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Modeling return to isotropy using kinetic equations
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Kinetic equations modeling the behavior of the velocity probability density fundRDP in
homogeneous anisotropic decaying turbulence are hypothesized and their implications for
return-to-isotropy are investigated. Anisotropic turbulent decay is a parametrically simple but
theoretically complex turbulent flow that is dominated by nonlinear interactions. The physical
implications of the Bhatnagar—Gross—Krook model, a relaxation model, and the Fokker—Planck
model for the “collision” term in the PDF evolution equation are analyzed in detail. Using fairly
general assumptions about the physics, three different parameter-free return-to-isotropy models are
proposed. These models are compared with experimental data, classical models, and analytical
limits. The final model expression is particularly interesting, and can easily be implemented in
classic Reynolds stress transport models2@®5 American Institute of Physics

[DOI: 10.1063/1.1839153

I. INTRODUCTION tools. We make the assumption that turbulence behaves as a
kinetic process, and that kinetic models of turbulence may
In most turbulent flows of interest the turbulent velocity lead to some useful insights about the return process. The
fluctuations are anisotropic, that is, they differ in magnitudeadvantage of this approach is that by assuming some very
depending on their orientation. One aspect of Reynolds streggeneral physical conditions, the resulting models can be
transport modelgéand other more advanced modelsat dis- made to be free of any tunable model constants.
tinguishes them from simple two-equation transport models In Sec. Il, the classic Reynolds stress transport equation
like k-¢ is their ability to more accurately model turbulence approach to modeling return-to-isotropy is briefly reviewed.
anisotropy. The degree of anisotropy is important because Ve use these classic results as a reference since this is the
can directly impact how turbulence affects the mean flow. approach that is most widely understood by most readers. In
In the absence of any driving mechanism, anisotropicSec. Ill we consider return-to-isotropy from the perspective
turbulent flows tend to return to an isotropic stéfee state of the Bhatnagar—Gross—Kroo(IBGK)12 approximation to
of least ordex. This nonlinear process is often called return-the Boltzmann equation. Classic linear return models result
to-isotropy. It was identified early on in the development offrom this kinetic equation. The deficiencies of the BGK ap-
Reynolds stress transport models and first modeled bproach are largely solved by two parameter-free relaxation
Rotta® Since that time, the return-to-isotropy process hasollision models developed and tested in Sec. IV. Section V
been extensively investigated and modéied. investigates the predictive performance of these models for
The return-to-isotropy problem is of significant theoret- five different experimental cases. The relaxation model is
ical interest in the theory of turbulence because it is entirelyextended in Sec. VI to enable any desired Reynolds stress
due to nonlinear interactions. In thed(if’the Navier—Stokes return behavior, and another parameter-free model is pro-
equations are solvgdthe return process is reversible. How- posed that has some unique properties and better agreement
ever, averaging processésuch as the ensemble averageswith experimental data. Section VIl explores the implica-
used in RANS modejdead to irreversibility. A similar effect  tions and connections to the Fokker—Planck collision model,
happens in thermodynamics—molecular collisions are comand the results are discussed in Sec. VIII, where some specu-
pletely reversible, but their thermodynamic average behaviolation is presented as to what these kinetic models imply
is not. This means that at the RANS modeling level, return taabout turbulent eddy interactions.
isotropy is an irreversible process and should be modeled as
such. Existing models for .return-to-isotropy tend to make; REYNOLDS STRESS TRANSPORT MODELS
extensive use of mathematical concepts, such as the Cayley—
Hamilton theorem, realizability, Taylor series expansions, In the absence of any mean flow the evolution of the
and fixed-point analysis. The resulting models invariablyReynolds stress tens@t; in homogeneous but anisotropic
have at least one model “constant” that must be set via exturbulence evolves according to the equation
periments. IR
In this work, we are interested in deriving models for the ~ —*=-2v U+ puys +uiy). (1)
return processgor setting the unknown constants in existing
models based on physical ideas as well as mathematicarhe first term on the right-hand side is the dissipation rate
tensor and the second term is the slow pressure strain. The
?Electronic mail: perot@ecs.umass.edu pressure strain is considered “slow” in this situation because
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the pressure in this term depends only on the turbulence not IRy e
on the “rapid” mean flow velocity gradientsince there are ot = R(Himij + HimRmi)’ (5)
none in this situation Both terms require modeling. How-
ever, one half the trace of the dissipation tensor is the disSiyhere the dimensionlesH;; is some as yet unspecified
pation rate,s=vui’vkuj’yk, which is assumed to be known . oqq| Expanding this model a8 = &, +1T. gives
(given by another transport equation mogahd the trace of e
the pressure-strain term is zero in incompressible flows. IR € € [~ R

The most common modeling approach is to assume that EL =- ERij - R(Himij + Hijmi)v (6)
the dissipation tensor is close to isotropic. If small anisotropy

in the dissipation tensor exists then it is included with theso it is clear thaﬁij is the return part of the model. The trace

pressure s_tral_n model. The SlOW. pressure strain arld aniSgt the last term should be zero, so we have a single constraint
tropic dissipation are then collectively modeled as a “return-

to-isotropy” term. There are reasons to suggest that modelin%n the modelll;R; =0. Itis not necessary thét;; be sym-
dissipation anisotropy and slow pressure strain separately etric. The eXpl"_:'t inclusion of the Reynolds stress n Eq.
also advantageod&; ¥ but for simplicity we retain the “col- (5) means that this general model can be strongly realizable
lective” approach described above. The simplest medies ~ (Schumanrt? Lumley?) if 11 is finite. If one component of

to Rottd is that the return-to-isotropy term is proportional to the turbulence goes to zero then this model will also make
the Reynolds stress anisotropy. This gives a Reynolds stre$e time derivative of that component go to zero. However,

transport model of the form in the unusual circumstance thi}; becomes singulaigoes
to infinity) this model can potentially violate strong realiz-
IRy _ _ 285__ _e 8(&'1 _ 25) (2)  ability. The classic linear return model described above is
Jt 37 T K ) given byf[ij:CR(zS,j—gKRal). This model becomes singular

Th . il tend to drive the R Id in the two-component limitbecause of the Reynolds stress
€ return-to-isotropy term will tend to drive the Reyno Sinversd. The classic linear model satisfies weak

stress tensor towards an isotropic state as time proceeds. T lizability'® if Cx>0, but for the linear model to satisfy
rAate at which this happens is governed by the Rotta ConStagﬁrong realizabilityCg must go to zero in the two-component
Cgr. This return model is the simplest possible one, and igjmjt.

linear in the Reynolds stress anisotropy=[ (R;j/K)-54;]. Slightly more complex nonlinear models for return-to-
Equation (2) appears to imply return-to-isotropy for any isotropy have the general form

positive value ofCg. In fact this is not the cas€&€g must be

greater than 1. To see this we look at the evolution equation  Kda; _ N4 ( L ﬁ)

for R;j/K which should tend toward?é:éij, e ot Cr(@;) + Cn| @ikak; ~ Bnicn 3/ ()
I(Ry/K) _ 1

IR RjIK_— - e(Ry 2 Cubic and higher order nonlinear models can also be repre-
it oKkat ket Rk T3%) G

K\k 37 sented by this quadratically nonlinear model due to the
Cayley-Hamilton theorem. Sarkar and SpeZisleggest val-

The isotropic dissipation actually causes the Reynolds stresges ofCz=0.7 andCy=1.05.

tensor to move away from isotropy which must be counter-  The realizability conditions are clearer when this model

acted by the return ternCy is actually a parameter, not a is written in terms of the Reynolds stresses,

strict constant, which can b@nd often i$ a function of the

Reynolds stress invariants and turbulent Reynolds number. JdRj & {CR_CN|: RaRen ﬂ}}

Due to the strict requirement described above the splitting at _RR” - 2k?> 3

éR:1+CR is useful. This gives a model equation of the form e 2 e R, R
n
X_<Rij__K3|j>+CN_2<RikRkj_ Rij)-
IR, R Ri 2 K 3 K 2K
—d =g —Crel 2L -=6], (4)
at K K 3" (8

whereCr> 0. Typical values foiCy, lie between 0.5 and 1.0 Pre- and postmultiplying this expression by the eigenvector

(Durbin).'® Launder, Reece, and Rdflisuggest a value of matrix Q diagonalizes the Reynolds stress ten§OfRQ

0.8. No return to isotropy is the case@§=0. Physically, the =D), so

no-return limit appears to occur at low Reynolds numbers. In

addition, the no-return limit is often enforced in the two- QTEQ——ED— Coe | R _4

component limitwhere one of the Reynolds stress diagonals It < K RN oKk2 3

goes to zero faster than the others, such as near)wabts

this reasorCy is often not a constant but is actually a param- % E(D - ZK| ) + CN3<DD _ MD>

eter that depends on the turbulent Reynolds number and Rey- K 3 K? 2k )7

nolds stress invarianfs:’ 9)
It is helpful to propose a general model for the Reynolds

stress evolution, since
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the off diagonal evolution is trivial, and the diagonal compo-
nents individually satisfy the right-hand side of
Eq. (9). Weak realizability is satisfied as long as FIG. 1. BGK relaxation model. Solid line represents an isocontour for an

_ 2y_4 ; i _anisotropic PDF. Dashed line is the spherical target distribution with less
CR. CN[(R”kRk”./ZK ) 3] 2(.)' Strong reallzablllty re energy, which causes both dissipation and return-to-isotropy.
quires equality on this previous expression and
1+C\[Ry R/ 2K?]1=0. The quantity Ry Re./2K? appears
frequently and is related to the second invariant of the aniso-
tropy tensor vieR, R/ 2K?=5 +2a,, @ af _ &

(f - (g ,n_k)—3/2e—3vévr'1/4k) _ (14)

The model expression for the nonlinear return model is at (K -K)

IT; = §; +{CR—CN{R“'<—R2“‘—ﬂH(5,j _EKer) This is a model in which the PDF relaxes towards a
2K* 3 3 spherical Gaussian PDF with less turbulent kinetic energy

R;  RuRan (see Fig. 1 Those portions of the PDF which are farthest
N( K~ ok2 ij)- (10) from the target spherical distribution decay faster than those

portions of the PDF which are closer to the target.
The singularity due t(Rﬁl is weakly realizable as long as the The equivalent Reynolds stress transport equation is ob-
leading coefficient is positive. It is strongly realizable if this tained by multiplying bwi’uj’ and integrating over all veloci-
leading coefficient is zero in the two-component limit andties. This is shown in Appendix A, and results in the follow-

the coefficient ofs; is positive. ing equation:

Jd RI & 27

—d=- —(Ryj = 3K&)
I1l. BHATNAGAR-GROSS-KROOK COLLISION at (K=K)
MODELS

e e 1
In homogeneous turbulence in the absence of mean ac- =- ERij - EA—(RU - 3K&)). (15

celerations or mean pressure gradients the evolution equation (K/IK-1)
for the velocity probability density functioPDF is

In terms of I1, this model isﬁij:(ll[K/(k—l)])(ﬁij
—%KRﬁl), which is identical to the classic return model if
Cr=1/[K/(K-1)], or equivalentIyAK:K[CR/(1+CR)]. This
This equation governs the decay of anisotropic homogelMPli€s the relationCpey=1+Cg=Cg between the BGK re-

neous turbulence, which is the focus of this work. One of thd@xation constant and the Rotta constant. ,
simplest collision models is a relaxation of the PDF to some oM this analysis it can be seen that there is no return to

af _ df

= = . (11)
at dt collisions

known equilibrium form isotropy if Cg=0 (or kzO). Under the conditiork=0, fed
¢ becomes a delta function. This observation suggests an alter-
AE = Cag(f - 19 (120  nhative model of the form
it K ’
aof e , e e
where the constar@ggk(x,t) might be a function of position 9t E(f - 8w’ - ECR(‘C - f*4K)). (16)

and time but is not a function of the velocity. This model is

similar to the BGK approximation for collisions used in The first term(involving a delta functiohproduces pure de-
Lattice-Boltzmann methods. It is also similar to the IEM cay and the second produces return to isotropy with no decay
models used in scalar mixing. In this particular context thergrelaxation to a spherical PDF of the same engrghis

are no theoretical justifications for this modslich as an H two-part model has been proposed by Degond and Lethou.
theoren). As the simplest possible collision model it is in-  While both(14) and(16) result in an identical equation
formative to explore its attributes. The const@pt; should ~ for the Reynolds stress evolutidthe classic linear Rotta
always be greater than zero for a well-posed method. Unlikénode), the models themselves are not identical. Differences
molecules, turbulence particles do not conserve kinetic eréXist in the evolution of the higher turbulence moments. The
ergy when they collide, so the form % the equilibrium  model given by Eq(16) will tend to produce a spike in the
target distribution, must be slightly different from classical PDF around its mean valudue to the delta functionEqua-

theory. If we take the target distribution to be tion (14) has a smoother influence on the PDF in general but
. 4 - L will also produce a spike iCy goes to zerdin the two-
feYK) = (37K) ™% 3vnon/ 4K, (13 component or low Reynolds number limits

- ) i Neither model has the ellipsoidgEq. (23)] or spherical
where O<K <K, then(as shown in Appendix Amass and ¢4 (18)] Gaussian as a solution. This implies that even if

momentum are conserved and turbulent kinetic energy obeyge y,rhylence starts with a Gaussian PDF it does not stay
the equationdK/t=~(e/K)Cgex(K~K). This implies that  Gaussian. It is not a strict fact that turbulence should be
Cgek=1/(1-K/K), and the dissipating collision model is  Gaussian. Certainly under the influence of inhomogeneity we
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know it is not Gaussian at all. Even in homogeneous turbu- _ _

lence the tails of the PDF are not expected to be Gaussian. (Up = Up[2K+ (U=T)?]=2R,(u; —Tp) + f vpuivj fav.
However, statistical arguments based on the central limit

theorem would suggest that decaying homogeneous turbu- (21)
lence ought to be close to Gaussian or at least evolve in that  Tpjs implies that eithefl, or T, can be specified arbi-
direction for most of the core portion of the PDF. Experi- yrarily and then the other determined by Eg1). The two
ments(Tavoularis and Corrs)A° of homogeneous turbulent simplest choices are{,=u, which implies Ti=u,
shear flows support the hypothesis that homoger_leous thbLﬂ.—(Ri—pl/z)va’)vr']Ur’]fdv, and T,=u, which implies 0;=y;
lence(even when sheargdhas a central core that is closely +(1/2K) fv/v v fdv. In either case, if the PDF is symmetric
approximated by an elliptical Gaussian PIEOMEtMeS  then the odd order integral is zero afigk,=uy. Since by

called a trivariate normal distribution definition v;=0+5/ =T+, =u;+v/, this also impliesd’
=v{ =v] as well. Therefore the hat and tilde quantities in Eq.
IV. RELAXATION COLLISION MODELS (20) can be viewed as a small perturbation imposed when the
A more general form than the BGK modéq. (12)] for ~ PDF is skewednot symmetrig, and are largely a formal
collisions is the linear relaxation model technicality to enforce conservation of momentum.
Conservation of energy imposes a relation betw€gn
Z_I =g(v) - h(v)f, (17) andK/K (Appendix B,

where g(v? >0 and h(v) >0 are some pogitive functions of [5 + i(ﬁ —u)2+ ig} [2K + (u-T0)?]
the velocity (and possibly position and time as welllThe K 2K Cu3
positivity requirements keep the governing equation stable 1
and the probability always greater than zero. = —J
In addition, the model should conserve the total prob- 2K
ability (or mas$, so thatfg(v)dv=[h(v)fdv, and it should +(u-1)2 (22)
not cause any mean flow to be created, implyifigf[g
—-hf]dv=0. Finally the model should dissipate energy at thelf f is symmetric this simplifies considerably to
correct rate[(v/v,/2)[hf-gldv=e¢. .
One way to determine a suitable choice for the model K 12 1 R
functions is to insert a desired solution for the PDF function g Cu3 RJ vpvpvi v; fdv.
f and then derive the parameters from EL7). In isotropic
decaying turbulence there is evidence that the core of th# f is an elliptic Gaussian given by
PDF is very close to a Gaussian and retains this shape during o
the decay proces¥eung and Pope’ If we assume the PDF f =[(2m)3det R,y | 2 Y Runbnvm (23
equation(17) has a Gaussian solution,

Up =T
v")vévi’vi’fdv+(—pT'ﬁf vpvi v fdv

, . then the integral can be evaluated andKS42R, R, (Ap-
f(v,1) = (2mK) 2 3o/, (18 pendix Q. Then K/K=1+(RyRum/2K2)-2(1/Cy) or per-

wherev/ =v,-Uu, andu, is the mean velocity, then taking the haps even more informatively

time derivative gives AN\ -1
&f 4 -3/2 ., U,U, 38 §CM:<1+anR2mn_E>
—={o K] e - = (19) 2 2K* K
ot 3 2K /2K

. . . . The relaxati | therefore h f
Comparing with Eq(17) suggests that a suitable choice e relaxation model therefore has one free paranteitirer

for the model functions isg(v)=fe4v)(3s/2K) and h(v) Cy or K/K). Both of these parameters should go to 1 when

=(3e/2K)(v!v!/2K). Actually, these functions do not con- Fhe turbulence is isotropi@.e., whenf is a spherical Gauss-

serve momentum or dissipate energy at the correct rate. Thé?n)' Smceanan/_Z_K —3n |s_;o_tr0p|c turbulence, forcing
must be generalized slightly to one of these conditions is sufficient to guarantee the other.

The derivation of the equivalent Reynolds stress equa-

-3/2 N . . . . . . .
) :CM3_€ (ﬂwk) Ry tion is given in Appendix B. The result is that E(R0) is
2K \3 equivalent to
(20) N
3 07 IR _ e Rj , RnRnj 2K
hv)=Cy——————, ot ~J\K  KZ 3K
2K [ZK + (U - U) ] l anRmn K]
- 1+ —
where we expecCy—1, K—K, 5/ =7/ —v/ when the 2k K
PDF approaches a spherical Gaussgiaq. (18)]. Conserva- (24)

tion of mass is already satisfied. Conservation of momentum
implies a relationship exists between the hat and tilde velociif an elliptic Gaussian is assumed for the PDF shape. Equa-
ties (see Appendix B tion (24) in turn implies the return parameters
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4 R,Rm K f'ind acts preferentially on the tails of th_e distribu_tion, damp-
37 k2 + K _1 ing extreme events more §tr0ngly. While there is one free-
Cr= - and Cy= - parameter left in this modeK/K, it is far more restricted in
{1 + RuRom _ EJ {1 + RurRom _ EJ its behavior than the arbitrary consta@ggsx=1+Cg=Cgr
2k? K 2k? K found in the simpler BGK type relation model. All possible
(25)  choices forK/K that have been trietthree so fargive very
. similar results for the actual model predictions, so this type
or, in terms ofCy, of model is far less “tunable.”
Cr=2Cy-1 and Cy=-3Cy. (26)

V. MODEL PERFORMANCE
Note that this model and the other models derived in this

work tend to imply thaCy is less than zero. In contrast, the ' this section the performance of these models is com-
widely used nonlinear model of Sarkar and Spefiaies a pared with experimental data for return to isotropy. For each

positive value for this constant. The implications of this dif- €St case, we present both the Reynolds stresses as a function
ference are examined in detail in Sec. VIIL. of time and the Reynolds stress anisotropy as a function of
Various choices ofS, are possible. The simple choice time. The anisotropy is the standard method for looking at
Cy=1 leads toCx=2, andCy=-2. These values produce a return-to-isotropy, since it eliminates much of the depen-
27 2"

model which is very similar to the two models examined indence on the dissipation. However, due to the nondimension-
detail below. alization with respect t& the anisotropy can cause errors in

. LA one turbulence componefpossibly even experimental er-
The equally simple choic/K=1 implies rors) to appear as a general failure of the entire model. For
7 2K? 2K? this reason we retain the direct Reynolds stress decay plots as
Cr== -1landCy=—-——. 27 well
3RumRam RomRam ) N . .
R In all models the dissipation is determined from the
This choice ofK/K implies the “target” distribution has the model transport equation
same energy as the PDF but a spherical shape. The perfor- 2
: . . . de e
mance of this model is shown in Sec. V and is referredtoas —=-C_,—.
Model-1. The realizability condition, at K

(29)

RyRay 4 2K?2 The value ofC,, is taken to be 11/6, which is the high
Cr-Cn o2 3 = R R Reynolds number analytical solution for turbulence with a
mnnm low wavenumbek? spectrunf? In most of the experiments
indicates that Model-1 is weakly realizable. the initial value of the dissipation is not known, and is ob-
In general the realizability condition for these relaxationtained by attempting to match th€ profile as well as pos-
models is sible.
N - In each case, we have solved the Reynolds stress ordi-
Ca- CN|: RoRin ‘_’f} _ E/ (1 4+ RorRn _ E) nary differential equatiotODE) associated with the model,
2k?2 3] K 2K? K/’ using fourth order Runge—Kutta and very small time steps.

-~ We have also solved the corresponding PDF relaxation mod-
so choices wher&/K vanish in the two-component limit g|s and obtained very similar results. However, there are fur-
will satisfy the Strong realizability condition. The quantity ther numerical issues associated with solving the PDF equa-
F=de(R;)/(5K)* is 1 in isotropic turbulence and 0 in the tions which we do not wish to address here, so we simply

two component limit. The choick/K=F means that present the ODE results in this paper.
4 R.R, BecauseC,, and the return process are believed to be
{— - ”—2’“ + F} Reynolds number dependent, we have selected only high Re
Cr= 3 2K andCy = -1 _ n_umber_ experiments for comparison and no direct numeri(_:al
{l N RinlRam FJ {l . RnnlRom FJ S|mulat|on(DN_S) test cases. It must be notet_j that there is
2K?2 2K?2 some uncertainty associated with the experimental results.

(29) First, while the geometry of these experiments changes
abruptly from a straining section to a straight section, the

The other strong realizability conditiofiCy=-2K?/  actual cessation of the mean strain may not be quite so
R.«Rmn WhenF=0) is also satisfied by this model. Referred abrupt due to the long range effects of pressure. As a result,
to as Model-F, the performance of this model is also showrthese decay experiments may have some residual straining in
in Sec. V. This model has a target distribution that has lesthem at early times. The translation of the zero time in the
energy, and in this sense it is similar to the simple BGKLe Penven experiment, case<i0, suggests that the experi-
model of Sec. Ill. However, unlike the BGK model, this menters were aware of this problem. More importantly, the
model has the spherical Gaussian as a solution, is strongipitial turbulence for these experiments has structure, due to
realizable and does not produce a spike in the PDF in théhe strains imposed to make the turbulence anisotropic. It is
two-component limit. In addition, unlike the simple BGK likely that at early times the relaxation of these structures
model, the decay constahtnow depends on the velocity  also affects the return process.
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FIG. 2. Reynolds stresses and anisotropy for the case
Il >0 from Le Penven, Gence, and Comte-Bellot.

Symbols are the experimental data, lines are the
Model-1 predictions, and the dashed lines are the
Model-F predictions.

FIG. 3. Reynolds stresses and anisotropy for case Il
<0 from Le Penven, Gence, and Comte-Bellot. Sym-
bols are the experimental data, lines are the Model-1
predictions, and the dashed lines are the Model-F
predictions.

FIG. 4. Reynolds stresses and anisotropy for case A of
Choi and Lumley. Symbols are the experimental data,
lines are the Model-1 predictions, and the dashed lines
are the Model-F predictions.

FIG. 5. Reynolds stresses and anisotropy for case B of
Choi and Lumley. Symbols are the experimental data,
lines are the Model-1 predictions, and the dashed lines
are the Model-F predictions.
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FIG. 6. Reynolds stresses and anisotropy for case C-2
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Figures 2 and 3 are Le Penvenal. cases IlI>0 (ex-

04 ] ) ] )
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of tilde and hat quantitieésuch asi,—u, and,—u,) but it

pansion and Il <0 (contraction. Figures 4—6 are the data can no longer be a function of the Reynolds stress invariants

of Choi and Lumley for their cases Aplane distortio, B

(axisymmetric expansignand C-2(axisymmetric contrac-

tion), respectively.

(like it was in the simpler spherical relaxation moddihis is
because the elliptic Gaussian POEnlike the spherical
Gaussian PDFcan represent any state of the Reynolds stress

Despite the fact that model-F is strongly realizable andnvariants.

Model-1 is not, the two models behave very similarly for all
five experimental test cases. With the exception of Fig.€3

Note that the relaxation equation places constraints on
the underlying Reynolds stress model. It implies thht

Penven, case IK0) and Fig. 6(Choi and Lumley, case C}y2 >0, andHinRi‘n} must be a positive definite tensor.
the models show poor agreement with the experimental data, Conservation of probabilitfor mas$ is already satisfied

and tend to return to isotropy too quickly.

VI. GENERAL RELAXATION MODELS

Rather than assuming a spherical Gaussian, let us as-"
sume that the anisotropic ellipsoidal Gausdiag. (23)] is a

solution to the relaxation equatidieq. (17)]. It will ulti-

mately be seen that this gives much better model predictions.

With this very broad assumption,

ot _ 1 _( dlotdetRyy) aan ) )
at zf( detR,) ot "om/: (30
Since  JR;/ dt= R‘l(&Rmn/at)Rn and d/at de(R,,)

=de(R,)(dRp/ dt) R;, (Jacobi's formulathls reduces to

Jf 1

—_= Ef(Rﬂ

l ’or _j_
It R1mRnJ nV m) (3D

Let us further assume thatdR;j/dt=—e/2K(IliRpy;

by this model. Conservation of momentum requires a rela-
tion betweerll, andT, (see Appendix D

( up)|:1+(un LIn)(um um)leH :|
= H—'I:‘Ri‘r%{f VAV + Rop(Unn = Tiry)

+ Rmp(un _En)} . (34)

The simplest choice ig,=u, then

1L
uP:up+H_l.r.]Ri_“1J vpvnfdv. (35
0]

The ch0|ceup—up is more complicated and requires a sym-
metric matrix inversion  (ITj;R}; +H,an1)(Dn u,)
=11,,RAR; 1fvtv v,fdv. For certain modelglike the one

+1I;mRy) which is the general Reynolds stress transporshown belov)/ thls matrix problem is easy to invert analyti-

model[Eq. (5)]. Then

(3’_f e

7= 2! i = TnRwro). (32

This implies that for any desired Reynolds stress mobgea
corresponding relaxation model can be constructed,

1rrar

e e“llZanUn m
g(v) =Cylli— ,
" 2K [(2m) et Ry V2
(33
h(V) -c & mRm%UrCnU,

1+ (Up=Tp) (Up, Um)RmepJ

When the PDF is an elliptic Gaussian we expégt=1,

v,=0,=v}, andR,,=R,, The constan€,, can be a function

cally, and this choice is also viable.
The Reynolds stress transport equation is derived in Ap-
pendix E. Assuming the choidg =u, it requires that

~ I1,, ,
R =R f
. HSS P
1
"~ Cu

oo
Vv vi vj fav

( ImRmJ m|> - (GI - Ui)(':lj - Uj)- (36)

If the PDF is an ellipsoidal Gaussian thég=u, [by Eq.
(35], andCy,=1 (by definition. In addition, since

f r,nvnvl Uj [fdv= RmnRu + R an + ijRnl (37

Eq. (36) gives the correct Iimitf?”- =R, for an elliptic Gauss-
ian PDF. The hat and tilde quantities can be seen to be slight
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perturbations to the standard quantities that precisely accouti,=u,. Then the hat quantities are defined @y=u,+(1/
for any deviation of the PDF from an elliptic Gaussian ShapeQK)fvévi’vi’fdv and Ry =(1/2K) v/ v fv—(0-u)(G

The model given by Eq933)—(36) represents the gen- —U)) = (1/Cy) (RigRenj K).
eral relaxation model. Using this formulation, any Reynolds  The equivalent Reynolds stress transport model can be
stress transport model can also be implemented as a PRfgrived from this relaxation model by assuming the PDF is
relaxation model, which has the elliptic Gaussian as a soluan elliptic Gaussian. Under this assumption, the various pos-
tion. Remember thall;;=4; corresponds © the case of no sible choices of the hat and tilde quantities are irrelevant and
return-to-isotropy, andl;; = &;+Cg(&; — 5KR;") is the classic  we find that all these choices are equivalent to
linear return-to-isotropy model. Substituting these expres-
sions into Egs.(33—(36) will produce the corresponding IR ReRs;
PDF relaxation model. However, in this paper, we do not _Lat :_ZS—LRmSRn , (41)
wish to specifyll;;, but to determine what the general relax- mom

ation model[Egs. (33)—(36)] imply about how it should be which implies the model parameters are

specified.
The general relaxation model as described above has sin- 4 2K2 oK2
gular h, 0., andR; in the two-component limit due to the Cr=7 -1 andCy=- : (42)
p -1 ! . . . - 3 Rmanm Rmanm
presence ofR;". This singularity is removed by the
parameter-free Reynolds stress mobgl=(2K/R,,Rmn)R;j. We note that this model satisfies the strong realizability

Making I1;; directly proportional to the Reynolds stress ten-constraint, CR—CN[RnkRkn/(ZKZ)—g]zo, and sits on
sor removes the singularities. The constant of proportionalitghe cusp of the strong realizability condition
is determined from the decay conditibh;R;=2K (see Sec. Cn=—-2K?/RyRym In the two-component limit, this model

[11). In the relaxation context this model is given by returns to isotropy as slowly as physically possible. The per-
formance of this model is shown below and it is referred to
e 2K2 e UR Mo as Model-EG(for elliptic Gaussian The fact that the result-

g=Cu=> = , ing Reynolds stress model is very simple, entirely nonlinear,

KRanRmn[ (277)3det Ry 112 contains no model parameters, and satisfies strong realizabil-
(38) ity at its cusp, makes Model-EG very intriguing.
g 2K? (O In Figs. 7-11 the performance of Model-EG is compared
h= CME RurRn[2K + (U-T)?]’ with experimental data for return-to-isotropy, the classic lin-

ear Rotta mode{with Cz=0.8), and the nonlinear model of
Sarkar and SpezialgCz=0.7,Cy=1.05. The most interest-
ing result is that these three very different models perform
very similarly for all five test cases. The Sarkar and Speziale
(Op—up)[2K+(u—H)Z]:ZRip(ui —Hi)+f vpvivj fav. model is slightly better than the other two, but it has two
adjustable model constants that were tuned to exactly these
(39)  test cases. The linear Rotta model also performs surprisingly
. . well. It can be made even better by adjusting the standard
Note that Eq(39) is a particular case of the general Eq.
. ) . value (0.8) downwards(to 0.7 or 0.6. Model-EG matches
(34) (for this II; mode). It also happens to be identical to . :
! the data the least well, but gives quite good agreement con-

Eq. (21),_the general expression for the SIOhenCAaI_reIaxat'onsidering there are no adjustable parameters in this model.
models in Sec. IV. As in Sec. IV, the choice af=u, or

~ . . As noted earlier, the greatest uncertainty in both the
Up=U, is up to the user. For symmetric PDFs it makes no . S o I
[ Do N . models and the experiments lies in the initial conditions. To
difference what the choice is, since theg=U,=u,. For in- ;
see that the assessment of the models performance is not

homogeneous flows, the' PDFs will be skewed and thlsaffected by these initial conditions, Fig. 8 was recalculated
choice may make some difference.

i ) A using a later time for initialization. Figure 12 shows that the
For this model we also require the conditionBpthat  int of initialization does not fundamentally change the re-
sults.
{fqﬂ_ + (0 - u) (0 - u) + im}[ZKHu—uF] We conclude this section by noting that other return
v K models have been proposed that are nonlinear, which param-
eterizeCr andCy, as functions of the Reynolds stress invari-
:J vponvi vj fav + (U, = un)f vpivj fdv + Ryj(u- u)?. ants (or anisotropy invarianjs and which satisfy strong
realizability”*” However, these models assume tGatand
(40 Cy are polynomial functions of the invariants. In contrast,
the model described above uses lineational polynomial
This model[Egs.(38)—(40)] differs from those in Sec. IV, in  functions of the invariants to represent the return parameters
that it has the ellipsoidal Gaussian as a solution. Cr and Cy. We note that rational polynomials tend to have
The choices forCy, are now far more restrictive. The better fitting properties than polynomials, and that the formu-
simplest choice is simply to setC,,=1. Equations lated rational polynomials are the result of physical assump-
(40) and (39) are simplified considerably by choosing tions but not assumptions about functional behavior.

where
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FIG. 7. Reynolds stresses and anisotropy for the case
>0 from Le Penven, Gence, and Comte-Bellot.
Symbols are the experimental data, lines are the Rotta
model prediction$Cg=0.8), the dashed lines are the SS
model predictions, and large dashed lines are the
Model-EG predictions.

FIG. 8. Reynolds stresses and anisotropy for case Il
<0 from Le Penven, Gence, and Comte-Bellot. Sym-

bols are the experimental data, lines are the Rotta model
predictions(Cz=0.8), the dashed lines are the SS model

predictions, and large dashed lines are the Model-EG
predictions.

FIG. 9. Reynolds stresses and anisotropy for case A of
Choi and Lumley. Symbols are the experimental data,
lines are the Rotta model predictiort€z=0.8), the
dashed lines are the SS model predictions, and large
dashed lines are the Model-EG predictions.

FIG. 10. Reynolds stresses and anisotropy for case B of
Choi and Lumley. Symbols are the experimental data,
lines are the Rotta model predictiortf€z=0.8), the
dashed lines are the SS model predictions, and large
dashed lines are the Model-EG predictions.
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FIG. 11. Reynolds stresses and anisotropy for case C-2
- of Choi and Lumley. Symbols are the experimental
data, lines are the Rotta model predictidi@z=0.8),

b the dashed lines are the SS model predictions, and large
dashed lines are the Model-EG predictions.
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VIl. FOKKER-PLANCK COLLISION MODELS

time

text. This transformation is also discussed in Pjoqp§he
general nonlinear Reynolds stress return mdéej. (8)] is

_A_n alternative to_ relaxation_ models is the Fokker—PIanckequi\,a|ent to
collision model. This model is frequently used to model

Brownian motion, liquid collisions, and some plasmas.
Langevin models for turbulent&®® are directly related to
the Fokker—Planck equation and therefore effectively use this
type of model. A generalized Fokker—Planck collision opera-
tor involves two as yet unspecified matric&;, andH;

at

_of__oGpih {

FIVAERFIVA

ot
Yav,

|

The tensorH;; should be positive definite for stability rea-
sons. In Langevin models it is convenient to make iso-
tropic as well. However, in general the Fokker—Planck colli-
sion model has considerable flexibility in the choice of both
the model tensors. The model automatically satisfies conser-

4 RuR«
I = & +{CR+CN[§— ;Kzn

]}(@j - SKR)

Ri _ RuRa )
-Cy| = -2 . 46
. N( K 2K2 1j ( )
(43 In the Fokker—Planck context this implies that
U 4 RuR
Gij+Himij__R|:5lj+{CR+CN|:§_ 2K2n:|}
Ri RuR
2ol KRk
X% 3KR )_C“<T<'L‘ETZH‘S”>]'
(47

vation of probability and momentum. It also has the ellipsoi-

dal Gaussian as a solutiéhMultiplying Eq. (43) by v/v/,

There are many possible choices®f andH;; which satisfy

and integrating over all velocity space gives the equivalenthis constraint.
Reynolds stress transport equation

IRm _

at

By comparing this with the generic Reynolds stress
transport equatiohEq. (5)], it can be seen that

Gjj + HimRri =

In this way, classic return mode{given in terms ofllj;)

-2y
2K

= GmJR]n + GnJRJm + Hmn+ Hnm_

The simplest and most numerically attractive choice for

H;; is that this tensor is isotropid{;;=Cped;;, whereCp is

(44) an arbitrary model constant. This means that
e 4 Rii
Gj=- R[(l *Crt 3004 — CN_KL:|
€ ‘_1 _ RnakRen _ -1
(45) + 3<CR+ CN|: 37 K2 3Cp IR (48)

The singularity inG;; is removed by the particular choice

can be implemented in the generalized Fokker—Planck corBCD:CR+CN[§—(RnkRanZKZ)], which is the choice used in
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FIG. 12. Reynolds stresses and anisotropy for the case
Il <0 from Le Penven, Gence, and Comte-Bellot, ini-
tialized at 0.037. Symbols are the experimental data,
lines are the Rotta model predictiofz=0.8), the dot-

0?9 = ted lines are the SS model predictions, and dashed lines
4 are the Model-EG predictions.
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most Langevin turbulence models. This gives the following

model constants:

4 n| e
H;j = [CR+ cN<§ - R;fzk )}551-
and
e 4 ..
Gij:—ﬂ{(lJfCR)@ﬁCN(g‘sij"%)]' (49)

Note that with this choice the weak realizability con-
straintCg+Cy[ 3 - (RyRe/2KA =0 is equivalent to the re-
quirement thaH;; be positive definite. Under these circum-
stances, the classic linear return modelith Cy=0) is

obtained using G;j=-(e/2K)(1+Cg)g; and H,
=(e/3)Crém- Model-1 given in Sec. IV [with Cg
=Z(2K?/RyRe) — 1 andCy=-2K?/RRy,l is obtained using
2K? 2K? .
RnkRkn 3 2K RnkRkn K
Model-F, with
4 RuRm,
3 2K? -1
Cr= andCy = ,
{1 4 R _ FJ {1 + BB _ FJ
2K 2K

is obtained using

R R
HijzgfﬁjF/[l+%n—F]
and
G..:-i 5,,.,.51 1+M’_F
okl K 2K? '

Note that in the two-component limii;; now goes to zero.
This particular splitting[Eq. (7.7)] will be unstable in this
limit. Model-EG, with

4 2K? 2K?
CR=_ _1andCN:_—,
3RnRom RinnRam
is obtained using1;=0 and
2K?2 ”
Gij = - i(—>&
2K\ RynRnm/ K

This model is therefore incompatible with this splittifign-
stable. If H;; is assumed to be isotropiand nonzerp then
G;j must become singular in the two-component limit.

A more general splitting is possible i;; is allowed to

Phys. Fluids 17, 035101 (2005)

e 4
Gjj=- R(l +Crt §CN+ 2C¢) 9

+(Cs=3Co) R} + Cuz Ry (50)
where CS:CR+CN(§—RnkRkn/2K2). Again, to remove the
near singularityCD:%CS can be chosen, but because of the
more general form foH;; the (realizability) restriction Cg

=0 is no longer required for a well-posed model. The classic
linear return model is obtained using;=-(/2K)(1+Cg
+2Cg) 6 and Hin=(e/3)Créim+Ce(e/K)R;;. Note that this
splitting has an extra free paramet€g which does not
change the Reynolds stress evolution, but does change the
model. A nonsingular splitting for Model-EG, with

4 2K? 2K?
R= = -1 and CN =- y
3 RnkRkn RnkRkn
is now given by
Gi=-——R - —Cgs; and H;=—CeR
U RoRin Ik Ej 'J_K (SN

whereCg is again an arbitrary parameter. Note tiit can
actually be determined by a dispersion analysis and is related
to the Kolmorgorov constant.

VIII. DISCUSSION

The return-to-isotropy problem of anisotropic turbulence
has been studied via three very different collision models for
the evolution of the velocity PDF. The simplest collision op-
erator is the BGK approximation to the Boltzmann collision
integral. This collision model~&/k)Cggk(f—f€9), is charac-
terized by an inverse time scal@hich does not depend on
the velocity. It was shown that if this model is to dissipate
energy correctly, the target state must have considerably less
energy than the current PDF state. Some models even use a
target state with zero enerdy delta functiopn The BGK
model produces the classic linear return-to-isotropy model,

with the rate of returnCg=1/(K/K-1) determined by the
energy of the target state. The Gaussian PDF is not a solution
of the BGK model even though theoretical and experimental
evidence might suggest that this is desirable.

To overcome the limitations of the BGK model, more
general relaxation models were constructed in which the col-
lision operatorg(v)—h(v)f has a positive-definite velocity
dependent source term and a velocity dependent sink term
that is proportional to the PDF. Previous analysis of this
collision model in the context of turbulence is unknown to
the authors. In Sec. IV prescriptions for the model param-
etersg andh were derived such that the spherical Gaussian is
a solution to the evolution equation. Two models were de-
rived from this analysis, Model-1 assumed that the target

distribution has the same energy as the PRAK=1. It is

be anisotropic. Classic Langevin models require isotropi@nly weakly realizable. Model-F assumed that the target dis-

H;;, but the Fokker—Planck model itself only requitég to
be positive definite. Assuming a positive definite forr;
=Cped;j+Ce(e/K)R;j implies

tribution has less energy than the PDF in the riok =F.
This ratio was chosen because it makes the resulting model
strongly realizable. While these initial parameter-free relax-
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ation models did not perform as well as might be hoped, theyvhich is sometimegbut by no means alway$ound when

set the stage for the development of the parameter-freihe turbulence is two component. More information about

Model-EG. the turbulencdthan the Reynolds stresis clearly necessary
Model-EG was shown to be the only nonsingular relax-to make return models behave correctly in the two-

ation model that has the elliptic Gaussian as a solution. Theomponent limit. Strong realizability seems appropriate

equivalent Reynolds stress transport model is totally nonlinwhen the two-component turbulence is also two dimensional,

ear in the Reynolds stresses and was shown to be strongand weak realizability seems appropriate otherwise.

realizable. Interestingly, the performance of Model-EG is  Finally, the relationship between the relaxation models

quite similar to the linear return to isotropy model. Even theand the Fokker—Planck collision model

Sarkar and Speziale model with an opposite sign for the

nonlinear termgy, performs similarly for the test cases stud- _IGif) 9 <9_f>
ied. (?VI 0-'V| IJ(?VJ'

To investigate these models further, their trajectories on
the anisotropy invariant map were plotted, and are presentedas investigated. Like the general relaxation md&eic. V)
in Fig. 13. It is well known that the linear Rotta model hasthe Fokker—Planck model has the ellipsoidal Gaussian as a
linear trajectories when plotted on this anisotropy invariantsolution. Because it involves derivatives in velocity space,
map. The trajectories of the model of Sarkar and Spezialthe Fokker—Planck model is more difficult to implement nu-
tend to move downwards and from left to right on this map.merically than relaxation models. However, the Fokker—
This means that turbulence with two large Reynolds stresseRBlanck model(with isotropic Hj) has a direct correspon-
and one small stress will tend to first approach a state witllence with the Langevin PDF models. Examination of
only one large stress before approaching full isotropy. ThisModel-EG in this context showed that this model cannot be
implies that the intermediate stress decays faster than thimplemented with isotropiél;;. Instead, the diffusion coeffi-
maximum and minimum stresses, which is somewhatientH;; must be proportional t&;;.
counter intuitive. The models developed in this paper tend to  In this work, fairly reasonable assumptions have been
have the opposite behavior. Turbulence with one large stressxplored for how large collections of interacting dissipative
will first decay to a state with two large stresses before apparticles(turbulent eddiesmight be expected to behave. We
proaching total isotropy. There is no experimental data in thénave then explored the modeling implications of these as-
middle of the triangle that allows us to determine whichsumptions, and then tested against experimental data and the-
behavior is actually correct. oretical analysis(realizability considerationsto determine

The top boundary of the “triangle” is the two-component which assumptions are the most reasonable. The models are
line. The strongly realizable models have trajectories thatherefore telling us information about the physics.
stay on this line and move to the left if they start on the  The primary assumption has been that turbulence tends
two-component line. This means that if one component otoward a spherical or an elliptic Gaussian PDF distribution.
the turbulence is zero it stays zero for all time, and the twoWhile it is not entirely clear that high Reynolds number de-
nonzero stresses approach each otimertual isotropy. This  caying anisotropic turbulence should become Gaussian
is the expected behavior for two-dimensional turbulence(spherical or elliptig, these are certainly very reasonable and

Downloaded 22 Apr 2005 to 128.119.88.168. Redistribution subject to AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp



035101-13  Modeling return to isotropy Phys. Fluids 17, 035101 (2005)

relatively broad starting points. The evidence from this paper

indicates that turbulence does not try to approach a spherical It vif dv

Gaussiar(except in the limit as time goes to infinjtyHow-

ever we havg fOU!’]d .tha'F quels tha_t assume that the ellip- _ & _ f”'f P U‘J (A k)23 0K gy
soidal Gaussian distribution is a solution appear to have very (K -K) : ') s
interesting predictive and theoretical properties. In particular,

we have determined the unique nonsingussuming nature B /(4 R -32g3 LK
abhors a singularifymodel of this form. The equivalent Rey- vi (37K) m v
nolds stress transport modé&lq. (41)] has not been proposed

in the past but does have a number of attractive predictiv@y definition fv;f Jv=u;,. The second integral on the right-
and theoretical properties. In particular, and probably moshand side is equal to 1 and the last integral is zero since it has
importantly for many modelers, this modgh its transport an odd integrand, so finally

equation form has absolutely no tunable constants. Less use-

(A4)

ful, but perhaps just as interesting, this model cannot be o € B
implemented as a classical Lagrangian PDF methaage- P K- k){ui ~u4-0;=0. (AS)
vin equation.

The Reynolds transport equation is obtained by multiplying
the PDF relation equation hy/v; and then integrating over
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APPENDIX A: BHATNAGAR-GROSS-KROOK (A6)
MOMENTS

, - ) This then becomes
Conservation of maséor probability) requires that the
integral of the PDF be equivalent to one for all time. This 9
means that the integral of its time derivative must be zero. —f v vJ’f dv

Starting from the BGK model for the time derivative of dis- o

tribution gives the following expression: € ,
- ~ U fov
(K=K)
of | _ € 4 P\-3/2.30 v 14K ~ 3vvn
E&v——(K_k)f(f_(?TK) e*n’n )&v. —(%wK)_slzfvi'vj'eT&v . (A7)
(A1)

Since Jv/v{fdv=R; by definition, and the last integral must
Since both distributions integrate to 1, we can see that pe isotropic

IR _ £ 20 s
2 [ tav=0 W o R R, (A8)

Conservation of momentum requires that no mean flow
be created by the relaxation process. The mean velocity giPPENDIX B: RELAXATION MODEL MOMENTS
the flow is equivalent to the first moment of the PDF. By
taking the integral over all velocity space, we can show that Here we verify conservation of mass for the relaxation
models derived in Sec. IV. The method is the same as before
starting from the relaxation model for the PDF,

&f ~ 1!
fvi_ Jv=-—" fvi(f - (37K) 234 5y
K)

at (K- ‘7_f&v:fCM(3_8(4§177R)—3/2€—3&;]5;/4K
_ o _ - ﬁka) v (B1)
Using the fact that the velocity is an independent variable 2K 2K + (u-T)?
(from time) and splitting the velocity into its mean and fluc-
tuating parts gives with o] =v;=0;, v{ =v; - T;,
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&_fa c 3e _c, 38
ot 0T MoK T MoK
f (Un+un n)(UrG'i'gn_Un)f&U:O.
2K+ (u-1)
(B2)
Since fv,fdv=0 we get
Mo ¥ 3 1
at 7’ T MK T TMOK 2K + (u-Ti)2
Xf [(un -0, (u, - U, + v,']vrﬂ]f dv=0
(B3)
The integrals can be evaluated to give
o B % (T
ot 7" T MoK T TMRK 2K + (u—T)?
3e 2K
-Cy=—o————=5=0. (B4)

2K 2K + (u-Ti)?

Similarly, to verify conservation of momentum we con-

tinue as follows:

fCMU|<R(37TK) 3/2g~ 30,51/4K

3 ~~
(3T ) s (@5
2K2K + (u-1)
expandingy;,=(u,~U,) +v, andv;=u;+v; gives
%—C ELAJ
at Mok
3 1
—cM—E—ﬂ<<u—U)Zui
2K2K +(u-1)
+2(u, = U, Ry, + 2Ky, +f viv,f &v) . (B6)

Conservation requires the above equation be equal to zero,

this implies that

Phys. Fluids 17, 035101 (2005)

:fCMUi’Uj< (37TK) 3120~ 30,51/4K

~ i~y
3e Upln

_R—2K+(u—u)2 ) Jdv. (B8)

By substituting in the relations] =v;—0; andv] =v;-T; the
integrals can be reduced,

RL CM—f[ + (8= u)][5] + (0~ u)]

3¢ 1

X K 3/2e 3vnv /4K(9 -C -
(37R)” U7 MoK 2K + (u—Ti)2

X f 0] 0] ((Uy = T) (Uy = Ty) + 20/(Uy = Th)
+o/pi)fdv. (B9)

Since [o] (37TK)
grand, we get

e HibiiK gy =0 (due to the odd inte-

3e R N
B e [ 118 + @ - w@y -]

3e 1

X K 3/2e 3vnv /4KF7 -C -
(37K)° U7 MoK 2K + (U —Ti)2

X((u—"l])zR”- + Z(UH—TJn)J vivjopf dv

+fv ViV, f&v)

The first integral is reduced in terms of “hats,”

(B10)

T = Gy 3R, + (0 - W@ - )]

3¢ 1

~Cvok oK+ (u—ﬁ)2<(u R

+2(un—ﬁn)f vi’vj'vr’]fﬁv+fv vivy, f&v)

(B11)

To ensure the correct dissipation of energy, we require that
the model satisfies the equatiéh/ﬁt:%(?R"/at:—s,

_1oRi
2 ot

[2K+(u—'l])2](0i—ui):ZRm(un—Tjn)+fvi’vgv,gfav. 36
(B7) ==~ Cug [K+5(0-u]

3e 1
From Appendix C, we see that ifis Gaussian, the last term Mim
on the right-hand side goes to zero, andT;={; confirming
conservation of momentum for Gaussian PDFs. For non- Xf

((U _TJ)ZK + (un _un)

Gaussian PDFs the above relation must be satisfied.
The Reynolds stress transport equation is also derived
similarly This can be simplified to

1
vivjvaf dv + va'v v, fr?v) (B12)
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k+l(a_u)2+ﬁ E_RTT'IHR{TIH
2 3Cw IRy e K 2K2 )
:__Ru s ~ (Ru _§K5i')
1 s ~ Jat K K K R
= | (U-TW)K+(u,~Tp) 1—-— 4 M0 mn
2K + (u-1) K 2K2?
1
Xf vivivpfdv+ Ef viviv,f é’v) (B13) + % — ! Rmannﬁl
KK, RuRmn s
, K 2K?
or finally
€ 1
. - F k Rn Rn Rnian- (BZO)
K 1 2 ini
=+ —(O-u?+— (2K + (u-T)? 1-c*t o
(K ZK( ) 3CM)( ( ?) K 2K
=(u-T)2+ Un_r‘nJ v/v/vf Jv And when written as follows, the values G and Cy be-
K come apparent:
1
+— | viv/vlvifiv. B14 -
ZKJ UiljUplpl 0V ( ) ﬂ-+5_ RniRni
R __eo e[ 3 K 2K 4 -1
For an elliptic Gaussian PDF the above equation reduces togt ~ KR"J' K KRR, KRR,
1 ——= 4N . i 1—— 4N : i
A K 2K K 2K
Ko 2 L et (RR+2RR) 2 “1
K 3CM - 4K2 VUi U U= 4K2 RnnRii nitni X(R” §K5|J> + K2 k (Rnian
(B15) 1-—+ R'“RZ'“
K 2K
or alternativel i
g - RmRm—e'}> (B21)
K 2 R
—=1——+R”'RZ”'. (B16)
K 3Cw 2K APPENDIX C: MOMENTS OF A GAUSSIAN
PROBABILITY DENSITY FUNCTION
This can be rearranged to become - .
If we have a PDF of elliptic Gaussian shape we can
R i write the PDF as
3 K iRni
3o (1-K o) 17 L
2 K 2K f= [(277)3de(an)]‘1/2e(1/2)Rnnf’n”m. (Cl)

So if we assume Gaussian form for the PDF, the Rey-

nolds transport equation can be written as follows:

N -1
ﬂ:£(1_5+m> (2
It K K 2K? 3
- -1
g, K _RiRy) 1 : B
K(l K 2K2> o (R + 2RiRy).

(B18)

This simplifies to

aRi' € 20 RhiRy
K R (58 -m - B8] o
J K = RuRmn
1-—+ >
K 2K

Rearranging into the classic return model form gives

Since onlyR; is a function of space, this implies that the
derivative satisfies

af
1~ = U|/f. (CZ)
(7vk

~ R

This allows us to write the third moment as a second moment
and then apply the chain rule,

r_! !f —_ ! !&f
ViV Wmf dv=—Ry Uivn&_vk adv

ﬁ ./ !f (9 _! !
=-kaf<—v'vn —f—v'v”>au. (C3)

d vk d vk

By Gauss’s divergence theorem the first integral term
goes to zero, sincé— 0 at infinity. Differentiating the sec-
ond term gives
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f vivvrfdv= kaf f(v] St vhdi) dv

:anJvi'f&v+Rimfvr’1fﬁv:0, (C4

which is what we would expect since the PDF is an even

function and the integrand is an odd functi@ubic).

The expressioifA2) and the chain rule is also useful for

evaluating the fourth moment of an elliptic Gaussian,

af
f v vj fav = - Rij vr’nvrqvi’a—dv
Uk

[ 25D,

iy (C5)

Taking the derivative gives the fourth moment in terms

of the second moments

:Rkif f(010h 8+ V0] Skt V0] Sy AV

= RneRij + RaiRmj + RniRyj- (C6)
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A =yl - Cy
gt O T Mg T Moy
I, R

~ ~ Min
1+ (U = T) (U= T) 1 Rim
pp

X

Xf[vr'nv,’]+(um—ﬁm)(un—ﬁn)]f(9v, (D3)

A =yl - Cy
gt O T Mg T Moy
I, R

~ ~ Min
1+ (U = T) (U= T) 1 Rim
pp

X

X[Rmn"' (Um _ij)(un _Tjn)] =0. (D4)

The momentum equation is the first moment

APPENDIX D: GENERAL RELAXATION
MOMENTS

Here we verify conservation of mass for the more gen-
eral relaxation models derived in Sec. VI. The method is the
same as before starting from the general relaxation model fo?Up _
the PDF, Eq.(33). Conservation of mass then requires that gt
the right-hand side of the zeroth moment be equal to zero,

of e A _
5 Jv = CMRI IT;[(2m)%detR, )] 2
e VR 50— &
v MoK
% H|nR1_n:1L’5rln5r,1 f &U,

~ ~ Al
1+ (Un = ) (U = U) 7 Rin
pp

(D1)
f‘?—fa = Cy=sllj - Cys
gt Of T Mg T MK
" M Rim .
1+(un_un)(um_um)H_mRi_n}
pp
Xfﬁ,;]'ﬂr']f dv. (D2)

Substituting with v{ =v{ +u;-T;, and recalling that
Jui,fdv=0 gives

&u ~ o=larar
P _ CMiH Up[(277)Sde(an)]—UZe—(l/Z)leTpnumav
at 2K
_CMi HlnRi_n%Er,n‘Erq I vpf&v,
1+ (U = T) (U = Ti) 77 R
pr
(D5)
€ ~
CMRH"UD
€ 1T, '_n%
-Cy— o
1+ (Un = ) (U = Tp) 17 Rig
pp
Xf [vm+ (U =T I[vg + (Uy = TUp) Jvpf dv, (D6)
Jdu e .
Gt - Cugg it
o E iR
M 1L
1+ (Un = ) (U = Tp) [ Rig
pp
X(f Vvl dU + Rmnup)
e TR
-Cy— o
1+ (un _tln)(um _Em)H_mRi_n%
pp
><[Rmp(un _t'n) + Rnp(um_’[jm)
+ (um_um)(un_un)up]- (D7)

Conservation of momentum therefore requires that

Downloaded 22 Apr 2005 to 128.119.88.168. Redistribution subject to AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp



035101-17  Modeling return to isotropy Phys. Fluids 17, 035101 (2005)

e e R IR; € ~ - A
Cus iUy =Cus — —L =Cy—| IRy + I (& = u) (@ - uy)
2K 2K -~ ~ Ly 4 at
1+ (Uy = Up) (U - um)l—[_Rim
pp
IR —
X f Upvvpf dv + Ryl + [Rg(Uy — Ty) - R 0 f IO R
1+ (Un _ﬁn)(um _ij)H_le_n%
- - - pp
+ Rnp(um - um) + (um_ Um)(un - un)up] ) (E3)
(D8) If we chooseu,=T, and use the general form of the
. L Reynolds stress modedR;;/ dt=—(g/2K)(I1;yRpj+ jmRm),
which simplifies to we arrive at the following equation:
N ~ ~ ALy
up[l + (U = Ty (U unon—;an%} = (MR + TR
HinRin (1 - =C H--(‘-+(a—u)(a-—u-)
= mR'mf Vvl dU + Uy + —" R Ry = Ty) ki R (U= ) =
LI LI I R,_l
~ I, ~ - —va'v-'v'v’fﬁv), (E4)
+ Rup(Uy = Tp) ] + H—'_r_]Ri,%(um ~TUp) (U, ~Tu, (DY) I1; 17 Emen
1
and which gives us the definition dR
- )| 14 (0, Ty 0y D By = (R + TR (B )0~ )
(Op = up)| L+ (uy = Tp) (U um)prRim 17 Cyll; it i M
IR+
11 4 R ~ 4 —inhm [
:H_I: m(f vmvnvpfau+Rmp(un—un) II; fvwlvmvnf&v' (ES)
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