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ABSTRACT
The turbulent potential model is a Reynolds averaged

(RANS) turbulence model that is theoretically capable of
capturing non-equilibrium turbulent flows at a computational
cost and complexity comparable to two-equation models. The
ability of the turbulent potential model to accurately predict non-
equilibrium turbulent flows is evaluated in this work. The flow in
a spanwise driven channel flow and over a swept bump are used
to evaluate the turbulent potential models ability to predict
complex three-dimensional boundary layers. Results of turbulent
vortex shedding behind a triangular and a square cylinder are
also presented in order to evaluate the model's ability to predict
unsteady flows. Early indications suggest that models of this
type may be capable of significantly enhancing current
numerical predictions of turbomachinery components at little
extra computational cost or additional code complexity.
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INTRODUCTION
Three-dimensional boundary layers and unsteady vortex

shedding represent situations that are common in many
engineering flows. These flow situations are examples in which
the turbulence does not have time to reach equilibrium with the
mean flow. Flows on aircraft wings, inside curved ducts or
bends, on rotating disks, propellers, junctions of stationary walls
of fluid machinery are good examples of non-equilibrium flows.
Previous research has indicated that two equation models, which
assume that the Reynolds-stress tensor is aligned with the
velocity-gradient tensor, are not accurate for non-equilibrium
flows. When such models were applied to three-dimensional
shear-driven or pressure driven flows (non-equilibrium flows),
they yielded poor results (Fannelop et. al. 1975, Bradshaw et. al.
1996). Ölçmen & Simpson (1993) reviewed the performance of
more complicated algebraic (or nonlinear) eddy-viscosity models
and concluded that none of the models could perform well in all
the cases studied.   The models that accounted for the anisotropy
of the eddy viscosity in general performed better. However, the
anisotropic constants had to be changed for different flows.

Reynolds stress transport models can predict non-
equilibrium flows for the fact that they do not hypothesize
constitutive relation between the Reynolds stress and mean flow
gradients.  However the Reynolds stress transport models tend to
be more expensive and numerically stiff. Recently, Durbin
(1993a) proposed an elliptic Reynolds stress model that could
reproduce some of the features observed by Moin et. al. (1990)
in a three-dimensional channel flow. For the unsteady vortex
shedding behind bluff body, Franke and Rodi (1991) compared
the ability of different models to predict turbulent vortex
shedding from a rectangular cylinder. Their conclusion is that
some k-ε models do not predict the right shedding frequency but
more expensive Reynolds stress transport models can produce
results in good agreement with the experiments.

The turbulent potential model should be able to capture non-
equilibrium situations at a cost comparable to two equation
models. The model does not hypothesize an explicit relationship
between the turbulence and the mean flow and it is the least
expensive RANS model that is theoretically capable of capturing
non-equilibrium turbulent flows.  Non-equilibrium occurs when
the mean flow changes rapidly either in time or spatially along
the flow direction more quickly than the turbulence can respond.
Turbulent non-equilibrium is a persistent characteristic of large
scale unsteady flows such as bluff body vortex shedding, and
accelerated flows such as three-dimensional boundary layers.
Detailed information on the development and formulation of the
turbulent potential model can be found in Perot (1999) and Perot
and Wang (1999). The particular emphasis in this work is
evaluating and enhancing the model's performance in three-
dimensional boundary layers and unsteady flows.

TURBULENT POTENTIAL MODEL
The transport equations that constitute the turbulent

potential model are summarized below.
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where φ and ψ are the scalar and vector potentials respectively.
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Constants are:

C 0.21µ = , p1C 1.7= , 3
p2 5C = , p3C =0.12

ε1C =1.45 , ε2C =1.83 - 0.16exp(-0.1
2k )

υε
, ε3C =0.15

εσεσ ε ˆ/5.033.0  ,  ˆ/67.033.0 PPk +=+=

NUMERICAL METHOD
The numerical method uses an unstructured staggered mesh

scheme which can conserve mass, momentum, and kinetic
energy to machine precision. The turbulence quantities are
advected using an upwinding scheme to guarantee positivity
constraints. The model integrates up to the wall, so wall
functions are not used, but the first grid point should be in the
laminar sub-layer to obtain accurate predictions. The details of
this numerical method, including accuracy analysis and
conservation properties are discussed in Perot (2000) and Perot
& Zhang (1999).

THREE-DIMENSIONAL BOUNDARY LAYERS
The turbulent body force potential model’s ability to predict

three-dimensional boundary layers is studied using two different
three-dimensional boundary layers. The first was a spanwise
driven channel flow. In this flow, a large spanwise pressure
gradient is suddenly applied to a fully developed channel flow.
The pressure gradient produces a horizontally homogeneous
flow (Figure 1) that develops in time. The mean velocity vector
skews with height as the flow turns most quickly near the wall.
Spanwise driven channel flow at bulk velocity Reynolds number
of 3300 was simulated by Moin et al (1990) using direct
numerical simulation (DNS).  Durbin (1993a) also modeled this
flow with a Reynolds stress transport model. A two-equation
RANS model would not be expected to produce good results for

this flow, since the turbulence effects would appear instantly in
the spanwise direction rather than taking some time to develop.
The turbulent potential model predictions of the turbulence
quantities are improved by adding an extra production term to
the dissipation evolution equation.  We add a term ωψ ×  where
ω  is the mean vorticity and ψ is the turbulent potential.  This
term is zero in two-dimensional problems and has some
similarities with the classic production term, ωψ ⋅ .  This extra
term captures the breakup of turbulent structures due to three-
dimensional acceleration, and the resulting drop in turbulence
intensities.

Figure 1. Schematic of two-dimensional channel flow subjected
to spanwise pressure gradient

The DNS data is for a channel flow where the suddenly
applied spanwise pressure gradient is ten times the streamwise
pressure gradient. The data is given at the time of the spanwise
pressure gradient application (t=0) and at time increments of 0.3
thereafter up to a nondimensional time of 0.9.  All quantities are
non-dimensionalized by the channel half-width and the initial
shear velocity.  The dimensionless viscosity is 0.00556 = 1/180.
The spanwise velocity increases rapidly during this time and
reaches the same order of magnitude as the streamwise velocity.
The turbulence cannot be considered to be in equilibrium at any
time during this simulation because the eddy turn over time is of
the order of one.  Curiously in this flow, the turbulent intensities
decrease initially. This is counterintuitive, as one would expect
an increase in the turbulent intensity because of the increase in
magnitude of the shear due to the additional pressure gradient.

Figure 2.  Streamwise mean velocity at times of 0.0, 0.3, 0.6 and
0.9. Symbols are DNS data of Moin et. al., and solid lines are
the turbulent potential model predictions.
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The mean streamwise velocity is shown in figure 2.  The
symbols are the DNS data and the solid lines are the model
predictions. This convention remains the same in all future
graphs involving the spanwise driven channel flow.  It is seen
clearly that, in both the DNS data and the model predictions,
there is not any significant change in the streamwise velocity
during the initial development of the flow.

The mean spanwise velocity is shown in figure 3. The mean
spanwise velocity is roughly half the mean streamwise velocity
at the final measurement time. The agreement with the DNS data
is good.  Visual comparison with the fully turbulent streamwise
velocity profile makes it clear that the spanwise velocity
boundary layer is essentially laminar at these early times. The
turbulence may just have begun to effect the spanwise velocity at
the final time. The standard ε/k  and other models, which
assume equilibrium, would have applied the full turbulent eddy
viscosity to the spanwise velocity and thereby caused the
spanwise boundary layer to grow much more rapidly as a
turbulent boundary layer. Since the turbulence potential model is
non-equilibrium in nature, the spanwise velocity predictions of
the model are in good agreement with the DNS data.
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Figure 3.  Spanwise mean velocity at times of 0.0, 0.3, 0.6 and
0.9. Symbols are DNS data of Moin et. al., Solid lines are the
turbulent potential model predictions.

In flows with a single inhomogeneous direction, such as
spanwise driven channel flow, there is a direct correspondence
between the turbulent potentials and some of the Reynolds
stresses allowing a direct comparison to take place.  In the more
complex flows shown later comparison with the turbulence
quantities is theoretically possible but highly impractical.
The vu ′′ and wv ′′ shear stresses are shown in figure 4. The upper
set of curves are the vu ′′  shear stress, and it is this stress that
directly influences the evolution of the streamwise velocity.  The
curves actually proceed from top to bottom as t= 0.0, 0.3, 0.9,
0.6, showing that this stress initially drops very slowly, between
t=0.3 and t=0.6 it drops much more rapidly, and then after that it
begins to increase towards its initial value. The model

predictions decrease monotonically but display similar
qualitative behavior. The initial drop is very small, and speeds
up at later times. If the calculation allowed to proceed past t=0.9
the stress begins to increase as with the DNS data.  While the
predictions do not match exactly, the discrepancy appears to be a
simple time lag in the predictions since the model predictions at
t=1.2 (not shown) are close to DNS data at t=0.9. The mean flow
predictions for the streamwise velocity show that, at least at
these early times, that the time-lag defect is not fundamentally
important in predicting the mean flow.

The lower group of curves in figure 4 are for the  shear
stress. The DNS data shows that this stress starts at zero and then
increases monotonically as time proceeds. After a long time, this
stress can be expected to be ten times larger than the vu ′′  shear
stress.  However, at these early times it is relatively small. The
model predictions closely match the DNS data at these early
times. The small magnitude of this stress at early times leads to
the essentially laminar velocity profile for spanwise mean
velocity.
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Figure 4.   Turbulent shear stress profiles at 0.0,0.3, 0.6 and 0.9.
Symbols are DNS data of Moin et. al., Solid lines are the
turbulent potential model predictions. The upper group of curves
are vu ′′ , and the lower group of curves are wv ′′ .

While the turbulent potential model predicts the spanwise
shear stress well at these early times and is expected to perform
equally well at later times, it is also true that the spanwise shear
stress is relatively small at these early times.  The development
of the spanwise velocity profile is therefore essentially laminar-
like at these early times and any non-equilibrium model (that
starts with small spanwise shear stresses) would also be able to
predict the spanwise development at these early times quite well.

  Hence, a more stringent test of the turbulent potential was
performed by predicting the flow over an infinite swept bump.
If sidewall effects and the boundary layer growth on the top wall
are neglected, this flow can be computed as a two-dimensional
problem (it is still a three-dimensional boundary layer, however).
The flow over a swept bump is an interesting test case because it
test the model’s ability to predict a turbulent boundary layer that
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is subjected to both streamwise pressure gradients and changes
in curvature.  One more reason for interest in this flow is because
of its similarity to the boundary layer over a wing, turbine
blades, etc.  High quality experimental data is available for this
flow as well as information about the inlet conditions (Webster
et. al, 1996). In flows with a single direction of inhomogeneity
(such as a flat plate boundary layer) 22Rφ =  and 3 12Rψ =  so
the turbulent potentials can be prescribed accurately at the inlet.
Wu & Squires (1998) were able to predict three-dimensional
boundary layer over a swept bump using the RANS model
developed by Durbin (1993b) and using large eddy simulations.
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Figure 5. Top view of the swept bump.

The bump is defined by three circular arcs (Figure 5 and 6),
and allows the examination of combined effects of the surface
curvature and the streamwise pressure gradients on the mean
flow. The boundary layer experiences several changes in the
streamwise pressure gradient: firstly mildly adverse, then
strongly favorable, strongly adverse and finally mildly favorable.

The flow is nearly homogeneous in the direction parallel to
the bump because a suction slot is used. If the top boundary
layer and the channel sidewall effects are neglected then a two-
dimensional domain (Figure 7) can be used to calculate the flow.
This reference frame will be referred to as the computational
frame of reference.  It is at an angle of 45  to the original
(experimental) frame of reference. An unstructured grid, shown
in (Figure 8), with high near wall resolution is used to calculate
the flow.

Figure 6.  Side view of the bump.
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Figure 7. Top view of the bump showing the computational
domain, and rotated computational coordinate system.

The inlet condition is sin 45=W U , cos45=U U and
0.0=V . The results are presented in the original wind tunnel

reference frame (see Figure 5).  Two different cases were
simulated.  One with an inlet condition of a fully developed zero
pressure gradient two-dimensional boundary layer at

1400Re =θ  and an another with the inlet boundary layer at
3260Re =θ . The upstream conditions were introduced at a half

bump chord length upstream of the leading edge of the bump. A
slip boundary condition is applied at the top wall. To account for
the upper boundary layer growth, the top wall slope is set to
roughly match the experimental mass flux. The upper wall is
therefore modified by our best estimate of the displacement
thickness.

Figure 8.  Mesh for the swept bump computational domain

The streamwise velocity profiles for an initial Reθ=1400 are
shown as function of the distance from the channel floor y in
Figure 9a. U0 is the initial boundary layer free-stream velocity
and distances are given in meters. The results are shown at
various positions downstream of leading edge of the bump. The
model predictions are the symbols and the experimental results
are the lines.  The model predictions are in good agreement with
the experimental results. The streamwise component of velocity
increases and reaches a maximum value at the apex of the bump.
On the trailing edge, the flow is very close to separation because
of the adverse pressure gradient caused by the flow expansion.
The flow relaxes to a two-dimensional boundary layer as it
moves downstream of the bump.
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Figure 9.  Velocity profiles in the experimental frame of
reference for inlet Re 1400θ = . Symbols are the model
predictions and the lines are the experimental data. (a)
Streamwise velocity, (b) Spanwise velocity.

The spanwise velocity profiles are shown in Figure 9b.  The
model predictions are given by symbols and the experimental
results are given by the lines. The model predictions are in good
agreement with the experimental results. The amount of cross
flows gives an idea of three dimensionality of the flow. At the
top of the bump the mean flow angle, defined as ( )-1tan w u , is
negative and it becomes positive at the rear of the bump. The
spanwise component of the velocity which is negative on top of
the bump increases and reaches a maximum value at the exit of
the bump. This change in sign of the spanwise velocity is
because the spanwise pressure gradient switches sign once it
reaches the top of the bump.
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Downstream of the bump the model seems to recover too
quickly compared to the experiment.   It is unclear how much of
this recovery difficulty is due to the unknown upper boundary
layer and sidewall effects, and how much is due to the model.
This is the opposite of the recovery problem after a backward
facing step where the model solution does not recover quickly
enough.

Similar results were observed when a zero pressure gradient
two-dimensional boundary layer with 3260Re =θ  was used as
the upstream condition. The streamwise and spanwise velocity
profiles scaled using the initial boundary layer edge velocity U0
for an initial 3260Re =θ , are shown as function of the distance
from the channel floor y in figure 10.

UNSTEADY VORTEX SHEDDING
To test this model’s ability to predict unsteady non-

equilibrium turbulent flow, the problem of vortex shedding
behind a 2D triangular cylinder was chosen. The flow is
inherently unsteady. Complicated phenomena such as separation
and large-scale vortices coexist with the turbulence. This
geometry is slightly easier to simulate than the circular cylinder,
since the separation points are fixed.

Figure 11. Computational domain and mesh for flow past
triangular cylinder.

The computational domain is shown in figure 11. It is the
same as Sjunnesson’s (1991) experiment. Approximately 25,000
triangles are used in this simulation. The inlet mean stream-wise
velocity is set to a constant and the vertical velocity is set to zero.
For turbulent kinetic energy and dissipation rate, we use the same
boundary conditions described Johnasson (1993).

inU =17.0  m/s ;   2
in ink =(0.05U ) ;    

3 2
in

in
0.16k

0.2
ε =

The total mass flow was 1m =0.6  kgs-1 in their experiment, and
the inlet velocity is evaluated based on that value. These values
are also used as the initial value for the whole domain.    is the(a)

(b)

y

y

xU +
5

0.24 0.32 0.4 0.48 0.56 0.64 0.72

rofiles in the experimental frame of
e 3260θ = . Symbols are the model
lines are the experimental data. (a)
 Spanwise velocity.

height of the duct (which is 3 times of the height of the triangle).
A zero gradient boundary condition is used for all the variables
at the outlet. Slip-wall boundary conditions are used for the duct
wall. The Reynolds number of this simulation is

inRe=U d/ν=45,000 , where d is the side length of the triangle.
Unsteady behavior is due to vortices alternately shedding

from the upper and lower edges of the cylinder, forming a Von
Karmann vortex street behind the triangle. No special triggering
measure is taken to start the vortex shedding, the unsteadiness in
the computational results evolve naturally. It was triggered by
the machine error and asymmetry of the mesh.

To illustrate the periodicity of the flow, the stream function
of a point about one triangle height behind the triangle near the
centerline is shown in Figure 12. It can be seen that an almost

U10 o

xU10
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perfect periodicity exists. The shedding frequency is 109.3 (s-1).
The corresponding Strouhal number defined by, Sr=fd/Uin is
0.257, which should be compared with experimental data of 0.25
and the computed value of 0.27 in Johnnasson (1993). Figure 13
shows an instantaneous velocity vector plot, we can see that the
center of a vortex is rolled up at the lower edge and a new vortex
is beginning to roll up at the upper edge. The vortex street can
also be seen in the instantaneous vorticity contours plot shown in
Figure 14.

t  (sec)

S

0.018 0.02 0.022 0.024 0.026 0.028 0.03 0.032 0.034 0.036
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0

0.15
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Figure 12. The stream-function of one point about one cylinder
height behind the triangle near the centerline.

Figure 13. Instantaneous velocity vectors.

Figure 14. Instantaneous vorticity contours.

Although the instantaneous flow is asymmetric, the time-
averaged fields are always symmetric or anti-symmetric. Figure
15 shows the mean stream-wise velocity at the centerline. The
length of recirculation zone is accurately predicted, while the
location of the maximum negative velocity is slightly upstream
compared with the experiments. The magnitude of the maximum
negative velocity is also a little lower than the experiment data.

Figure 16 shows the stream-wise velocity at different cross
sections behind the triangle. The calculated velocity profiles are

in reasonable agreement with the experimental data. However, it
is hypothesized that the boundary layer on the triangle is not
fully resolved due to mesh size restrictions. The computed
boundary layer is thicker than the real one, thus close to the back
of the triangle, the fluid is slowed down and driven backwards
more than it should be. This would explain the mean velocity
profile close to the centerline at x=15mm where the velocity is
under-predicted.
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Figure 15. Mean stream-wise velocity at centerline.
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Figure 16. Mean stream-wise velocity behind the triangle:
   , calculations; *, experiments. (a)15mm, (b) 38mm, (c)
150mm, (d) 376mm.

In the another simulation, we use half of the domain
mentioned above and imposed a symmetric boundary condition
along the centerline. Figure 17 shows the comparison of the
mean stream-wise velocity contours. The top simulation is the
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time averaged unsteady streamwise velocity. The bottom
simulation is the steady solution imposed by forcing a symmetry
condition at the centerline. The contour levels in each plot are
the same. The steady solution has a recirculation zone that is
much longer than the time-averaged unsteady solution. The
reason for this is that the unsteady flow increases the momentum
exchange between the wake and it’s surrounding, thus reducing
the recirculation zone. In the steady simulation the turbulence
model does a poor job representing the momentum exchange due
to the large shedding vortices.

Figure 17. Mean stream-wise velocity contours of the time-
averaged unsteady and steady solution.

In this work, a flow past a square cylinder at Re = 21,400
(which is based on upstream velocity and cylinder side height d) is
also simulated. The geometry and mesh of this simulation is shown
in figure 18. On the left boundary, the x-component velocity is set
to a constant while the y-component is set to zero. On the right
boundary, dynamic pressure is a constant and the gradient of y
component velocity is zero. The top and bottom boundaries are
slip walls. The boundary on the cylinder is a solid wall. The
turbulence fluctuation velocity is about 1% of the mean velocity.
The turbulence quantities evaluated based on this is taken to be the
initial condition and is also fixed on the left boundary (taken as a
boundary condition).

Figure 18. Computational domain and mesh for flow past square
cylinder.

Figure 19 shows the mean stream-wise velocity at the
centerline. There are two experimental data sets available. Lyn’s
(1995) and Durao’s (1988) data are quite different in the
downstream region (x/d>4). When x/d < 4, our simulation
matches both experiments well. When x/d >4, our simulation is
closer to Durao’s data. Similar LES results have been reported
by Bouris and Bergeles(1996), Murakami and Mochida(1995).
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Figure 19.  The mean stream-wise velocity at the
centerline for a flow over square cylinder.

The time averaged stream-wise velocity is shown in figure
20 at three downstream cross sections. The calculated
predictions are compared with the experiments of Lyn.  The
experimental data in the last cross section shows almost linear
behavior near the centerline and no wake development from the
previous cross section.  This may also explain some of the
discrepancy that this data set displays in the previous figure.
The first two cross sections are in relatively good agreement
with the experimental data.
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Figure 20.  Mean stream-wise velocity behind the triangle:

 calculations;   experiments. (a) x/d =1 (b) x/d=3 (c) x/d=6
downstream of the center of the square.
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Figure 21. Instantaneous x-component velocity contours.

Figure 21 is an instantaneous streamwise velocity contours
plot. As shown in this figure, separation occurs on the top and
bottom wall of the square cylinder. The flow pattern of this
geometry is more complicated than that of the triangular cylinder
where separation occurs on the back corner.

CONCLUSIONS
The turbulent potential model demonstrates the ability to

accurately predict the mean flow behavior of the suddenly
spanwise driven channel flow. The effects observed in this flow
cannot be reproduced by most RANS models. The turbulent
potential model was able to reproduce the observed effects in the
turbulence quantities by a small addition to the ε -equation. The
change in the ε -equation is similar to the suggestion proposed
by Durbin (1993a).  The turbulence quantities show a reasonable
agreement with the DNS data and the correct qualitative trends
both spatially and temporally. The predictions of the turbulent
potential model for the three-dimensional boundary layer over a
swept bump are in good agreement with the experimental data
for the mean streamwise and spanwise velocity.   Given the
uncertainties of the experiment (i.e. the top boundary layer and
sidewall effects), we can not expect the model predictions to
compare any more favorably.

In predicting unsteady vortex shedding, the turbulent
potential model shows good overall agreement with the
experiments.  The shedding frequency is with 5% and the mean
flow cross sections and centerline predictions are within the
experimental error. Our investigations showed that the model
naturally models the turbulence and not the large-scale vortices.
The shedding occurs spontaneously in the simulations.

This work has demonstrated the efficacy of the turbulent
potential modeling approach for complex non-equilibrium flows.
The model accurately predicted both three-dimensional
boundary layers and unsteady vortex shedding. Its capability of
capturing non-equilibrium turbulent flows and inexpensive
computing cost make the turbulent potential model an attractive
approach for engineering applications.
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