MIMETIC RECONSTRUCTION OF VECTORS
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Abstract. Compatible or mimetic numerical methods typically use vector compo-
nents as the primary unknowns in the discretization. It is frequently necessary or useful
to be able to recover vectors from these spatially dispersed vector components. In this
paper we discuss the relationship between a number of low order vector reconstruction
methods and some preliminary results on higher order vector reconstruction. We then
proceed to demonstrate how explicit reconstruction can be used to define discrete Hodge
star interpolation operators, and how some reconstruction approaches can lead to local
conservation statements for vector derived quantities such as momentum and kinetic
energy.
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1. Background. Many numerical methods for the solution of Partial
Differential Equations use point values or cell averages as the primary dis-
crete unknowns. For scalar equations, such as the Poisson equation, the
heat equation, or the scalar wave equation, this is a very appropriate start-
ing point. However, for vector equations, such as Maxwell’s equations or
the Navier-Stokes equations, there is considerable evidence now suggesting
that advantageous numerical properties can be obtained, by using integral
averages of vector components as the primary discrete unknowns.

In Finite Elements these are often referred to as edge or face elements.
They were originally discussed in 2D by Raviart and Thomas [1] and in
3D by Nedelec [2]. In the Finite Volume or Finite Difference context, this
type of approach is often referred to as a staggered mesh method. The
staggered mesh approach was first proposed for Cartesian meshes by Har-
low and Welch [3] in 1965, and has since been generalized to unstructured
and curvilinear meshes [4-7]. Face and edge elements are becoming in-
creasingly popular in electromagnetic wave propagation. These methods
appear to be the only way to capture difficult physical effects such as reso-
nant frequencies (eigenmodes) [8]. Staggered mesh methods are attractive
in incompressible fluid dynamics because they allow the exact satisfaction
of the continuity constraint [9], and the satisfaction of a number of local
conservation properties (conservation of kinetic energy being perhaps the
most important) [10].

Having stated that vector components, not vectors themselves, should
be the primary variables of interest when solving vector partial differential
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F1G. 1. Representation of unknowns for low order face-based mimetic methods.

equations, this paper will now proceed to discuss how vector quantities can
be obtained in these schemes. In the case of the Navier-Stokes equations,
the need for the velocity vector is obvious since the convective term re-
quires a velocity vector. On the surface, it is far less clear why this might
be a useful procedure for Maxwell’s (or Stokes’) equations. These equa-
tions can, and probably should, be discretized entirely in terms of vector
components that are edge or face averages. Nevertheless, even in these
discretization schemes there is the necessity to interpolate edge averages to
face averages and vice-versa. Vector reconstruction can (though certainly
does not have to) be used to construct numerically attractive interpolation
schemes. Vector interpolation is also useful for graphical output.

We note that there is a more precise terminology emanating from
Algebraic Topology for describing many of the concepts described in this
paper. However, in order to keep the potential audience broad, and in
order to discuss vectors (which fit less well in the formalism of differential
forms), we will continue to use the more primitive vector calculus.

2. Lowest order face-based reconstruction methods. The low-
est (first) order faced-based mimetic methods all use uy = % [v - ndA4,
the face-normal average vector component on element faces as the primary
unknown (see Fig. 1). Throughout this paper the formulas and text refer
to the three-dimensional case. This means that in two-dimensions ‘cells’
refers to 2D polygonal regions (often triangles in the figures), ‘faces’ are
the boundaries of the cells and are actually 1D objects (frequently referred
to in other texts as edges), and ‘edges’ coincide with faces in 2D.

The face-based FE method for simplices assumes a piecewise polyno-
mial for the vector field of the form v(x) = a + bx where a is a constant
vector and b a constant scalar in each element (or cell). For Cartesian grids,
the polynomial is assumed to be v(x) = a + Bx where B is a diagonal ma-
trix. Note that in both cases the normal component of the vector field is
constant along each face of the element (or cell) and therefore also contin-
uous across the face. This means that at lowest order the integral average
of the normal vector component over the face, uy, can also be associated
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F1G. 2. Reconstruction of corner wvector from face normal components assuming
no variation in the component values along each cell/element face.

with a pointwise value on that face (often the midpoint value of the normal
component is cited as the primary unknown). Also note that when the
vector field is divergence free (which is frequently true in both the fluid dy-
namic and electromagnetic contexts), then the lowest order reconstruction
on simplices assumes that the vector field is piecewise constant.

Least squares reconstruction of the vector field was proposed by Nico-
laides [4]. In that method one finds the constant vector field, veen that
best satisfies all the face equations veen - ny = uy for all the faces of a
cell/element. For a divergence free field on a simplex, the result is the
same as the FE reconstruction and vee; = a.

Hyman and Shashkov [5] and Shashkov et al. [11] proposed reconstruc-
tion at the corners of each element using the immediately neighboring face
unknowns (see Fig. 2). Because the low order FE approximation assumes
the normal velocity is constant on faces, the corner velocities recovered by
this method are identical to the low order FE reconstruction. To obtain
the vector value at the cell center a simple average of the node velocities is
suggested, vO¢ = Nlﬁ Y nodes V" where NCN is the number of nodes in
the cell or element.

Since v = v¥ 4+b(x" —x) the simple average gives s Y nodes V" =
VO A bR ConodesX" —xC). If the cell center is defined to be the average
of the cell corners the last term is zero, and we see that the simple average
is the value at the cell center. For simplices and Cartesian meshes, the
average of the cell corners equals the center of gravity (or centroid). Unlike
the FE reconstruction, this approach is explicit and does not require a
matrix inversion (which is as large as 6x6 for 3D Cartesian meshes). In
addition, in contrast to the FE reconstruction this method can easily be
generalized to arbitrary polygons, since no explicit piecewise polynomial
form for the vector field is assumed.

Finally, Perot and Nallapati [12] suggest a reconstruction formula de-
rived from Gauss’ Divergence Theorem and the position vector, x. In
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particular it is noted that the exact relation

/vdV +/x(V-v)dV => /xv-ndA (2.1)

faces

applies in each element or cell. Making the same assumptions as the low
order FE reconstruction (constant normal velocity along each face, con-
stant dilatation, and a linear velocity field), gives the discrete interpolation
formula

1
cG CG CcaG
v, = E TupAyp(x; X ) (2.2)

¢ cell faces

where CG stands for the (cell or face) center of gravity (or centroid) and the
+ is to account for the fact that uy should point out of the cell in question.
The cell volume is v, and the face areas are Ay. This formula is directly
equivalent to the low order FE reconstruction (since the assumptions are
the same). However, like the method of Hyman and Shashkov it easily
generalizes to arbitrary polygons.

We can see that the method of Hyman and Shashkov is fully equivalent
to the FE interpolation but returns the vector value at the average of the
element corner positions (which is not equal to the centroid position on
arbitrary polygons). The method of Perot is also always equivalent to the
FE method but returns the centroid value for the vector no mater what the
element shape. The method of Perot is also a simple average of the primary
unknowns, uy, whereas the method of Hyman and Shashkov requires the
intermediate step of corner velocity reconstruction. However, the corner
reconstruction approach may be easier to generalize to higher order.

3. Higher order face-based reconstruction methods. For n*®

order faced-based methods on simplices, the FE interpolation is general-
ized to v(x) = a(x) + b(x)x, where a and b are n — 1 order polynomials.
The normal velocity component on each face is also an n — 1 order poly-
nomial (and remains continuous across the face). For Cartesian meshes,
the polynomial is assumed to be v(x) = a(x) + B(x)x where B is a diago-
nal matrix. As with all FE methods, the underlying interpolation changes
for every possible element shape. The generalization to quads, hexahe-
dra, prisms, and pyramids is non-trivial but possible [13, 14], and the FE
generalization to arbitrary polygons appears to be extremely difficult.

At the next higher order, [ vdV and [ xv-ndA are primary unknowns
(along with uy) of face-based mimetic methods. This means there is now a
total of ND unknowns per face and ND unknowns per cell/element, where
ND is the number of dimensions. The terminology face element is now
less appropriate (since there are also cell unknowns), but it is still used.
Staggered mesh and finite volume methods typically obtain higher order
by enlarging the interpolation stencil rather than increasing the number of
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unknowns within a cell. Higher order staggered mesh methods for Carte-
sian meshes using a larger stencil have been proposed [15, 16]. However,
larger than nearest neighbor stencils on arbitrary 3D polygonal meshes are
difficult to formulate and program, very difficult to implement efficiently on
parallel computers, and create complex issues at domain boundaries. The
common FE practice of more unknowns per cell is not commonly practiced
in FV methods but is perfectly possible and is the approach discussed
herein.

The exact integral relation (Eq. (2.1)) now provides the first order
dilatation moments [ xV - vdV immediately from the primary data. The
zeroth order dilatation moment is also directly known [ V-vdV = > usAy.
On a simplex the first order dilatation moments are enough to rapidly
recover the centroid velocity vector. To see how, note that for a simplex
the polynomial form is known and V:v =V -a+ x - Vb + bND where
ND is the number of dimensions. Switching to index notion for clarity, this
implies that [ zyv;;dV = (ND + 1)b; [ zyz;dV. In addition we can use
the polynomial form to write [vxdV = VS +b; [zpz:dV. So in the
case of simplices the point value of the vector at the center of gravity is

given by the expression v{'% = 3 [ vdV — (xpigyys [ XV -vdV or in terms
of primary variables

ca vdV — ——— § v - ndA. 1
Ve (ND + 1)V, / d (ND + 1)V, faces/x nd (3.1)

This is entirely equivalent to the FE reconstruction, though explicit
and simpler than inverting an 8x8 matrix (in 2D) or a 15x15 matrix (in
3D). Note however, that this reconstruction expression for the centroid
velocity vector does not appear to be general. It does not equal the FE
reconstruction on Cartesian meshes.

Elements of the method of Hyman and Shashkov (in particular the
corner velocity reconstruction) can be extended to higher order in 2D and
3D. Assuming linear variation of the normal vector component on a face,
the primary variables uy and f xv - ndA contain enough information to
specify the face normal velocity at face corners and therefore the velocity
vector at element corners.

Note that the reconstruction of the element corner velocities is straight-
forward only if the element corners only have ND faces meeting at every
corner. The top corner of a pyramid is an instance that violates this con-
dition. This type of corner is also degenerate for FE polynomial recon-
structions. It is anticipated that a unique corner solution still exists even
though the problem appears to be over specified.

Because the vector field is now piecewise quadratic, a simple aver-
age of the corner velocities is no longer sufficient to recover the centroid
vector value. However, the cell value can be recovered from the corner
velocities and the cell average value. For example, it can be shown that
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Fi1G. 3. Edge-based primary unknowns in 2D and 3D.

CG _ 41 11 n . .
VoS =5y [ VAV — 5537 0qes V" S satisfied on triangles, and on rectan-
gles, v¥6 = %VLC [vdV — L1357 des V" holds true. A general formula is

not available at this time.

4. Lowest order edge-based reconstruction methods. The low-
est (first) order edge-based mimetic methods use u, = L% [ v-dl, the edge-
tangential average vector component on element edges as the primary un-
known (see Fig. 3). The edge-based FE method for simplices then assumes
a piecewise polynomial for the vector field of the form v(x) =a+b x x
where a and b are constant vectors in each element. Whereas the low-
est order face-elements are vorticity free (except between elements), the
lowest order edge-based elements are divergence free (except between ele-
ments). The tangential velocity is constant along each edge and is there-
fore continuous. The velocity tangential to an element face is given by
vxn=axn— (x-n)b+ (b-n)x and varies linearly on the face in a
fashion akin to a rotated face-based vector. The vorticity in the simplic-
tical FE reconstruction is given by V x v = b(ND — 1) where ND is the
number of dimensions.

Edge elements have more degrees of freedom than face elements. In FE
the choice of which element is appropriate depends on the physical nature of
the vector in question and its inherent continuity requirements and natural
boundary conditions. Because FE are restricted to certain element shapes,
the primary mesh must define the elements/cells. However, in methods
that handle arbitrary polygons, there is an additional choice because it
is also possible for cells/elements to be associated with the dual mesh.
This means edges could also be associated with the lines connecting the
tetrahedra cell centers.

In the context of finite volume or finite difference methods there is far
less published work on vector reconstruction of edge-based vectors. While
it is not discussed in their papers the basic idea of Hyman & Shashkov of
corner reconstruction is still valid. Again, some degeneracy may occur on
cells that have more than three edges meeting at a corner (such as the top
of a pyramid). And as before, the sum of the corner velocities equals the
velocity at the cell center (defined to be the average of the corner positions).
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On arbitrary polygonal meshes this is not equal to the cell center of gravity
but is an equally well defined center.

Zhang et al. [17] presents an analog of Eqs. (2.1) and (2.2) for edge
based vectors. This is based on the application of Stokes’ Curl Theorem.
Note that for each face the Curl Theorem states that

n; /(5ijka,j$m +Eimka)dA = ni/Eijk(Vk.’L'm)’jdA

= Z /mnvkdlk.

edges

(4.1)

Index notation is used for clarity and &;;, is the standard permutation
symbol. If we assume, consistent with the FE polynomials, that the vor-
ticity is constant in each cell and the velocity component along each edge
is constant and the tangential velocity varies linearly then this gives the
formula,

v§9A; = [ vxndA = +(x5¢ — x$%)u, L, (4.2)
Foar e f

edges

where L, is the length of each edge and =+ indicates counterclockwise (right
hand rule) integration around the edges of the face with respect to the face
normal, n. In this way the tangential velocity at the center of gravity of
each face can be recovered. In 2D the reconstruction is complete since a
face corresponds to a the cell/element. In 3D we note that sometimes the
tangential velocity on faces is sufficient and the cell velocity vector is not
actually required. This is the case for the rotational form of the convective
term (V x b) x v+ V(iv-v) [11].

The face tangential velocity can be used to quickly recover the vorticity
in the cell. Using the divergence theorem we note that,

/5ijka,jdV = Z /EijkllknjdA. (4.3)

faces

Assuming the vorticity is constant in each cell we see that the sum of
the face tangential velocities equals the cell vorticity.

VXv:—ViZ/vxndA. (4.4)

c
faces

Remember that for the lowest order face-based reconstructions the cell
vorticity is always zero and vorticity is confined to thin sheets between the
elements/cells.

In 3D the cell velocity can be obtained from the relation,

/(Ez’jka,ﬁm + Eimkvi)dV = /Ez'jk(kam),jdV

= Z /l'mEijkanjdA.

faces

(4.5)
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Assuming constant vorticity, and linear velocity we obtain

1
EimkVET = A Z /a:m[v?G xn+ (b-n)(x — X?G)]idA. (4.6)

c
faces

Note that 0 = [(dx; + 0jkzi)dV = [(i2;) kAV = D paces J TiTjnipdA if
we assume the position origin is at the cell center of gravity. Then the
second term of (4.6) is seen to be zero and

1
EimkV,?G = _V Z AfT’,];(V?G X n)i - bk Z Afrfnr;nk (47)

c
faces faces

CG) is the distance between the face and cell center

XC
of gravities and b = ]\Yf)(:,l‘ These formulas were developed for simplicies

but appear to generalize naturally to arbitrary polygons.

F = (xCG —
where r/ = (xj

5. Higher order edge-based reconstruction methods. For n'®

order edged-based methods on simplices, the FE interpolation is generalized
to v(x) = a(x)+b(x) xx, where a and b are n—1 order polynomial vectors.

The primary unknowns for the next order edge-based discretizations
are A% J v x ndA the average tangential velocity on faces, 7- [xv - ndl
the moment of the tangential velocity component, as well as lowest order
unknown L% Jv-ndl. Eqn. (4.1) now becomes an exact relation for the
gradients or the face-normal vorticity (which are assumed constant) on each
face,

/x(n-va)dA:Z/xv-dl—/vxndA (5.1)

edges

and Eqn. (4.3) now becomes an exact expression for the average vorticity
in the cell

V xvdV = — v x ndA (5.2)
/ z/

faces

or its value at the center of gravity (since it is now assumed to vary linearly).

The corner reconstruction method still works for edge elements. The
average tangential component and its first moment provide enough infor-
mation to reconstruct the corner velocities exactly. However, as with the
face-based elements, a simple average of the corner velocities is no longer
sufficient to recover the vector at any cell center pointwise location, and a
general averaging formula for arbitrary polygons is not known at this time.
Corner velocities are discontinuous at the cell nodes and do not provide a
unique output for the velocity at nodes (often desired for graphical output).
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6. Mass matrices and the discrete Hodge star operator. In
mimetic methods, it is frequently necessary to convert a face-based set of
unknowns to edge-based or vice versa. This occurs because when primary
unknowns are face-based the evolution equations are posed on a dual mesh
that is edge-based. While mimetic FE methods avoid the explicit definition
of a dual mesh, it is still present and implicitly defined by the functional
form of the weighting functions in the weak statement of the equations.
See Mattiussi [18] for a detailed explanation. This process of converting
one type of vector field to another is sometimes referred to as a discrete
Hodge star operator. This operator is symmetric and positive definite for
Galerkin FE and for many low order mimetic methods, but it is not clear
that symmetry is absolutely necessary. One possible method for explicitly
converting a face-based vector structure to an edge based one is to re-
construct the piecewise polynomials in each cell/element based on existing
face-based data and then use high enough order numerical quadrature on
the piecewise polynomials to compute the necessary edge-based integrals.
This is what implicitly happens in the Galerkin FE methods.

Consider the transpose of the low order Perot interpolation method
for determining the cell centroid vector value (Eq. (2.2)). The transpose
operation applied to those centroid values is Y ¢, . cons TVOCG - (x§¢ —x5¢).
This is a first order accurate (like the reconstruction itself) integration
along the median dual edge connecting two cell centroids. Note that the
median dual edge consists of two line segments each joining the face centroid
to the neighboring cell centroids. We can therefore write to first order

1
/v-dl%RTvR/v-ndA (6.1)

where the line integral is along the median dual edge and the area integral
over the corresponding face. The reconstruction operator is defined as
Rvy =3 . faces(X?G —x5%)ys. On uniform (or nearly uniform) meshes,
errors cancel out during the integration and despite the first order nature
of the reconstruction and integration, this approximation is found to be
second order accurate. The discrete Hodge star operator that converts
from face-based to edge based vectors is RT J-R.

Exact (rather than approximate) integration over a simplex median
dual mesh and the low order piecewise approximation v = a + bx gives a
slightly modified formula

/v -dl = Z +v©Ce. (x(fjGr —x0%) + (V-v) (X?G —x992  (6.2)

¢ 2ND ¢

face cells

which is only symmetric on a uniform mesh, but which is probably always
positive definite.

The distributed two-step nature of the low order corner reconstruction
approaches makes it difficult to evaluate the properties of their effective dis-
crete Hodge star operators. However, due to the demonstrated equivalence
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of these methods with the reconstruction method of Perot, it can be demon-
strated that for simplices and Cartesian grids, these methods also produce
symmetric positive definite discrete Hodge star operators.

7. Conservation properties of the Navier-Stokes equations.
The attractive conservation properties of Cartesian staggered mesh meth-
ods have been known for some time [19]. On Cartesian meshes the or-
thogonal structure of the mesh allows non-overlapping staggered control
volumes to be defined in which conservation is relatively easy to demon-
strate. However, on general unstructured meshes demonstrating that local
conservation properties (such as those obtained in standard Finite Volume
methods) exist is extremely difficult. The problem lies in the fact that only
velocity components and transport equations for velocity components exist
so it is difficult to make conservation statements about vector quantities.

Two conservation statements of particular interest are conservation
of momentum and conservation of kinetic energy (in the incompressible
limit). Conservation of vorticity or circulation (the curl of the momentum)
is also possible and is discussed in Perot et al. in Refs. [7, 10, 17]. Finite
Element methods frequently have a global conservation statement that can
be associated with them, but one attraction of mimetic methods is their
ability to correctly represent physics at the local (cell) level as well.

In the following sections we focus on the conservation properties of
low order face-based discretization schemes of the Navier-Stokes equations.
Integrating along the two line segments connecting the cell centers and the
face center (a dual mesh edge) gives a discrete equation for each dual edge.

%[RTmC] +RTa, = —Gp, (7.1)
where m, = & Zfaces(X?G — x9C)u; Ay is the cell momentum, and a, =
¥ Dtacestuts —p(Vu+uV)-n—A(V-u)n} s Ay is a standard finite volume
flux representation of the advection-diffusion term in each cell. The term
with the second coefficient of viscosity, A can also be directly absorbed into
the pressure term instead of into a. The exact operator G is the difference
between the pressure at the two end points of the line segment.

On Dirichlet boundaries the normal velocity is fixed and this equation
does not exist. On variable-boundaries (such as an outflow), the pressure
on the boundary is fixed and only one segment of the dual mesh edge has
non-zero length.

8. Conservation of momentum. In order to show conservation of
momentum, we must be able to show that linear combinations of the ex-
isting discrete edge based equations can be constructed such that those
combinations look like a local discrete vector conservation statement.

Consider a single cell. We have update equations for the normal com-
ponent on each face of that cell. Let us associate each line segment of the
dual edge equation with the cell in which it resides. Ultimately we will
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multiply both line segments by the same scaling factor, so this splitting is
really for accounting purposes only. If the cell face is also a domain bound-
ary the associated dual edge only has a single segment (associated with the
interior cell).

For a single cell, multiplying each segment equation by the face nor-
mal vector and face area and summing over the cell faces gives (assuming
outward normals for convenience).

> anf{%mc + ac} (70 =% == npAr(ps —pe). (8.1)

faces faces

A number of geometric identities allow this equation to be simplified.
In particular,

1
Z ngA;=0 and I= v Z (X?G —x5%)n;A;. (8.2)

faces faces

These expressions (like many of the paper’s formulas) are a result
of Gauss’ Divergence Theorem. They both start from the exact ex-
pression, [a;;dV = Y. . [ain;dA. TIf a; is constant and the faces
are planar then 0 = Y. . [n;dA = Y nds. If a; = =z; then
Jy 0i;dV = Y ces [ TinidA and if the faces are planar the second rela-
tion is derived. These expression simplify the previous momentum vector
equation on each cell to,

0
V'C (amc + ac> = — Z anfpf. (83)

faces

Since the advection diffusion term is also represented as a sum of
fluxes we see that this is a statement of local momentum conservation
for the discrete momentum, m.. One key distinction with standard finite
volume methods is that the conserved quantity is a derived, not a primary
variable. Conservation of momentum places restrictions on the form of the
advection-diffusion term but does not restrict how the discrete momentum
m, must be defined.

The derivation of momentum conservation is possible because the in-
tegration operator (the square root of the discrete Hodge star operator)
R7”, has an explicit geometric inverse. Global conservation is a result of
the traditional telescoping property where internal fluxes cancel out.

9. Conservation of kinetic energy. Taking the dot product of the
incompressible momentum equation with the velocity (and assuming con-
stant viscosity for simplicity) gives the kinetic energy equation,

O(iu?
(g? ) +V- (u%zﬁ) =-V-(up)+V- VV(%’Lﬁ) —vu;jui . (9.1)
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This equation shows that in the incompressible limit kinetic energy is
convected and diffused. It is also transported by pressure and removed by
velocity gradients, but it is never created. In the inviscid, incompressible
limit, kinetic energy is a conserved variable. In the viscous limit, we would
like the total kinetic energy to decrease at the correct rate (and never
increase).

Numerical methods with numerical diffusion decrease kinetic energy
more quickly than the physics would suggest (vu; ju; ;). Numerical diffu-
sion excessively smears solutions and can be detrimental in some situations,
such as DNS and LES simulations of turbulence where energy dissipation
is a critical physical process controlling the turbulence. Kinetic energy
conservation is a statement that numerical diffusion is not present in the
method. It is also a statement of stability.

To demonstrate kinetic energy conservation, each segment of the dual-
edge equation within a cell is multiplied by the area weighted normal ve-
locity component and summed over the cell faces to obtain

Ou
> UfAfRT{ RAfa—tf + ac} == usAs(ps —po)- (9:2)

faces faces

Focusing first on the time derivative term we see that this is an ap-
proximation for the cell average kinetic energy because
duy v, d5(ve)?

L = Veve 2 = VoL (9.3)

1
qufRT RA 5 5

If the system is fully discrete, this result still holds as long as we multiply
each equation by the half-time velocity u f+1/ ? T(ut 7+ u"+1) Then,

R I B T e F U AR ¢4
Y T 4 RTIRA; -V, :
2 Ve At 2 At (9‘4)
_ oy B (v
e At

Due to incompressibility > . .. us Ay = 0 the second part of the pres-
sure term is zero and the pressure term becomes a faced based conservative

flux term, — > . u "+1/2Afpf.
The advection- dlffusion term becomes,

S uft AR e, = a, Y uft AR = a, vV, (95)
faces faces
Expanding the advection-diffusion term gives,

Vovitl/2 g, = yHt/2. Z{uuf —v(Vu) -n}sAy. (9.6)

faces
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Considering the convective term first,

n n 1
viH/2 Z uupAp = viH/2. Z §(Vc +Ven)upAs. (9.7

faces faces

Here we have assumed that the velocity vector in the advective flux calcu-
lation is the simple average of the neighboring two cell velocities. One cell
is the cell in question and the other is the nearest neighbor. The velocity
in the first term can come out of the summation leaving the incompress-
ibility condition (which is zero), so finally the advective term becomes
Zfaces(%vgﬂ/ ? . Ven)usA;. This is also a flux term. Note that the ki-
netic energy fluxing through the cell faces is quite specific. It is one half
of the dot-product of the two neighboring cell velocities. To obtain cor-
rect symmetry conservation also requires that the advection velocity be the
half-time velocity. This implies that true conservation (in unsteady flows)
occurs only if the advection term is semi implicit. The normal flux can
be time lagged. This is an example of the implicit midpoint rule which
is known to be a symplectic integrator. Other symplectic time integra-
tion schemes may also be possible. There appears to be a close connection
between mimetic discretization schemes and symplectic time integration
which should be explored more fully.
The diffusion term becomes

v?“l‘l/z . Z V(v“) . nAf = V?Jrl/z . I/—Af. (9-8)

faces faces

Using a very simple approximation for the normal derivative gives,

Y faces VVZH'I/ 2. (Ven — Vc)é—; which can be expanded in two parts as
1 A
= Y O V) (v - v 2L
faces . o o Af (99)
- Z Vi(v?j;% / _VZH_ / ) (Ven — VC)L_
f

faces

this simplifies to a viscous diffusion of kinetic energy term and a negative
definite dissipation term.

- Tonte o lonp [ \4r
; 2 c_n c-n 2 c c Lf
aces 1 A (910)
- Z V_(v?_tblﬂ - v?+1/2) “(Ven — Vc)_f-
2 Ly
faces

To see that this latter term is an approximation of the dissipation
term consider the divergence theorem applied to [(nVinVim)mdV =
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> taces J TnVinVimnmdA. Then assuming the velocity gradients are con-
stant in the volume gives

VimVimVe = Z (Tf — Ze)nVinVimnNmAy. (9.11)

faces

With the approximation (vy — v¢) & 1(v._, — v.) this becomes the dissi-
pation in a cell,

= %(vc_n —ve) - %Aﬁ (9.12)

faces

The final statement of local energy conservation is,

l( n+1) _ l
V.2 2 + > ( \ARAE vc_n)quf
faces
== > WA+ Y Von (— Ale Vc_n) Ay (9.13)

faces faces
_ Z n+1/2 viH/2) (v, — vc)Af
Ve - Lf

faces

For strict negative definite dissipation, the viscous diffusion term should
use the half-time velocity (implicit midpoint rule) as well. Note that this
equation is not solved in the numerical code. It is a rearrangement of the
numerical equations that demonstrates that a discrete analog of kinetic
energy conservation holds under certain fairly strict assumptions about
the form of the advection and diffusion terms.

Global kinetic energy conservation follows from the internal cancella-
tion of fluxes. The symmetry of the discrete Hodge star operator is useful
for deriving kinetic energy conservation. However, a positive definite dis-
crete Hodge star would be sufficient to formulate a strictly positive kinetic
energy.

In order to test the kinetic energy conservation property a problem
was chosen that has zero mass flux at the boundaries, but is inherently
unsteady. The initial flow field of this problem involves a Rankine vortex
located in the bottom left quadrant of a box. Although the problem is
tested in a 3D domain (1.0m x 1.0m X 0.lm) and using an unstructured
tetrahedral mesh, it is a two-dimensional flow since the motion only occurs
in X-Y plane and only the Z component of the vorticity vector is nonzero.
The domain is meshed with 7578 tetrahedra. The viscosity of the fluid
is 0.01m?/s and the maximum initial velocity magnitude is 0.16m/s. The
initial tangential velocity reaches its maximum at radius R = 0.01m for an
initial circulation Reynolds number of 1.

In numerical tests of the vortex motion in the absence of viscosity,
the total discrete kinetic energy remained constant to within six significant
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Fi1G. 4. Kinetic energy conservation test. (a) Total kinetic energy vs. time. (b)
Rate of change of kinetic energy versus time (solid line) and total physical dissipation
versus time (circles).

digits after 5000 time steps (0.05 Seconds). This is about as constant as
can be expected given the tolerance prescribed for the iterative solver and
is shown as the dotted line in Fig. 4(a). When viscosity is present (0.01
m?/s), the total discrete kinetic energy as a function of time is also shown
in Fig. 4(a). The rate of change of the kinetic energy obtained by differen-
tiating this curve is compared with the calculated physical dissipation. A
perfect match is shown in Fig. 4(b). This test indicates that the theoret-
ical analysis of this section is well founded and that there is no artificial
dissipation in the method.
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