F )−1 Q 1 I − Q 3L−1{D(Q 1 + F )−1G}

](
en

u
en

p

)
(14)

Note that Q 3 (the pressure correction approximation and pressure under-relaxation) only appears in the lower row, and 
in the pressure error. But Q 1, the velocity under-relaxation appears in every block of the matrix. Q 2 which is an easy to 
invert approximation for (Q 1 + F ) appears explicitly only in the top row and both times only in the projection matrix, 
{I − Q −1GL−1 D}. But Q 2 is also imbedded into L which appears in all blocks.
2
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The error reduction matrix can also be LU split though it is not clear if this is a useful rearrangement,(
en+1

u
en+1

p

)
=

[
(I − Q −1

2 GL−1 D) 0
Q 3L−1 D I

][
(Q 1 + F )−1 Q 1 −(Q 1 + F )−1G

0 I

](
en

u
en

p

)
(15)

For the classical fractional-step method Q 1 = 0, and the error reduction matrix is,(
en+1

u
en+1

p

)
=

[
0 −{I − Q −1

2 GL−1 D}F −1G
0 I − Q 3L−1{D F −1G}

](
en

u
en

p

)
(16)

and all the error comes from the pressure error convergence. However, the classical fractional-step method rarely iterates 
(to a final solution) and remember the n+1 index in these equations refers to the iteration number and not the time step.

For the M-method, substituting in for Q 1, allows a direct assessment of the influence of α on the error reduction,[ {I − Q −1
2 GL−1 D} 0

0 I

][
(αF D + F )−1αF D −(αF D + F )−1G

Q 3L−1 D(αF D + F )−1αF D I − Q 3L−1{D(αF D + F )−1G}
]

(17)

Because the left matrix is a projection (applying it twice is the same as applying it once) it has eigenvalues that are 0 
or 1. It either kills error modes entirely or does nothing at all to them, so it does not affect convergence rates. The focus is 
therefore on the right matrix. The optimum α is the one that minimizes the maximum singular value of this matrix. Note 
that the two left blocks get smaller as α gets smaller (like the classical fractional-step limit), so the two right blocks are the 
issue when α gets small. If α gets small then the smallest singular value of F dominates the inverse in the two right blocks 
and can make those contributions greater than 1 (causing lack of convergence). It is therefore critical that αF D be larger 
than, or the same size as, the smallest non-zero singular value of F . The “size” of the inverse of a matrix is proportional to 
the one divided by the smallest singular value of the matrix.

The lower right block matrix is ≈ I − Q 3 Q 2(αF D + F )−1 if we ignore the influence of the pseudo-Laplacian and its 
inverse on the singular values (because they are a type of projection again). For the M-method this is ≈ I − Q 3(αF D +
M
�t )F −1

D (α I + F F −1
D )−1 which becomes ≈ I − Q 3(α I + M

�t F −1
D )(α I + F F −1

D )−1 and has a maximum singular value that is 

roughly proportional to 1 − ωp{α+max( M
�t F −1

D )}
α+σmin(F −1

D F )
(for β = 0). A solution that nearly minimizes this expression (as well as the 

other three blocks in equation (17)) is

α = σmin(F −1
D {F − M

�t
}) and ωp = 1 + α

σmin(F −1
D F )

. (18)

This approaches the classical fractional-step method in the time-accurate limit where F ≈ M
�t . In the time-accurate 

unsteady limit, the unsteady term in the matrix F dominates and F → M
�t (which is the important property of F used 

by classical unsteady fractional step methods). This means that equation (18) makes α → 0 and the classical fractional 
step method is directly recovered in the time-accurate unsteady limit. For the steady-state limit, equation (18) becomes 
α = σmin(F −1

D F ) and ωp = 2.
In order to impose slower variation in the parameters from one iteration to the next, and also in order to make the 

calculation less expensive by using the residual which is already computed we will use,

αnew = 1

2
[αold + σmin(F −1

D {F − M

�t
})] = 1

2
σmin(F −1

D {αold F D + F − M

�t
}) (19)

Then, to estimate the minimum singular value we use a Rayleigh quotient estimate. This estimation approach to finding 
the minimum singular value, and the choice of volume norms, is described in detail in Rao [27]. Using that estimate gives,

α = ||F −1
D {ru − M

�t δu}||V

2m||δu||V
(20a)

and

ωp = 1 + ||F −1
D {ru − M

�t δu}||V

||F −1
D ru||V

(20b)

where m > 1. This paper uses a value of m = 2 unless otherwise noted, and section 8 shows that the method is not sensitive 
to this choice (m can vary from 1-10 with little change in the results). These norms can be calculated with a negligible cost. 
The method assumes that these iteration parameters change slowly and can therefore be lagged from the previous iteration, 
and all the test cases (and Fig. 13) support this assumption.

We note that the work of Rao [27] uses very similar information as that used in equation (20), to construct an error 
estimator for the velocity. This provides indirect evidence that the optimal under-relaxation parameter is closely connected 
with error estimation, a result that is not surprising since it is designed to reduce error maximally at each iteration.
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7. Results

Unless otherwise specified, we will use β = 0, m = 2 and ωp = 1.8, and focus on the pseudo-time stepping. We will 
sometimes compare with SIMPLE (with ωu = 0.8 and ωp = 0.2) which is identical for these test cases to SIMPLEC (with 
ωu = 0.8 and ωp = 1). A second order finite volume code is used in the computations. The advection term uses central 
differencing. There are no lagged terms (except the pressure) in the residual calculation.

The error norm is calculated by running each simulation out to 1500 iterations using the fastest converging method, 
and then saving that solution. This solution is considered to be the “exact solution”. The test case is then run again and 
the square of the error norm at each iteration is calculated using a midpoint approximation for the volume integral of the 
squared error,

en =
(∑

V c(un − uexact) · (un − uexact)∑
V c

)1/2

(21)

The error tracked in this paper is therefore the iteration error. This is the error compared to the exact solution to equation 
(1) (the discrete problem). Our error does not include the error in equation (1) when it is compared to the exact PDE that 
it discretizes.

7.1. Reynolds number

Fig. 3. Magnitude of the velocity for steady flow in a driven cavity. (a) Reynolds number of 100. (b) Reynolds number of 1000.

The canonical test case chosen for the purposes of demonstrating the method is flow in a lid driven cavity already 
considered in Section 1. This case is sufficiently complex to document the essential properties and advantages of the method.

Fig. 3 shows the solutions for the cavity flow at Reynolds number of 100 and 1000. The higher Reynolds number case 
is the solution corresponding to the errors shown previously In Fig. 1. The error for the first solution (Fig. 3a), the Re=100 
test case, is shown in Fig. 4 which shows the error convergence of SIMPLE (or SIMPLEC) and for the M-method. The mesh 
dependence of the M-method is slightly stronger at lower Reynolds numbers. The M-method can be made much less 

Fig. 4. Steady cavity flow at Reynolds number of 100. Error versus iteration number for a variety of nearly uniform triangular meshes. Mesh size is given 
by the number of triangles. (a) SIMPLE algorithm showing strong mesh dependence. (b) M-method showing much milder mesh dependence.
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mesh dependent at low Reynolds numbers by implementing the viscous dependent Q3 term. However, in Fig. 4 this is not 
turned on, (i.e., β = 0), in order to focus on the effects of the automatically calculated under-relaxation coefficient (given by 
equation (11)). SIMPLE again shows strong mesh dependence in its convergence rate. A 12x increase in unknowns requires 
12x more iterations for the same error level. Other mesh independent segregated methods exist for Stokes flow and can be 
extended to low Re number situations, but they all require a difficult to invert approximation for Q 2 and a very expensive 
pseudo-Laplacian (Schur complement) solve. In contrast the M-method adds no perceptible additional computational cost 
to classical segregated methods.

At a Reynolds number of 100, the M-method converges more quickly (roughly twice as fast as the Re=1000 case) and 
the SIMPLE method converges more slowly (about half as fast as the Re=1000 case). This is because SIMPLE uses the 
effective pseudo-time step of τ = ωu

1−ωu

1
[ 1
�t +O ( u·n

�x )+O (
μ

ρ�x2 )] . So the larger the viscosity, the smaller the time step must be to 

enforce the equality. Smaller pseudo-time steps imply slower convergence. The M-method becomes faster at lower Reynolds 
numbers because the M-method pseudo-time-step scales with the physical timescale of the problem. As Fig. 3 shows, the 
lower Reynolds number solution is smoother and easier to solve, and has a bigger large timescale.

The solution time for all these cavity flow simulations is 1.17 × 10−5 seconds plus or minus 11% per solution unknown 
per iteration, on one core of an Intel i7-6700 CPU operating at 2.6 GHz. The solution time is dominated (92%) by the 
two linear solvers in the first two steps of equation (8). BiCGstab2 with diagonal preconditioning is used for the first 
(velocity) solve and Conjugate Gradients with diagonal preconditioning is used for the second (pressure) solve. There is no 
measurable difference in cost per iteration per unknown between the simulations in Fig. 4a (using SIMPLE) and Fig. 4b 
(using the M-method). Fluctuations in the timings between identical runs are the same as fluctuations between SIMPLE and 
the M-method. Since the information needed to compute equation (20) is already available the cost of one dot product to 
find the optimal under-relaxation value is trivial compared to the two linear matrix inversions.

7.2. Non-uniform mesh

The approximation matrices Q 1 and Q 2 are diagonal matrices for all the classical segregated methods. On a uniform 
mesh, the values in these diagonal matrices are all roughly the same size, so these matrices are close to proportional to 
identity matrices. Non-uniform meshes change this property and force the values in the diagonal matrices to vary signif-
icantly. The uniform mesh used in the previous test case and the non-uniform mesh used in this test case are shown in 
Fig. 5 for two of the meshes that were tested.

Fig. 6 shows the error for the Reynolds number of 1000 cavity flow case on a series of non-uniform meshes. This figure 
corresponds to Fig. 1 which is at the same Reynolds number but using uniform meshes. For the same size mesh, the 
non-uniform meshes converge slightly faster than the uniform meshes for both SIMPLE and the M-method. This is because 
the mesh is refined where the solution needs it to be.

For the M-method, the convergence is again nearly independent of mesh size. The mesh-dependence of the SIMPLE 
method on the non-uniform mesh is less obvious, because the smallest mesh (of 2k triangles) converges anomalously (due 
to its coarseness). However, the difference in convergence rates between the larger 6k and 16k meshes is again nearly 
directly proportional to their size difference.

7.3. Optimal under-relaxation

In this section we endeavor to show that the expression given by equation (11) is nearly optimal. To do this, the M-
method result is compared to a variety of SIMPLEC simulations with differing ωu (and ωp = 1 in all cases). This is shown 

Fig. 5. Cavity flow meshes. (a) 4k uniform triangles. (b) 6k non-uniform triangles.
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Fig. 6. Non-uniform mesh. Steady cavity flow at Reynolds number of 1000. Error versus iteration number. (a) SIMPLE algorithm showing mesh dependence. 
(b) M-method showing much milder mesh dependence.

in Fig. 7 for the cavity flow at Re=100 on the 8k mesh, and Re=1000 on the 24k mesh. It is seen that the default under-
relaxation value for SIMPLEC of ωu = 0.8 (magenta line with +) is far too conservative a value for these two problems.

In Fig. 7a, the optimal under-relaxation parameter is about 0.97. At higher values of the under-relaxation parameter 
(than the optimum) the early iterations (governed by velocity error) converge faster but the later iterations (governed 
by the pressure error) converge slower. This causes an elbow in the convergence plots that gets more extreme as the 
under-relaxation parameter gets closer to 1 and farther from its optimum value. The analysis in section 6 mathematically 
explain these visual observations. It shows that there are two different errors, velocity error and pressure error, which are 
coupled to each other. The elbow forms when the velocity error is being reduced faster at the expense of the pressure 
error being reduced more slowly. The pressure error is typically smaller initially so the fast convergence is seen initially. 
But eventually the slower converging pressure error is all that is left and it dominates the convergence. Because of the error 
coupling, the pressure error still shows up within the velocity convergence at every iteration.

The M-method (solid black line) is close to the optimum under-relaxation value. We define the optimum under-relaxation 
as the value that causes the fastest convergence but yet does not cause an “elbow”. This is optimum in the sense that it 
tends to be the best overall value if the target error level is not specified.

Note that the M-method has an under-relaxation value that varies mildly with iteration number and is not perfectly 
constant (like it is in SIMPLEC). So the M-method and the SIMPLEC cases never will be identically the same.

The higher Reynolds number and finer mesh case (Fig. 7b) shows similar behaviors. The optimum value of the under-
relaxation parameter is now about 0.97. The M-method is again close to the optimum convergence rate. The observed trend 
is that for the same physical problem the optimal relaxation parameter tends to get closer to 1 as the number of mesh 
unknowns increases. However, depending on the problem, the optimal under-relaxation value can vary in practice anywhere 
from 0.5 to 1.

In general, the optimal under-relaxation parameter depends on both the mesh and on the problem. The M-method gets 
close to predicting that optimal value on its own by using prior iteration information (equation (11)). In these two cases, 
the M-method (or the optimal under-relaxation value) leads to a number of iterations (for the same error level) that are an 
order of magnitude fewer than the standard SIMPLE or SIMPLEC methods (magenta lines with x symbols).

Fig. 7. SIMPLEC with various under-relaxation values compared to the M-method (solid black line). (a) 8k uniform mesh and Re = 100. (b) 24k uniform 
mesh and Re = 1000.
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7.4. Diffusion correction

In this section, we evaluate the effect of the approximation matrix Q 3 that determines the pressure approximation from 
the projection pressure (that pushes the solution back onto the constraint). The segregated solvers SIMPLER and PISO are 
primarily focused on this part of the approximation. However, in contrast to those classical methods, the M-method will 
use an approximation for Q 3 that is far less costly than a second elliptic solve (as used with SIMPLER and PISO).

The proposed approximation is Q 3 = ωp(I − β D̃μQ −1
2 G̃) where β = 1. The matrix part of Q 3 adds a viscous diffusion 

term. Note that this diffusion term acts on a scalar pressure, rather than a vector velocity, so the gradient and divergence 
operators in this diffusion term may be slightly different than in the matrix F, but the goal is to make them as similar as 
possible.

The effect of this addition to the M-method (β = 1) is shown in Fig. 8. Fig. 8a shows all the meshes (except the very 
coarse non-uniform mesh) for the mildly viscous Re = 100 case. This plot corresponds to Fig. 4b which shows the M-method 
with β = 0. The extra diffusion term, accelerates the convergence (about 2x faster than β = 0) and reduces the mesh 
dependence. The M-method is now converging this problem to an error of 10−6 in roughly 100 iterations almost irrespective 
of the mesh size.

Fig. 8b shows the effect of the diffusion term on the higher Re = 1000 case. This figure corresponds to Fig. 1b (which 
shows the M-method with β = 0). Now the viscous term is 10x smaller than in the Re=100 case and the effect of the 
viscous term in Q 3 on the convergence rates is much smaller (less than 10% faster convergence rates).

The expression for Q 3 was developed by considering the linear algebra expression given by equation (9), that describes 
what the segregated methods are actually solving. The segregated methods end up using a pressure gradient operation that 
looks like (Q 1 + F )Q −1

2 G Q −1
3 when it should just be G . Assume for the moment that the matrix G commutes with the 

normalized advection diffusion matrix Q 1 Q −1
2 + F Q −1

2 . Then G(Q 1 + F )Q −1
2 Q −1

3 equals G exactly if Q 3 = (Q 1 + F )Q −1
2 . 

This suggests that a good approximation for Q 3 might be to simply apply the (pre-normalized) advection/diffusion matrix. 
This approximation is explicit, fast, and not elliptic, and what we propose for Q 3.

However, in the M-method, only the diffusion portion of F is used in Q 3. This is because only the diffusion term in F 
commutes with the gradient operator in the continuous (PDE) limit, and this is an important component of the derivation. 
Even if the actual discrete diffusion and gradient matrices do not exactly commute, it is anticipated that they approximately 
commute (with an error that goes to zero as the mesh is refined). However, this commutation property does not exist for 
the advection term and adding advection to the expression for Q 3 (that is using the full Q 3 = (Q 1 + F )Q −1

2 ) does not 
improve the method performance and tends to add some instabilities in certain cases.

The expression Q 3 = ωp(I − β D̃μQ −1
2 G̃) is ideal for low Reynolds number and Stokes flow cases, and leads to very 

low numbers of iterations. However, we do not have an equivalent solution that addresses the convergence rates of high 
Reynolds number (advection dominated) flows. Furthermore, such a solution may not be fundamentally possible because 
high Reynolds number drives solutions towards chaos, turbulence, and unsteadiness, and this method is seeking a generic 
fast path towards a steady state (which may not exist).

7.5. U-bend

In this test case, the M-method is tested on the flow through a channel that bends rapidly to reverse direction. The 
Reynolds number of the simulation is 1000 based on the inflow velocity and channel width. The flow is reasonably complex 
with a separation bubble and reverse flow after at the top of the turn. The solution (on the finest mesh) is shown in Fig. 9a. 
The mesh is non-uniform and refined around the separation point. The mesh with roughly 10k triangles is shown in Fig. 9b.

Fig. 10a shows the solution error for the finest 90k cell mesh as a function of iteration count for the M-method (red 
line) and SIMPLEC (blue dashed line) with the standard under-relation value of ωu = 0.8, as well as the SIMPLEC error 

Fig. 8. M-method including the diffusion correction for cavity flow with uniform and non-uniform meshes of different sizes. (a) Re = 100 (using the same 
scale as Fig. 4). (b) Re = 1000 (using the same scale as Fig. 1).
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Fig. 9. (a) U-Bend velocity magnitude. Flow enters at the bottom and exits at the top. (b) Non-uniform unstructured triangular mesh using 10k triangles. 
The calculation uses this mesh refined twice to create 90k cells.

(green dotted line) when using the optimal under-relaxation value (of ωu = 0.98). The M-method automatic prediction for 
the optimal under-relaxation value as a function of the iteration is shown in Fig. 10b. At later iterations, the M-method 
prediction is very close to 0.98.

Fig. 10. Error for the U-Bend at Re=1000 on a 90k non-uniform triangle mesh. (a) Convergence error as a function of iterations. (b) Optimal under-
relaxation, α = 1−ωu

ωu
, as computed by the M-method. SIMPLEC run at the M-method’s predicted optimal value achieves similar performance to the 

M-method.

7.6. NACA 2412 airfoil

In this test, the external flow over an airfoil was considered. Internal flows have their largest lengthscales (and therefore 
timescales) dictated by the external domain geometry. External flows have lengthscales (and timescales) that are dictated 
purely by the physics (boundary layer thickness in this test case). This test shows the ability of the M-method formula (eqn 
(20)) to predict the large timescale, and hence the correct under-relaxation parameter, for external flows. The flow is show 
in Fig. 11. The triangular mesh of 68k cells is non-uniform and is heavily refined at the leading and trailing edges.

Fig. 12 shows the error reduction as a function of the iteration count for the M-method (red line) and the SIMPLEC 
method (dashed blue line) with the standard relaxation value of 0.8.

8. Parameter sensitivity

The M-method has three parameters (m = 2, ωp = 1.8, β = 1) that do not need to be adjusted, but which can be changed 
if the user so desires. It is important to show that the method is not sensitive to these parameter choices.
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Fig. 11. Velocity magnitude around a NACA 2412 airfoil at 0 degrees of attack and at Re=1000 based on the free-stream velocity and chord length. This is 
a zoom on the airfoil, the full domain is 10x larger.

Fig. 12. Error for the NACA 2412 Airfoil at Re=1000 on a 68k non-uniform triangle mesh. (a) Convergence error as a function of iterations. (b) Under-
relaxation, α = 1−ωu

ωu
, as computed by the M-method. The solution takes about 100 iterations and α settles to a value of approximately 0.06 for this 

mesh.

8.1. Sensitivity to m

The parameter m, comes from the fact the Rayleigh quotient estimation of the smallest singular value (in equation (18)) 
is always an over-estimation. The estimate is always polluted by some of the other singular values, which are always larger 
than the minimum. The multiplicative factor between the actual minimum singular value and the estimate is the parameter 
m. It is shown below that the method is not sensitive to this choice, and the residuals rapidly adjust to produce roughly the 
same estimate for α irrespective of the choice for m. Fig. 13 shows this behavior.

Fig. 13a shows the error convergence for the cavity flow case at Re = 1000. The fairly fine 24k triangle mesh is used and 
the parameter m is varied from 1 (its theoretical lower limit) up to 10. The convergence is essentially the same irrespective 
of the value of m. This independence of the method from the value chosen for m is true for other meshes and Reynolds 
numbers, though not shown here. However, for some cases, using m = 10 is unstable at early iterations. A large value of m 
keeps the under-relaxation too close to zero (0 equals no under-relaxation) for too long during early iterations. To stay safe, 
this paper recommends a choice of a value of m = 2. The value of m = 1 is the theoretical limit and therefore unnecessarily 
low.

Fig. 13b shows the value of the under-relaxation parameter, α, for each case. Note that even though m appears in the 
denominator of equation (11) and differs in each run, the residuals quickly adjust to the different m to produce an α that 
is roughly the same size (within a factor of 2) for every value of m. The final value is remarkably similar for all choices of 
m and is equal to 0.026 in this test case. Since ωu = 1

1+α this corresponds to ωu = 0.9747. Remember that, in Fig. 7b, this 
same case was tested with a variety of under-relaxation parameters and the optimal value of roughly 0.97 was determined 
via experiment. The M-method has automatically obtained this value via equation (11). The optimal value of ωu (or α) 
varies with every problem and with every mesh for that problem, but the value of m=2 remains constant.
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Fig. 13. M-method sensitivity to the parameter m. Re = 1000 and 24k uniform mesh. (a) Error convergence is very insensitive to the choice of m. (b) The 
method calculated value of α (equation (11)) for different values of m.

8.2. Pressure over-relaxation

The effect of the pressure over-relaxation parameter is shown in Fig. 14a for the Re = 1000 case and 24k triangle mesh. 
Increasing the pressure over-relaxation ωp from the safe default value of 1 to the upper limit of 2 can reduce the number 
of iterations by about 25%. Most of that gain is achieved by using an over-relaxation value of 1.8 (which is the value used 
in this paper). Fig. 14b shows the reason a value slightly lower than 2 is suggested. This figure expands the axis to very 
small error levels (and twice the number of iterations). At these incredibly small scales, pressure under-relaxation close to 2 
can become unstable. This instability is not inherent in the M-method itself, it is an artifact of the tolerances on the elliptic 
pressure solver (in step 2 of the segregated solver algorithm). Tighter tolerances delay these instabilities further. Looser 
tolerances cause them to happen at earlier iterations and higher error levels.

There is, therefore, a trade-off between the pressure-over relaxation parameter (which reduces the number of iterations) 
and the work per iteration which increases as the tolerances must get tighter. The issue of instability is easy to spot in the 
code and to remedy (by decreasing the pressure over-relaxation). It is also only a real issue if extremely small solution errors 
are desired. However, it is an issue to be aware of. A pressure over-relaxation of 1 is always stable under any circumstances 
but requires 25% more iterations than is possible if the pressure over-relaxation is invoked.

Fig. 14. M-method sensitivity to the pressure over-relaxation parameter ωp . Cavity flow at Re = 1000 and 24k uniform mesh. (a) Error convergence for 
different ωp . (b) Expanded scale for the same figure as in (a) showing the potential instability at very small errors due to solver tolerances.

9. Discussion

Segregated solution algorithms have been the workhorse of industrial computational fluid dynamics for several decades. 
This work presents a new approach to the mathematical analysis of these methods in the form of a general linear algebra 
framework. This framework helps our understanding of how all currently known segregated solver methods are similar or 
different from each other, and how the assumptions they embody affect the overall approximation. It explains various ob-
served convergence phenomena, such as the convergence elbow in the SIMPLE method when the under-relaxation parameter 
is above the optimum. Furthermore, this framework has allowed the development of two key innovations for solving the 
saddle point problem. First, we proposed an essentially cost-free method to automatically calculate a good approximation 
to the optimum under-relaxation value. Second, we developed a low cost, and non-elliptic, correction matrix that can im-
prove the convergence of the constraint variable. These two ideas are not coupled and can be implemented independently. 
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They can also both be applied to improve any other existing segregated solver approach (with a commutation restriction on 
the second idea). Implemented as a preconditioner, the M-method can also significantly improve the convergence of fully 
coupled solution methods.

There were three innovations that produce equation (20) which describes the optimal under-relaxation parameter. First a 
mathematical expression for the optimal under-relaxation was found in terms of the minimum singular value by analyzing 
the exact error reduction matrix. Second, a simple and cost effective method for estimating the minimum singular value 
(via volume weighted Rayleigh quotient estimation) was proposed. And finally, a method for computing and smoothing the 
estimate using data already computed in the segregated solver methods was proposed leading to a negligible computational 
cost.

Having the optimum under-relaxation value is attractive because it guarantees convergence in the fewest number of 
iterations. Just as importantly, however, it also nearly removes the mesh dependence of the convergence rate that hinders 
existing segregated methods. The M-method only has a small or logarithmic dependence on the number of unknowns. This 
makes the method particularly attractive for solving large problems with many unknowns, which is very likely the trend 
of the future. For the fine resolution meshes tested in this work, the M-method is at least an order of magnitude faster 
than the classic SIMPLE method (or SIMPLEC). The proposed expression for the optimum under-relaxation has just one 
adjustable parameter, m. The paper showed via experiments that the M-method was remarkably insensitive to the choice of 
this parameter.

Updating the constraint (pressure in the incompressible Navier-Stokes example) with a matrix that is similar to the 
commuting part of the problem dynamics matrix, Q 3 ≈ (Q 1 + F commute)Q −1

2 , is very inexpensive and was shown to be 
effective in problems where the commuting term has some influence on the overall physics. For example, the Re = 100 
cavity flow problem showed convergence of the errors to the order of 10−6 in around 100 iterations for any size mesh. 
Lower Reynolds numbers (not shown) converge even faster. However, this work was unsuccessful at extending this particular 
idea to the nonlinear, and non-commutative (with the gradient operator), advection term.

This paper shows via mathematical analysis and experiments that the constraint update can be over-relaxed (via the ωp

parameter) up to a value of 2. This improves the convergence rates on the order of 25% compared to no over-relaxation 
(ωp = 1), which is helpful, but not crucial to, the overall method performance.

The net result of this work is concrete proposals that can significantly reduce the computational resources required for 
flow simulations in many industrial applications. Adoption of an algorithm such as the M-method will have direct benefits 
of faster and more accurate solutions.
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