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Kinetic equations modeling the behavior of the velocity probability density functionsPDFd in
homogeneous anisotropic decaying turbulence are hypothesized and their implications for
return-to-isotropy are investigated. Anisotropic turbulent decay is a parametrically simple but
theoretically complex turbulent flow that is dominated by nonlinear interactions. The physical
implications of the Bhatnagar–Gross–Krook model, a relaxation model, and the Fokker–Planck
model for the “collision” term in the PDF evolution equation are analyzed in detail. Using fairly
general assumptions about the physics, three different parameter-free return-to-isotropy models are
proposed. These models are compared with experimental data, classical models, and analytical
limits. The final model expression is particularly interesting, and can easily be implemented in
classic Reynolds stress transport models. ©2005 American Institute of Physics.
fDOI: 10.1063/1.1839153g

I. INTRODUCTION

In most turbulent flows of interest the turbulent velocity
fluctuations are anisotropic, that is, they differ in magnitude
depending on their orientation. One aspect of Reynolds stress
transport modelssand other more advanced modelsd that dis-
tinguishes them from simple two-equation transport models
like k-« is their ability to more accurately model turbulence
anisotropy. The degree of anisotropy is important because it
can directly impact how turbulence affects the mean flow.

In the absence of any driving mechanism, anisotropic
turbulent flows tend to return to an isotropic statesthe state
of least orderd. This nonlinear process is often called return-
to-isotropy. It was identified early on in the development of
Reynolds stress transport models and first modeled by
Rotta.1 Since that time, the return-to-isotropy process has
been extensively investigated and modeled.2–11

The return-to-isotropy problem is of significant theoret-
ical interest in the theory of turbulence because it is entirely
due to nonlinear interactions. In theorysif the Navier–Stokes
equations are solvedd, the return process is reversible. How-
ever, averaging processesssuch as the ensemble averages
used in RANS modelsd lead to irreversibility. A similar effect
happens in thermodynamics—molecular collisions are com-
pletely reversible, but their thermodynamic average behavior
is not. This means that at the RANS modeling level, return to
isotropy is an irreversible process and should be modeled as
such. Existing models for return-to-isotropy tend to make
extensive use of mathematical concepts, such as the Cayley–
Hamilton theorem, realizability, Taylor series expansions,
and fixed-point analysis. The resulting models invariably
have at least one model “constant” that must be set via ex-
periments.

In this work, we are interested in deriving models for the
return processsor setting the unknown constants in existing
modelsd based on physical ideas as well as mathematical

tools. We make the assumption that turbulence behaves as a
kinetic process, and that kinetic models of turbulence may
lead to some useful insights about the return process. The
advantage of this approach is that by assuming some very
general physical conditions, the resulting models can be
made to be free of any tunable model constants.

In Sec. II, the classic Reynolds stress transport equation
approach to modeling return-to-isotropy is briefly reviewed.
We use these classic results as a reference since this is the
approach that is most widely understood by most readers. In
Sec. III we consider return-to-isotropy from the perspective
of the Bhatnagar–Gross–KrooksBGKd12 approximation to
the Boltzmann equation. Classic linear return models result
from this kinetic equation. The deficiencies of the BGK ap-
proach are largely solved by two parameter-free relaxation
collision models developed and tested in Sec. IV. Section V
investigates the predictive performance of these models for
five different experimental cases. The relaxation model is
extended in Sec. VI to enable any desired Reynolds stress
return behavior, and another parameter-free model is pro-
posed that has some unique properties and better agreement
with experimental data. Section VII explores the implica-
tions and connections to the Fokker–Planck collision model,
and the results are discussed in Sec. VIII, where some specu-
lation is presented as to what these kinetic models imply
about turbulent eddy interactions.

II. REYNOLDS STRESS TRANSPORT MODELS

In the absence of any mean flow the evolution of the
Reynolds stress tensorRij in homogeneous but anisotropic
turbulence evolves according to the equation

]Rij

]t
= − 2vui,k8 uj ,k8 + psui,j8 + uj ,i8 d. s1d

The first term on the right-hand side is the dissipation rate
tensor and the second term is the slow pressure strain. The
pressure strain is considered “slow” in this situation becauseadElectronic mail: perot@ecs.umass.edu
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the pressure in this term depends only on the turbulence not
on the “rapid” mean flow velocity gradientsssince there are
none in this situationd. Both terms require modeling. How-
ever, one half the trace of the dissipation tensor is the dissi-
pation rate,«=vui,k8 uj ,k8 , which is assumed to be known
sgiven by another transport equation modeld, and the trace of
the pressure-strain term is zero in incompressible flows.

The most common modeling approach is to assume that
the dissipation tensor is close to isotropic. If small anisotropy
in the dissipation tensor exists then it is included with the
pressure strain model. The slow pressure strain and aniso-
tropic dissipation are then collectively modeled as a “return-
to-isotropy” term. There are reasons to suggest that modeling
dissipation anisotropy and slow pressure strain separately is
also advantageous,13,14 but for simplicity we retain the “col-
lective” approach described above. The simplest modelsdue
to Rottad is that the return-to-isotropy term is proportional to
the Reynolds stress anisotropy. This gives a Reynolds stress
transport model of the form

] Rij

] t
= −

2

3
«di j − ĈR«SRij

K
−

2

3
di jD . s2d

The return-to-isotropy term will tend to drive the Reynolds
stress tensor towards an isotropic state as time proceeds. The
rate at which this happens is governed by the Rotta constant

ĈR. This return model is the simplest possible one, and is
linear in the Reynolds stress anisotropy,aij =fsRij /Kd− 2

3di jg.
Equation s2d appears to imply return-to-isotropy for any

positive value ofĈR. In fact this is not the case,ĈR must be
greater than 1. To see this we look at the evolution equation
for Rij /K which should tend towards23di j ,

] sRij /Kd
] t

=
1

K

] Rij

] t
−

Rij

K2

] K

] t
= − sĈR − 1d

«

K
SRij

K
−

2

3
di jD . s3d

The isotropic dissipation actually causes the Reynolds stress
tensor to move away from isotropy which must be counter-

acted by the return term.ĈR is actually a parameter, not a
strict constant, which can besand often isd a function of the
Reynolds stress invariants and turbulent Reynolds number.
Due to the strict requirement described above the splitting

ĈR=1+CR is useful. This gives a model equation of the form

] Rij

] t
= − «

Rij

K
− CR«SRij

K
−

2

3
di jD , s4d

whereCR.0. Typical values forCR lie between 0.5 and 1.0
sDurbind.15 Launder, Reece, and Rodi16 suggest a value of
0.8. No return to isotropy is the case ofCR=0. Physically, the
no-return limit appears to occur at low Reynolds numbers. In
addition, the no-return limit is often enforced in the two-
component limitswhere one of the Reynolds stress diagonals
goes to zero faster than the others, such as near wallsd. For
this reasonCR is often not a constant but is actually a param-
eter that depends on the turbulent Reynolds number and Rey-
nolds stress invariants.7,17

It is helpful to propose a general model for the Reynolds
stress evolution,

]Rij

]t
= −

«

2K
sPimRmj + P jmRmid , s5d

where the dimensionlessPi j is some as yet unspecified

model. Expanding this model asPi j =di j +P̂i j gives

]Rij

]t
= −

«

K
Rij −

«

2K
sP̂ imRmj + P̂ jmRmid , s6d

so it is clear thatP̂i j is the return part of the model. The trace
of the last term should be zero, so we have a single constraint

on the model,P̂i jRji =0. It is not necessary thatP̂i j be sym-
metric. The explicit inclusion of the Reynolds stress in Eq.
s5d means that this general model can be strongly realizable

sSchumann,18 Lumley2d if P̂i j is finite. If one component of
the turbulence goes to zero then this model will also make
the time derivative of that component go to zero. However,

in the unusual circumstance thatP̂i j becomes singularsgoes
to infinityd this model can potentially violate strong realiz-
ability. The classic linear return model described above is

given byP̂i j =CRsdi j −
2
3KRij

−1d. This model becomes singular
in the two-component limitsbecause of the Reynolds stress
inversed. The classic linear model satisfies weak
realizability19 if CR.0, but for the linear model to satisfy
strong realizabilityCR must go to zero in the two-component
limit.

Slightly more complex nonlinear models for return-to-
isotropy have the general form

K

«

] aij

] t
= − CRsaijd + CNSaikakj − ankakn

di j

3
D . s7d

Cubic and higher order nonlinear models can also be repre-
sented by this quadratically nonlinear model due to the
Cayley-Hamilton theorem. Sarkar and Speziale4 suggest val-
ues ofCR=0.7 andCN=1.05.

The realizability conditions are clearer when this model
is written in terms of the Reynolds stresses,

] Rij

] t
= −

«

K
Rij − HCR − CNFRnkRkn

2K2 −
4

3
GJ

3
«

K
SRij −

2

3
Kdi jD + CN

«

K2SRikRkj −
RnkRkn

2K
RijD .

s8d

Pre- and postmultiplying this expression by the eigenvector
matrix Q diagonalizes the Reynolds stress tensorsQTRQ
=Dd, so

QT] R

] t
Q = −

«

K
D − HCR − CNFRnkRkn

2K2 −
4

3
GJ

3
«

K
SD −

2

3
KID + CN

«

K2SDD −
RnkRkn

2K
DD ,

s9d

since
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QT] R

] t
Q =

] D

] t
+ DS ] QT

] t
QD − S ] QT

] t
QDD

the off diagonal evolution is trivial, and the diagonal compo-
nents individually satisfy the right-hand side of
Eq. s9d. Weak realizability is satisfied as long as
CR−CNfsRnkRkn/2K2d− 4

3
gù0. Strong realizability re-

quires equality on this previous expression and
1+CNfRnkRkn/2K2gù0. The quantityRnkRkn/2K2 appears
frequently and is related to the second invariant of the aniso-
tropy tensor viaRnkRkn/2K2= 2

3 + 1
2ankakn.

The model expression for the nonlinear return model is

Pi j = di j + HCR − CNFRnkRkn

2K2 −
4

3
GJSdi j −

2

3
KRij

−1D
− CNSRij

K
−

RnkRkn

2K2 di jD . s10d

The singularity due toRij
−1 is weakly realizable as long as the

leading coefficient is positive. It is strongly realizable if this
leading coefficient is zero in the two-component limit and
the coefficient ofdi j is positive.

III. BHATNAGAR–GROSS–KROOK COLLISION
MODELS

In homogeneous turbulence in the absence of mean ac-
celerations or mean pressure gradients the evolution equation
for the velocity probability density functionsPDFd is

] f

] t
= Udf

dt
U

collisions
. s11d

This equation governs the decay of anisotropic homoge-
neous turbulence, which is the focus of this work. One of the
simplest collision models is a relaxation of the PDF to some
known equilibrium form

] f

] t
= −

«

K
CBGKsf − feqd, s12d

where the constantCBGKsx ,td might be a function of position
and time but is not a function of the velocity. This model is
similar to the BGK approximation for collisions used in
Lattice-Boltzmann methods. It is also similar to the IEM
models used in scalar mixing. In this particular context there
are no theoretical justifications for this modelssuch as an H
theoremd. As the simplest possible collision model it is in-
formative to explore its attributes. The constantCBGK should
always be greater than zero for a well-posed method. Unlike
molecules, turbulence particles do not conserve kinetic en-
ergy when they collide, so the form offeq, the equilibrium
target distribution, must be slightly different from classical
theory. If we take the target distribution to be

feqsK̂d = s 4
3pK̂d−3/2e−3vn8vn8/4K̂, s13d

where 0, K̂,K, then sas shown in Appendix Ad mass and
momentum are conserved and turbulent kinetic energy obeys

the equation]K /]t=−s« /KdCBGKsK−K̂d. This implies that

CBGK=1/s1−K̂ /Kd, and the dissipating collision model is

] f

] t
= −

«

sK − K̂d
sf − s 4

3pK̂d−3/2e−3vn8vn8/4K̂d. s14d

This is a model in which the PDF relaxes towards a
spherical Gaussian PDF with less turbulent kinetic energy
ssee Fig. 1d. Those portions of the PDF which are farthest
from the target spherical distribution decay faster than those
portions of the PDF which are closer to the target.

The equivalent Reynolds stress transport equation is ob-
tained by multiplying byvi8v j8 and integrating over all veloci-
ties. This is shown in Appendix A, and results in the follow-
ing equation:

] Rij

] t
= −

«

sK − K̂d
sRij − 2

3K̂di jd

= −
«

K
Rij −

«

K

1

sK/K̂ − 1d
sRij − 2

3Kdi jd. s15d

In terms of P̂, this model is P̂i j =s1/fK / sK̂−1dgdsdi j

− 2
3KRij

−1d, which is identical to the classic return model if

CR=1/fK / sK̂−1dg, or equivalentlyK̂=KfCR/ s1+CRdg. This

implies the relationCBGK=1+CR=ĈR between the BGK re-
laxation constant and the Rotta constant.

From this analysis it can be seen that there is no return to

isotropy if CR=0 sor K̂=0d. Under the conditionK̂=0, feq

becomes a delta function. This observation suggests an alter-
native model of the form

] f

] t
= −

«

k
(f − dsv8d) −

«

k
CR(f − feqsKd). s16d

The first termsinvolving a delta functiond produces pure de-
cay and the second produces return to isotropy with no decay
srelaxation to a spherical PDF of the same energyd. This
two-part model has been proposed by Degond and Lemou.11

While both s14d and s16d result in an identical equation
for the Reynolds stress evolutionsthe classic linear Rotta
modeld, the models themselves are not identical. Differences
exist in the evolution of the higher turbulence moments. The
model given by Eq.s16d will tend to produce a spike in the
PDF around its mean valuesdue to the delta functiond. Equa-
tion s14d has a smoother influence on the PDF in general but
will also produce a spike ifCR goes to zerosin the two-
component or low Reynolds number limitsd.

Neither model has the ellipsoidalfEq. s23dg or spherical
fEq. s18dg Gaussian as a solution. This implies that even if
the turbulence starts with a Gaussian PDF it does not stay
Gaussian. It is not a strict fact that turbulence should be
Gaussian. Certainly under the influence of inhomogeneity we

FIG. 1. BGK relaxation model. Solid line represents an isocontour for an
anisotropic PDF. Dashed line is the spherical target distribution with less
energy, which causes both dissipation and return-to-isotropy.
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know it is not Gaussian at all. Even in homogeneous turbu-
lence the tails of the PDF are not expected to be Gaussian.
However, statistical arguments based on the central limit
theorem would suggest that decaying homogeneous turbu-
lence ought to be close to Gaussian or at least evolve in that
direction for most of the core portion of the PDF. Experi-
mentssTavoularis and Corrsind20 of homogeneous turbulent
shear flows support the hypothesis that homogeneous turbu-
lenceseven when shearedd has a central core that is closely
approximated by an elliptical Gaussian PDFssometimes
called a trivariate normal distributiond.

IV. RELAXATION COLLISION MODELS

A more general form than the BGK modelfEq. s12dg for
collisions is the linear relaxation model

] f

] t
= gsvd − hsvdf , s17d

wheregsvd.0 andhsvd.0 are some positive functions of
the velocity sand possibly position and time as welld. The
positivity requirements keep the governing equation stable
and the probability always greater than zero.

In addition, the model should conserve the total prob-
ability sor massd, so thategsvddv=ehsvdfdv, and it should
not cause any mean flow to be created, implyingevn8fg
−hfgdv=0. Finally the model should dissipate energy at the
correct rate,esvn8vn8 /2dfhf−ggdv=«.

One way to determine a suitable choice for the model
functions is to insert a desired solution for the PDF function
f and then derive the parameters from Eq.s17d. In isotropic
decaying turbulence there is evidence that the core of the
PDF is very close to a Gaussian and retains this shape during
the decay processsYeung and Poped.21 If we assume the PDF
equations17d has a Gaussian solution,

fsv,td = s 4
3pKd−3/2e−3vn8vn8/4K, s18d

wherevn8=vn−un andun is the mean velocity, then taking the
time derivative gives

] f

]t
= S4

3
pKD−3/2

e−3vn8vn8/4KS1 −
vn8vn8

2K
D3

2

«

K
. s19d

Comparing with Eq.s17d suggests that a suitable choice
for the model functions isgsvd= feqsvds3« /2Kd and hsvd
=s3« /2Kdsvn8vn8 /2Kd. Actually, these functions do not con-
serve momentum or dissipate energy at the correct rate. They
must be generalized slightly to

gsvd = CM
3«

2K
S4

3
pK̂D−3/2

e−3v̂n8v̂n8/4K̂,

s20d

hsvd = CM
3«

2K

ṽn8ṽn8

f2K + su − ũd2g
,

where we expectCM→1, K̂→K, v̂i8→ ṽi8→vi8 when the
PDF approaches a spherical GaussianfEq. s18dg. Conserva-
tion of mass is already satisfied. Conservation of momentum
implies a relationship exists between the hat and tilde veloci-
ties ssee Appendix Bd,

sûp − updf2K + su − ũd2g = 2Ripsui − ũid +E vp8vi8vi8fdv.

s21d

This implies that eitherûp or ũp can be specified arbi-
trarily and then the other determined by Eq.s21d. The two
simplest choices are ûp=up which implies ũi =ui

+sRip
−1/2devp8vn8vn8fdv, and ũp=up which implies ûi =ui

+s1/2Kdevi8vn8vn8fdv. In either case, if the PDF is symmetric
then the odd order integral is zero andũp= ûp=up. Since by
definition vi = ûi + v̂i8= ũi + ṽi8=ui +vi8, this also implies v̂i8
= ṽi8=vi8 as well. Therefore the hat and tilde quantities in Eq.
s20d can be viewed as a small perturbation imposed when the
PDF is skewedsnot symmetricd, and are largely a formal
technicality to enforce conservation of momentum.

Conservation of energy imposes a relation betweenCM

and K̂ /K sAppendix Bd,

F K̂

K
+

1

2K
sû − ud2 +

1

CM

2

3
Gf2K + su − ũd2g

=
1

2K
E vp8vp8vi8vi8fdv +

sup − ũpd
K

E vp8vi8vi8fdv

+ su − ũd2. s22d

If f is symmetric this simplifies considerably to

K̂

K
+

1

CM

2

3
=

1

4K2E vp8vp8vi8vi8fdv.

If f is an elliptic Gaussian given by

f = fs2pd3detsRnmdg−1/2e−1/2Rnm
−1vn8vm8 s23d

then the integral can be evaluated and is 4K2+2RnmRmn sAp-

pendix Cd. Then K̂ /K=1+sRnmRnm/2K2d− 2
3s1/CMd or per-

haps even more informatively

3

2
CM = S1 +

RnmRmn

2K2 −
K̂

K
D−1

.

The relaxation model therefore has one free parameterseither

CM or K̂ /Kd. Both of these parameters should go to 1 when
the turbulence is isotropicsi.e., whenf is a spherical Gauss-
iand. SinceRnmRnm/2K2→ 2

3 in isotropic turbulence, forcing
one of these conditions is sufficient to guarantee the other.

The derivation of the equivalent Reynolds stress equa-
tion is given in Appendix B. The result is that Eq.s20d is
equivalent to

] Rij

] t
= −

«

F1 +
RnmRmn

2K2 −
K̂

K
G
SRij

K
+

RinRnj

K2 −
2

3

K̂

K
di jD

s24d

if an elliptic Gaussian is assumed for the PDF shape. Equa-
tion s24d in turn implies the return parameters
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CR =

F4

3
−

RmnRnm

2K2 +
K̂

K
G

F1 +
RmnRnm

2K2 −
K̂

K
G and CN =

− 1

F1 +
RmnRnm

2K2 −
K̂

K
G

s25d

or, in terms ofCM,

CR = 7
2CM − 1 and CN = − 3

2CM . s26d

Note that this model and the other models derived in this
work tend to imply thatCN is less than zero. In contrast, the
widely used nonlinear model of Sarkar and Speziale4 has a
positive value for this constant. The implications of this dif-
ference are examined in detail in Sec. VIII.

Various choices ofCM are possible. The simple choice
CM =1 leads toCR= 5

2, andCN=−3
2. These values produce a

model which is very similar to the two models examined in
detail below.

The equally simple choiceK̂ /K=1 implies

CR =
7

3

2K2

RnmRnm
− 1 andCN = −

2K2

RnmRnm
. s27d

This choice ofK̂ /K implies the “target” distribution has the
same energy as the PDF but a spherical shape. The perfor-
mance of this model is shown in Sec. V and is referred to as
Model-1. The realizability condition,

CR − CNFRnkRkn

2K2 −
4

3
G =

2K2

RmnRnm
,

indicates that Model-1 is weakly realizable.
In general the realizability condition for these relaxation

models is

CR − CNFRnkRkn

2K2 −
4

3
G =

K̂

K
YS1 +

RnmRmn

2K2 −
K̂

K
D ,

so choices whereK̂ /K vanish in the two-component limit
will satisfy the strong realizability condition. The quantity
F=detsRijd / s 2

3Kd3 is 1 in isotropic turbulence and 0 in the

two component limit. The choiceK̂ /K=F means that

CR =
F4

3
−

RmnRnm

2K2 + FG
F1 +

RmnRnm

2K2 − FG andCN =
− 1

F1 +
RmnRnm

2K2 − FG .

s28d

The other strong realizability conditionsCNù−2K2/
RnmRmn whenF=0d is also satisfied by this model. Referred
to as Model-F, the performance of this model is also shown
in Sec. V. This model has a target distribution that has less
energy, and in this sense it is similar to the simple BGK
model of Sec. III. However, unlike the BGK model, this
model has the spherical Gaussian as a solution, is strongly
realizable and does not produce a spike in the PDF in the
two-component limit. In addition, unlike the simple BGK
model, the decay constanth now depends on the velocityv

and acts preferentially on the tails of the distribution, damp-
ing extreme events more strongly. While there is one free-

parameter left in this model,K̂ /K, it is far more restricted in

its behavior than the arbitrary constantCBGK=1+CR=ĈR

found in the simpler BGK type relation model. All possible

choices forK̂ /K that have been triedsthree so fard give very
similar results for the actual model predictions, so this type
of model is far less “tunable.”

V. MODEL PERFORMANCE

In this section the performance of these models is com-
pared with experimental data for return to isotropy. For each
test case, we present both the Reynolds stresses as a function
of time and the Reynolds stress anisotropy as a function of
time. The anisotropy is the standard method for looking at
return-to-isotropy, since it eliminates much of the depen-
dence on the dissipation. However, due to the nondimension-
alization with respect toK the anisotropy can cause errors in
one turbulence componentspossibly even experimental er-
rorsd to appear as a general failure of the entire model. For
this reason we retain the direct Reynolds stress decay plots as
well.

In all models the dissipation is determined from the
model transport equation

] «

] t
= − C«2

«2

K
. s29d

The value ofC«2 is taken to be 11/6, which is the high
Reynolds number analytical solution for turbulence with a
low wavenumberk2 spectrum.22 In most of the experiments
the initial value of the dissipation is not known, and is ob-
tained by attempting to match theK profile as well as pos-
sible.

In each case, we have solved the Reynolds stress ordi-
nary differential equationsODEd associated with the model,
using fourth order Runge–Kutta and very small time steps.
We have also solved the corresponding PDF relaxation mod-
els and obtained very similar results. However, there are fur-
ther numerical issues associated with solving the PDF equa-
tions which we do not wish to address here, so we simply
present the ODE results in this paper.

BecauseC«2 and the return process are believed to be
Reynolds number dependent, we have selected only high Re
number experiments for comparison and no direct numerical
simulation sDNSd test cases. It must be noted that there is
some uncertainty associated with the experimental results.
First, while the geometry of these experiments changes
abruptly from a straining section to a straight section, the
actual cessation of the mean strain may not be quite so
abrupt due to the long range effects of pressure. As a result,
these decay experiments may have some residual straining in
them at early times. The translation of the zero time in the
Le Penven experiment, case III,0, suggests that the experi-
menters were aware of this problem. More importantly, the
initial turbulence for these experiments has structure, due to
the strains imposed to make the turbulence anisotropic. It is
likely that at early times the relaxation of these structures
also affects the return process.
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FIG. 2. Reynolds stresses and anisotropy for the case
III .0 from Le Penven, Gence, and Comte-Bellot.
Symbols are the experimental data, lines are the
Model-1 predictions, and the dashed lines are the
Model-F predictions.

FIG. 3. Reynolds stresses and anisotropy for case III
,0 from Le Penven, Gence, and Comte-Bellot. Sym-
bols are the experimental data, lines are the Model-1
predictions, and the dashed lines are the Model-F
predictions.

FIG. 4. Reynolds stresses and anisotropy for case A of
Choi and Lumley. Symbols are the experimental data,
lines are the Model-1 predictions, and the dashed lines
are the Model-F predictions.

FIG. 5. Reynolds stresses and anisotropy for case B of
Choi and Lumley. Symbols are the experimental data,
lines are the Model-1 predictions, and the dashed lines
are the Model-F predictions.
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Figures 2 and 3 are Le Penvenet al. cases III.0 sex-
pansiond and III ,0 scontractiond. Figures 4–6 are the data
of Choi and Lumley7 for their cases Asplane distortiond, B
saxisymmetric expansiond, and C-2saxisymmetric contrac-
tiond, respectively.

Despite the fact that model-F is strongly realizable and
Model-1 is not, the two models behave very similarly for all
five experimental test cases. With the exception of Fig. 3sLe
Penven, case III,0d and Fig. 6sChoi and Lumley, case C-2d
the models show poor agreement with the experimental data,
and tend to return to isotropy too quickly.

VI. GENERAL RELAXATION MODELS

Rather than assuming a spherical Gaussian, let us as-
sume that the anisotropic ellipsoidal GaussianfEq. s23dg is a
solution to the relaxation equationfEq. s17dg. It will ulti-
mately be seen that this gives much better model predictions.
With this very broad assumption,

] f

]t
= −

1

2
fS ]/]tdetsRnmd

detsRnmd
+

]Rnm
−1

]t
vn8vm8 D . s30d

Since ]Rij
−1/]t=−Rim

−1s]Rmn/]tdRnj
−1 and ] /]t detsRnmd

=detsRnmds]Rip /]tdRpi
−1 sJacobi’s formulad this reduces to

] f

] t
= −

1

2
fsRij

−1 − Rim
−1Rnj

−1vn8vm8 d
] Rij

] t
. s31d

Let us further assume that]Rij /]t=−« /2KsPimRmj

+P jmRmid which is the general Reynolds stress transport
model fEq. s5dg. Then

] f

]t
=

«

2K
fsPii − PinRim

−1vm8 vn8d . s32d

This implies that for any desired Reynolds stress modelPi j a
corresponding relaxation model can be constructed,

gsvd = CMPii
«

2K

e−1/2R̂nm
−1 v̂n8v̂m8

fs2pd3detsR̂nmdg1/2
,

s33d

hsvd = CM
«

2K

PinRim
−1ṽm8 ṽn8

F1 + sun − ũndsum − ũmdRim
−1 Pin

Ppp
G .

When the PDF is an elliptic Gaussian we expectCM =1,

ṽn8= v̂n8=vn8, andR̂nm=Rnm. The constantCM can be a function

of tilde and hat quantitiesssuch asũp−up and ûp−upd but it
can no longer be a function of the Reynolds stress invariants
slike it was in the simpler spherical relaxation modeld. This is
because the elliptic Gaussian PDFsunlike the spherical
Gaussian PDFd can represent any state of the Reynolds stress
invariants.

Note that the relaxation equation places constraints on
the underlying Reynolds stress model. It implies thatPii

.0, andPinRim
−1 must be a positive definite tensor.

Conservation of probabilitysor massd is already satisfied
by this model. Conservation of momentum requires a rela-
tion betweenûp and ũp ssee Appendix Dd,

sûp − updF1 + sun − ũndsum − ũmdRim
−1 Pin

Ppp
G

=
Pin

Pii
Rim

−1HE vp8vm8 vn8fdv + Rnpsum − ũmd

+ Rmpsun − ũndJ . s34d

The simplest choice isũp=up then

ûp = up +
Pin

Pii
Rim

−1E vp8vm8 vn8fdv. s35d

The choiceûp=up is more complicated and requires a sym-
metric matrix inversion sPipRin

−1+PinRip
−1dsũn−und

=PinRim
−1Rtp

−1evt8vm8 vn8fdv. For certain modelsslike the one
shown belowd, this matrix problem is easy to invert analyti-
cally, and this choice is also viable.

The Reynolds stress transport equation is derived in Ap-
pendix E. Assuming the choiceũp=up it requires that

R̂ij =
Ppn

Pss
Rpm

−1E vm8 vn8vi8v j8fdv

−
1

CM
SPim

Pss
Rmj +

P jm

Pss
RmiD − sûi − uidsûj − ujd. s36d

If the PDF is an ellipsoidal Gaussian thenûp=up fby Eq.
s35dg, andCM =1 sby definitiond. In addition, since

E vm8 vn8vi8v j8fdv = RmnRij + RmiRnj + RmjRni s37d

Eq. s36d gives the correct limit,R̂ij =Rij for an elliptic Gauss-
ian PDF. The hat and tilde quantities can be seen to be slight

FIG. 6. Reynolds stresses and anisotropy for case C-2
of Choi and Lumley. Symbols are the experimental
data, lines are the Model-1 predictions, and the dashed
lines are the Model-F predictions.
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perturbations to the standard quantities that precisely account
for any deviation of the PDF from an elliptic Gaussian shape.

The model given by Eqs.s33d–s36d represents the gen-
eral relaxation model. Using this formulation, any Reynolds
stress transport model can also be implemented as a PDF
relaxation model, which has the elliptic Gaussian as a solu-
tion. Remember thatPi j =di j corresponds to the case of no
return-to-isotropy, andPi j =di j +CRsdi j −

2
3KRij

−1d is the classic
linear return-to-isotropy model. Substituting these expres-
sions into Eqs.s33d–s36d will produce the corresponding
PDF relaxation model. However, in this paper, we do not
wish to specifyPi j , but to determine what the general relax-
ation modelfEqs. s33d–s36dg imply about how it should be
specified.

The general relaxation model as described above has sin-

gular h, ûp, and R̂ij in the two-component limit due to the
presence of Rij

−1. This singularity is removed by the
parameter-free Reynolds stress modelPi j =s2K /RnmRmndRij .
Making Pi j directly proportional to the Reynolds stress ten-
sor removes the singularities. The constant of proportionality
is determined from the decay conditionPi jRij =2K ssee Sec.
III d. In the relaxation context this model is given by

g = CM
«

K

2K2

RnmRmn

e−1/2R̂nm
−1 v̂n8v̂m8

fs2pd3detsR̂nmdg1/2
,

s38d

h = CM
«

K

2K2

RnmRmn

ṽn8ṽn8

f2K + su − ũd2g
,

where

sûp − updf2K + su − ũd2g = 2Ripsui − ũid +E vp8vi8vi8fdv.

s39d

Note that Eq.s39d is a particular case of the general Eq.
s34d sfor this Pi j modeld. It also happens to be identical to
Eq. s21d, the general expression for the spherical relaxation
models in Sec. IV. As in Sec. IV, the choice ofûp=up or
ũp=up is up to the user. For symmetric PDFs it makes no
difference what the choice is, since thenûp= ũp=up. For in-
homogeneous flows, the PDFs will be skewed and this
choice may make some difference.

For this model we also require the condition onR̂ij that

FR̂ij + sûi − uidsûj − ujd +
1

CM

RimRmj

K
Gf2K + su − ud2g

=E vn8vn8vi8v j8fdv + sun − undE vn8vi8v j8fdv + Rijsu − ud2.

s40d

This modelfEqs.s38d–s40dg differs from those in Sec. IV, in
that it has the ellipsoidal Gaussian as a solution.

The choices forCM are now far more restrictive. The
simplest choice is simply to setCM =1. Equations
s40d and s39d are simplified considerably by choosing

ũp=up. Then the hat quantities are defined byûp=up+s1/

2Kdevp8vi8vi8fdv and R̂ij =s1/2Kdevn8vn8vi8v j8fdv−sûi −uidsûj

−ujd−s1/CMdsRimRmj/Kd.
The equivalent Reynolds stress transport model can be

derived from this relaxation model by assuming the PDF is
an elliptic Gaussian. Under this assumption, the various pos-
sible choices of the hat and tilde quantities are irrelevant and
we find that all these choices are equivalent to

] Rij

] t
= − 2«

RisRsj

RmnRnm
, s41d

which implies the model parameters are

CR =
4

3

2K2

RmnRnm
− 1 andCN = −

2K2

RmnRnm
. s42d

We note that this model satisfies the strong realizability
constraint, CR−CNfRnkRkn/ s2K2d− 4

3
g=0, and sits on

the cusp of the strong realizability condition
CNù−2K2/RmnRnm. In the two-component limit, this model
returns to isotropy as slowly as physically possible. The per-
formance of this model is shown below and it is referred to
as Model-EGsfor elliptic Gaussiand. The fact that the result-
ing Reynolds stress model is very simple, entirely nonlinear,
contains no model parameters, and satisfies strong realizabil-
ity at its cusp, makes Model-EG very intriguing.

In Figs. 7–11 the performance of Model-EG is compared
with experimental data for return-to-isotropy, the classic lin-
ear Rotta modelswith CR=0.8d, and the nonlinear model of
Sarkar and SpezialesCR=0.7, CN=1.05d. The most interest-
ing result is that these three very different models perform
very similarly for all five test cases. The Sarkar and Speziale
model is slightly better than the other two, but it has two
adjustable model constants that were tuned to exactly these
test cases. The linear Rotta model also performs surprisingly
well. It can be made even better by adjusting the standard
value s0.8d downwardssto 0.7 or 0.6d. Model-EG matches
the data the least well, but gives quite good agreement con-
sidering there are no adjustable parameters in this model.

As noted earlier, the greatest uncertainty in both the
models and the experiments lies in the initial conditions. To
see that the assessment of the models performance is not
affected by these initial conditions, Fig. 8 was recalculated
using a later time for initialization. Figure 12 shows that the
point of initialization does not fundamentally change the re-
sults.

We conclude this section by noting that other return
models have been proposed that are nonlinear, which param-
eterizeCR andCN as functions of the Reynolds stress invari-
ants sor anisotropy invariantsd, and which satisfy strong
realizability.7,17 However, these models assume thatCR and
CN are polynomial functions of the invariants. In contrast,
the model described above uses linearrational polynomial
functions of the invariants to represent the return parameters
CR and CN. We note that rational polynomials tend to have
better fitting properties than polynomials, and that the formu-
lated rational polynomials are the result of physical assump-
tions but not assumptions about functional behavior.
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FIG. 7. Reynolds stresses and anisotropy for the case
III .0 from Le Penven, Gence, and Comte-Bellot.
Symbols are the experimental data, lines are the Rotta
model predictionssCR=0.8d, the dashed lines are the SS
model predictions, and large dashed lines are the
Model-EG predictions.

FIG. 8. Reynolds stresses and anisotropy for case III
,0 from Le Penven, Gence, and Comte-Bellot. Sym-
bols are the experimental data, lines are the Rotta model
predictionssCR=0.8d, the dashed lines are the SS model
predictions, and large dashed lines are the Model-EG
predictions.

FIG. 9. Reynolds stresses and anisotropy for case A of
Choi and Lumley. Symbols are the experimental data,
lines are the Rotta model predictionssCR=0.8d, the
dashed lines are the SS model predictions, and large
dashed lines are the Model-EG predictions.

FIG. 10. Reynolds stresses and anisotropy for case B of
Choi and Lumley. Symbols are the experimental data,
lines are the Rotta model predictionssCR=0.8d, the
dashed lines are the SS model predictions, and large
dashed lines are the Model-EG predictions.
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VII. FOKKER–PLANCK COLLISION MODELS

An alternative to relaxation models is the Fokker–Planck
collision model. This model is frequently used to model
Brownian motion, liquid collisions, and some plasmas.
Langevin models for turbulence19,23 are directly related to
the Fokker–Planck equation and therefore effectively use this
type of model. A generalized Fokker–Planck collision opera-
tor involves two as yet unspecified matrices,Gij andHij ,

−
] f

] t
= −

] sGijv j8fd
] Vi

+
]

] Vi
FHij

] f

] Vj
G . s43d

The tensorHij should be positive definite for stability rea-
sons. In Langevin models it is convenient to makeHij iso-
tropic as well. However, in general the Fokker–Planck colli-
sion model has considerable flexibility in the choice of both
the model tensors. The model automatically satisfies conser-
vation of probability and momentum. It also has the ellipsoi-
dal Gaussian as a solution.24 Multiplying Eq. s43d by vn8vm8
and integrating over all velocity space gives the equivalent
Reynolds stress transport equation

] Rnm

] t
= GmjRjn + GnjRjm + Hmn+ Hnm. s44d

By comparing this with the generic Reynolds stress
transport equationfEq. s5dg, it can be seen that

Gij + HimRmj
−1 = −

«

2K
Pi j . s45d

In this way, classic return modelssgiven in terms ofpi jd
can be implemented in the generalized Fokker–Planck con-

text. This transformation is also discussed in Pope.19 The
general nonlinear Reynolds stress return modelfEq. s8dg is
equivalent to

Pi j = di j + HCR + CNF4

3
−

RnkRkn

2K2 GJsdi j − 2
3KRij

−1d

− CNSRij

K
−

RnkRkn

2K2 di jD . s46d

In the Fokker–Planck context this implies that

Gij + HimRmj
−1 = −

«

2K
Fdi j + HCR + CNF4

3
−

RnkRkn

2K2 GJ
3sdi j − 2

3KRij
−1d − CNSRij

K
−

RnkRkn

2K2 di jDG .

s47d

There are many possible choices ofGij andHij which satisfy
this constraint.

The simplest and most numerically attractive choice for
Hij is that this tensor is isotropic,Hij =CD«di j , whereCD is
an arbitrary model constant. This means that

Gij = −
«

2K
Fs1 + CR +

4

3
CNddi j − CN

Rij

K
G

+
«

3
SCR + CNF4

3
−

RnkRkn

2K2 G − 3CDDRij
−1. s48d

The singularity inGij is removed by the particular choice
3CD=CR+CNf 4

3 −sRnkRkn/2K2dg, which is the choice used in

FIG. 11. Reynolds stresses and anisotropy for case C-2
of Choi and Lumley. Symbols are the experimental
data, lines are the Rotta model predictionssCR=0.8d,
the dashed lines are the SS model predictions, and large
dashed lines are the Model-EG predictions.

FIG. 12. Reynolds stresses and anisotropy for the case
III ,0 from Le Penven, Gence, and Comte-Bellot, ini-
tialized at 0.037. Symbols are the experimental data,
lines are the Rotta model predictionssCR=0.8d, the dot-
ted lines are the SS model predictions, and dashed lines
are the Model-EG predictions.
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most Langevin turbulence models. This gives the following
model constants:

Hij = FCR + CNS4

3
−

RnkRkn

2K2 DG«

3
di j

and

Gij = −
«

2K
Fs1 + CRddi j + CNS4

3
di j −

Rij

K
DG . s49d

Note that with this choice the weak realizability con-
straintCR+CNf 4

3 −sRnkRkn/2K2dgù0 is equivalent to the re-
quirement thatHij be positive definite. Under these circum-
stances, the classic linear return modelswith CN=0d is
obtained using Gij =−s« /2Kds1+CRddi j and Him

=s« /3dCRdim. Model-1 given in Sec. IV fwith CR

= 7
3s2K2/RnkRknd−1 andCN=−2K2/RnkRkng is obtained using

Hij = S 2K2

RnkRkn
D«

3
di j andGij = −

«

2K
S 2K2

RnkRkn
DFdi j +

Rij

K
G .

Model-F, with

CR =
F4

3
−

RmnRnm

2K2 + FG
F1 +

RmnRnm

2K2 − FG andCN =
− 1

F1 +
RmnRnm

2K2 − FG ,

is obtained using

Hij =
«

3
di jFYF1 +

RmnRnm

2K2 − FG
and

Gij = −
«

2K
Fdi j +

Rij

K
GYF1 +

RmnRnm

2K2 − FG .

Note that in the two-component limitHij now goes to zero.
This particular splittingfEq. s7.7dg will be unstable in this
limit. Model-EG, with

CR =
4

3

2K2

RmnRnm
− 1 andCN = −

2K2

RmnRnm
,

is obtained usingHij =0 and

Gij = −
«

2K
S 2K2

RmnRnm
DRij

K
.

This model is therefore incompatible with this splittingsun-
stabled. If Hij is assumed to be isotropicsand nonzerod, then
Gij must become singular in the two-component limit.

A more general splitting is possible ifHij is allowed to
be anisotropic. Classic Langevin models require isotropic
Hij , but the Fokker–Planck model itself only requiresHij to
be positive definite. Assuming a positive definite form,Hij

=CD«di j +CEs« /KdRij implies

Gij = −
«

2K
s1 + CR +

4

3
CN + 2CEddi j

+ sCS− 3CDd
«

3
Rij

−1 + CN
«

2K2Rij , s50d

where CS=CR+CNs 4
3 −RnkRkn/2K2d. Again, to remove the

near singularityCD= 1
3CS can be chosen, but because of the

more general form forHij the srealizabilityd restriction CS

ù0 is no longer required for a well-posed model. The classic
linear return model is obtained usingGij =−s« /2Kds1+CR

+2CEddi j and Him=s« /3dCRdim+CEs« /KdRij . Note that this
splitting has an extra free parameterCE which does not
change the Reynolds stress evolution, but does change the
model. A nonsingular splitting for Model-EG, with

CR =
4

3

2K2

RnkRkn
− 1 and CN = −

2K2

RnkRkn
,

is now given by

Gij = −
«

RnkRkn
Rij −

«

K
CEdi j and Hij =

«

K
CERij ,

whereCE is again an arbitrary parameter. Note thatCE can
actually be determined by a dispersion analysis and is related
to the Kolmorgorov constant.

VIII. DISCUSSION

The return-to-isotropy problem of anisotropic turbulence
has been studied via three very different collision models for
the evolution of the velocity PDF. The simplest collision op-
erator is the BGK approximation to the Boltzmann collision
integral. This collision model,s−« /kdCBGKsf − feqd, is charac-
terized by an inverse time scaleswhich does not depend on
the velocityd. It was shown that if this model is to dissipate
energy correctly, the target state must have considerably less
energy than the current PDF state. Some models even use a
target state with zero energysa delta functiond. The BGK
model produces the classic linear return-to-isotropy model,

with the rate of returnCR=1/sK / K̂−1d determined by the
energy of the target state. The Gaussian PDF is not a solution
of the BGK model even though theoretical and experimental
evidence might suggest that this is desirable.

To overcome the limitations of the BGK model, more
general relaxation models were constructed in which the col-
lision operatorgsvd−hsvdf has a positive-definite velocity
dependent source term and a velocity dependent sink term
that is proportional to the PDF. Previous analysis of this
collision model in the context of turbulence is unknown to
the authors. In Sec. IV prescriptions for the model param-
etersg andh were derived such that the spherical Gaussian is
a solution to the evolution equation. Two models were de-
rived from this analysis, Model-1 assumed that the target

distribution has the same energy as the PDF,K̂ /K=1. It is
only weakly realizable. Model-F assumed that the target dis-

tribution has less energy than the PDF in the ratioK̂ /K=F.
This ratio was chosen because it makes the resulting model
strongly realizable. While these initial parameter-free relax-
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ation models did not perform as well as might be hoped, they
set the stage for the development of the parameter-free
Model-EG.

Model-EG was shown to be the only nonsingular relax-
ation model that has the elliptic Gaussian as a solution. The
equivalent Reynolds stress transport model is totally nonlin-
ear in the Reynolds stresses and was shown to be strongly
realizable. Interestingly, the performance of Model-EG is
quite similar to the linear return to isotropy model. Even the
Sarkar and Speziale model with an opposite sign for the
nonlinear term,CN, performs similarly for the test cases stud-
ied.

To investigate these models further, their trajectories on
the anisotropy invariant map were plotted, and are presented
in Fig. 13. It is well known that the linear Rotta model has
linear trajectories when plotted on this anisotropy invariant
map. The trajectories of the model of Sarkar and Speziale
tend to move downwards and from left to right on this map.
This means that turbulence with two large Reynolds stresses
and one small stress will tend to first approach a state with
only one large stress before approaching full isotropy. This
implies that the intermediate stress decays faster than the
maximum and minimum stresses, which is somewhat
counter intuitive. The models developed in this paper tend to
have the opposite behavior. Turbulence with one large stress
will first decay to a state with two large stresses before ap-
proaching total isotropy. There is no experimental data in the
middle of the triangle that allows us to determine which
behavior is actually correct.

The top boundary of the “triangle” is the two-component
line. The strongly realizable models have trajectories that
stay on this line and move to the left if they start on the
two-component line. This means that if one component of
the turbulence is zero it stays zero for all time, and the two
nonzero stresses approach each othersmutual isotropyd. This
is the expected behavior for two-dimensional turbulence,

which is sometimessbut by no means alwaysd found when
the turbulence is two component. More information about
the turbulencesthan the Reynolds stressd is clearly necessary
to make return models behave correctly in the two-
component limit. Strong realizability seems appropriate
when the two-component turbulence is also two dimensional,
and weak realizability seems appropriate otherwise.

Finally, the relationship between the relaxation models
and the Fokker–Planck collision model

S−
] sGijv j8fd

] Vi
+

]

] Vi
Hij

] f

] Vj
D

was investigated. Like the general relaxation modelsSec. VId
the Fokker–Planck model has the ellipsoidal Gaussian as a
solution. Because it involves derivatives in velocity space,
the Fokker–Planck model is more difficult to implement nu-
merically than relaxation models. However, the Fokker–
Planck modelswith isotropic Hijd has a direct correspon-
dence with the Langevin PDF models. Examination of
Model-EG in this context showed that this model cannot be
implemented with isotropicHij . Instead, the diffusion coeffi-
cient Hij must be proportional toRij .

In this work, fairly reasonable assumptions have been
explored for how large collections of interacting dissipative
particlessturbulent eddiesd might be expected to behave. We
have then explored the modeling implications of these as-
sumptions, and then tested against experimental data and the-
oretical analysissrealizability considerationsd to determine
which assumptions are the most reasonable. The models are
therefore telling us information about the physics.

The primary assumption has been that turbulence tends
toward a spherical or an elliptic Gaussian PDF distribution.
While it is not entirely clear that high Reynolds number de-
caying anisotropic turbulence should become Gaussian
sspherical or ellipticd, these are certainly very reasonable and

FIG. 13. Invariant triangle.sad Sarkar and Speziale,sbd
Model-1, scd Model-F, sdd Model-EG.
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relatively broad starting points. The evidence from this paper
indicates that turbulence does not try to approach a spherical
Gaussiansexcept in the limit as time goes to infinityd. How-
ever we have found that models that assume that the ellip-
soidal Gaussian distribution is a solution appear to have very
interesting predictive and theoretical properties. In particular,
we have determined the unique nonsingularsassuming nature
abhors a singularityd model of this form. The equivalent Rey-
nolds stress transport modelfEq. s41dg has not been proposed
in the past but does have a number of attractive predictive
and theoretical properties. In particular, and probably most
importantly for many modelers, this modelsin its transport
equation formd has absolutely no tunable constants. Less use-
ful, but perhaps just as interesting, this model cannot be
implemented as a classical Lagrangian PDF methodsLange-
vin equationd.

ACKNOWLEDGMENTS

The authors gratefully acknowledge the financial support
of this work by the Office of Naval ResearchsGrant Nos.
N00014-01-1-0483 and N00014-04-1-0267d under the super-
vision of Dr. Ronald Joslin.

APPENDIX A: BHATNAGAR–GROSS–KROOK
MOMENTS

Conservation of masssor probabilityd requires that the
integral of the PDF be equivalent to one for all time. This
means that the integral of its time derivative must be zero.
Starting from the BGK model for the time derivative of dis-
tribution gives the following expression:

E ] f

] t
] v = −

«

sK − K̂d
E s f − s 4

3pK̂d−3/2e3vn8vn8/4Kd ] v.

sA1d

Since both distributions integrate to 1, we can see that

]

] t
E f ] v = 0. sA2d

Conservation of momentum requires that no mean flow
be created by the relaxation process. The mean velocity of
the flow is equivalent to the first moment of the PDF. By
taking the integral over all velocity space, we can show that

E vi
] f

] t
] v = −

«

sK − K̂d
E visf − s 4

3pK̂d−3/2e3vn8vn8/4Kd ] v.

sA3d

Using the fact that the velocity is an independent variable
sfrom timed and splitting the velocity into its mean and fluc-
tuating parts gives

]

] t
E vi f ] v

= −
«

sK − K̂d
HE vi f ] v − uiE s 4

3pK̂d−3/2e3vn8vn8/4K ] v

−E vi8s
4
3pK̂d−3/2e3vn8vn8/4K ] vJ . sA4d

By definition evi f ]v=ui. The second integral on the right-
hand side is equal to 1 and the last integral is zero since it has
an odd integrand, so finally

]

] t
ui = −

«

sK − K̂d
hui − ui − 0j = 0. sA5d

The Reynolds transport equation is obtained by multiplying
the PDF relation equation byvi8v j8 and then integrating over
all velocity space,

E vi8v j8
] f

] t
] v

=
] Rij

] t
= −

«

sK − K̂d
E vi8v j8s f − s 4

3pK̂d−3/2e3vn8vn8/4Kd ] v.

sA6d

This then becomes

]

]t
E vi8v j8f ] v

= −
«

sK − K̂d
HE vi8v j8f ] v

− s 4
3pK̂d−3/2E vi8v j8e

3vn8vn8
4K ] vJ . sA7d

Sinceevi8v j8f ]v=Rij by definition, and the last integral must
be isotropic

] Rij

] t
= −

«

sK − K̂d
hRij − 2

3K̂di jj. sA8d

APPENDIX B: RELAXATION MODEL MOMENTS

Here we verify conservation of mass for the relaxation
models derived in Sec. IV. The method is the same as before
starting from the relaxation model for the PDF,

E ] f

]t
] v =E CMS 3«

2K
s 4

3pK̂d−3/2e−3v̂n8v̂n8/4K̂

−
3«

2K

ṽn8ṽn8

2K + su − ũd2 fD ] v sB1d

with v̂i8=vi − ûi, ṽi8=vi − ũi,
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E ] f

]t
] v = CM

3«

2K
− CM

3«

2K

3E svn8 + un − ũndsvn8 + un − ũnd
2K + su − ũd2 f ] v = 0.

sB2d

Sinceevn8f ]v=0 we get

E ] f

]t
] v = CM

3«

2K
− CM

3«

2K

1

2K + su − ũd2

3E fsun − ũndsun − ũnd + vn8vn8g f ] v = 0.

sB3d

The integrals can be evaluated to give

E ] f

]t
] v = CM

3«

2K
− CM

3«

2K

su − ũd2

2K + su − ũd2

− CM
3«

2K

2K

2K + su − ũd2 = 0. sB4d

Similarly, to verify conservation of momentum we con-
tinue as follows:

E vi
] f

]t
] v =

]ui

]t
=E CMviS 3«

2K
s 4

3pK̂d−3/2e−3v̂n8v̂n8/4K̂

−
3«

2K

ṽn8ṽn8

2K + su − ũd2 fD ] v sB5d

expandingvn8=sun− ũnd+vn8 andvi =ui +vi8 gives

]ui

]t
= CM

3«

2K
ûi

− CM
3«

2K

1

2K + su − ũd2Ssu − ũd2ui

+ 2sun − ũndRin + 2Kui +E vi8vn8vn8f ] vD . sB6d

Conservation requires the above equation be equal to zero,
this implies that

f2K + su − ũd2gsûi − uid = 2Rinsun − ũnd +E vi8vn8vn8f ] v.

sB7d

From Appendix C, we see that iff is Gaussian, the last term
on the right-hand side goes to zero, andui = ũi = ûi confirming
conservation of momentum for Gaussian PDFs. For non-
Gaussian PDFs the above relation must be satisfied.

The Reynolds stress transport equation is also derived
similarly

E vi8v j8
] f

]t
] v =

]Rij

]t

=E CMvi8v j8S 3«

2K
s 4

3pK̂d−3/2e−3v̂n8v̂n8/4K̂

−
3«

2K

ṽn8ṽn8

2K + su − ũd2 fD ] v. sB8d

By substituting in the relationsv̂i8=vi − ûi and ṽi8=vi − ũi the
integrals can be reduced,

]Rij

]t
= CM

3«

2K
E fv̂i8 + sûi − uidg fv̂ j8 + sûj − ujdg

3s 4
3pK̂d−3/2e−3v̂n8v̂n8/4K̂ ] v − CM

3«

2K

1

2K + su − ũd2

3E vi8v j8„sun − ũndsun − ũnd + 2vn8sun − ũnd

+ vn8vn8… f ] v. sB9d

Since ev̂i8s 4
3pK̂d−3/2

e−3v̂n8v̂n8/4K̂]v=0 sdue to the odd inte-
grandd, we get

]Rij

]t
= CM

3«

2K
E fv̂i8v̂ j8 + sûi − uidsûj − ujdg

3s 4
3pK̂d−3/2e−3v̂n8v̂n8/4K̂ ] v − CM

3«

2K

1

2K + su − ũd2

3Ssu − ũd2Rij + 2sun − ũndE vi8v j8vn8f ] v

+E vi8v f8vn8vn8f ] vD . sB10d

The first integral is reduced in terms of “hats,”

]Rij

]t
= CM

3«

2K
f 2

3K̂di j + sûi − uidsûj − ujdg

− CM
3«

2K

1

2K + su − ũd2Ssu − ũd2Rij

+ 2sun − ũndE vi8v j8vn8f ] v +E vi8v j8vn8vn8f ] vD .

sB11d

To ensure the correct dissipation of energy, we require that
the model satisfies the equation]K /]t= 1

2 ]Rii /]t=−«,

−
1

2

]Rii

]t
= « = − CM

3«

2K
fK̂ + 1

2sû − ud2g

+ CM
3e

2K

1

2K + su − ũd2Ssu − ũd2K + sun − ũnd

3E vi8v j8vn8f ] v +
1

2
E vi8v j8vn8vn8f ] vD . sB12d

This can be simplified to
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K̂ +
1

2
sû − ud2 +

2K

3CM

=
1

2K + su − ũd2Ssu − ũd2K + sun − ũnd

3E vi8vi8vn8f ] v +
1

2
E vi8vi8vn8vn8f ] vD sB13d

or finally

S K̂

K
+

1

2K
sû − ud2 +

2

3CM
Ds2K + su − ũd2d

= su − ũd2 +
un − ũn

K
E vi8vi8vn8f ] v

+
1

2K
E vi8vi8vn8vn8f ] v. sB14d

For an elliptic Gaussian PDF the above equation reduces to

K̂

K
+

2

3CM
=

1

4K2E vi8vi8vn8vn8f ] v =
1

4K2sRnnRii + 2RniRnid

sB15d

or alternatively

K̂

K
= 1 −

2

3CM
+

RniRni

2K2 . sB16d

This can be rearranged to become

3

2
CM = S1 −

K̂

K
+

RniRni

2K2 D−1

. sB17d

So if we assume Gaussian form for the PDF, the Rey-
nolds transport equation can be written as follows:

] Rij

] t
=

«

K
S1 −

K̂

K
+

RniRni

2K2 D−1S2

3
K̂di jD

−
«

K
S1 −

K̂

K
+

RniRni

2K2 D−1
1

2K
sRnnRij + 2RniRnjd.

sB18d

This simplifies to

] Rij

] t
=

«

K

1

1 −
K̂

K
+

RmnRmn

2K2

S 2
3K̂di j − Rij −

RniRnj

K
D . sB19d

Rearranging into the classic return model form gives

] Rij

] t
= −

«

K
Rij −

«

K

K̂

K
−

RmnRmn

2K2

1 −
K̂

K
+

RmnRmn

2K2

sRij − 2
3Kdi jd

+
«

K2

1

1 −
K̂

K
+

RmnRmn

2K2

RmnRmn
di j

3

−
«

K2

1

1 −
K̂

K
+

RniRni

2K2

RniRnj. sB20d

And when written as follows, the values ofCR and CN be-
come apparent:

] Rij

] t
= −

«

K
Rij −

«

K1 4

3
+

K̂

K
−

RniRni

2K2

1 −
K̂

K
+

RniRni

2K2

+
4

3

− 1

1 −
K̂

K
+

RniRni

2K2
2

3SRij −
2

3
Kdi jD +

«

K2

− 1

1 −
K̂

K
+

RniRni

2K2

SRniRnj

− RniRni
di j

3
D . sB21d

APPENDIX C: MOMENTS OF A GAUSSIAN
PROBABILITY DENSITY FUNCTION

If we have a PDF of elliptic Gaussian shape we can
write the PDF as

f = fs2pd3detsRnmdg−1/2es1/2dRnm
−1vn8vm8 . sC1d

Since onlyRij is a function of space, this implies that the
derivative satisfies

− Rkl
] f

] vk
= vl8f . sC2d

This allows us to write the third moment as a second moment
and then apply the chain rule,

E vi8vn8vm8 f ] v = − RkmE vi8vn8
] f

] vk
] v

= − RkmE S ] vi8vn8f

] vk
− f

] vi8vn8

] vk
D ] v. sC3d

By Gauss’s divergence theorem the first integral term
goes to zero, sincef →0 at infinity. Differentiating the sec-
ond term gives
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E vi8vn8vm8 f ] v = RkmE fsvi8dnk + vn8dikd ] v

= RnmE vi8f ] v + RimE vn8f ] v = 0, sC4d

which is what we would expect since the PDF is an even
function and the integrand is an odd functionscubicd.

The expressionsA2d and the chain rule is also useful for
evaluating the fourth moment of an elliptic Gaussian,

E vm8 vn8vi8v j8fdv = − RkjE vm8 vn8vi8
] f

] vk
dv

= RkjE f
] vm8 vn8vi8

] vk
dv. sC5d

Taking the derivative gives the fourth moment in terms
of the second moments

=RkjE fsvm8 vn8dik + vn8vi8dmk+ vm8 vi8dnkddv

= RmnRij + RniRmj + RmiRnj. sC6d

APPENDIX D: GENERAL RELAXATION
MOMENTS

Here we verify conservation of mass for the more gen-
eral relaxation models derived in Sec. VI. The method is the
same as before starting from the general relaxation model for
the PDF, Eq.s33d. Conservation of mass then requires that
the right-hand side of the zeroth moment be equal to zero,

E ] f

]t
] v = CM

«

2K
E Piifs2pd3detsR̂nmdg−1/2

3e−s1/2dR̂nm
−1 v̂n8v̂m8 ] v − CM

«

2K

3E PinRim
−1ṽm8 ṽn8

1 + sun − ũndsum − ũmd
Pin

Ppp
Rim

−1

f ] v,

sD1d

E ] f

]t
] v = CM

«

2K
Pii − CM

«

2K

3
PinRim

−1

1 + sun − ũndsum − ũmd
Pin

Ppp
Rim

−1

3E ṽm8 ṽn8f ] v. sD2d

Substituting with ṽi8=vi8+ui − ũi, and recalling that
evm8 f ]v=0 gives

E ] f

]t
] v = CM

«

2K
Pii − CM

«

2K

3
PinRim

−1

1 + sun − ũndsum − ũmd
Pin

Ppp
Rim

−1

3E fvm8 vn8 + sum − ũmdsun − ũndgf ] v, sD3d

E ] f

]t
] v = CM

«

2K
Pii − CM

«

2K

3
PinRim

−1

1 + sun − ũndsum − ũmd
Pin

Ppp
Rim

−1

3fRmn+ sum − ũmdsun − ũndg = 0. sD4d

The momentum equation is the first moment

]up

]t
= CM

«

2Kp
ii
E vpfs2pd3detsR̂nmdg−1/2e−s1/2dR̂nm

−1 v̂n8v̂m8 ] v

− CM
«

2K
E PinRim

−1ṽm8 ṽn8

1 + sun − ũndsum − ũmd
Pin

Ppp
Rim

−1

vpf ] v,

sD5d

]up

]t
= CM

«

2K
Pii ûp

− CM
«

2K

PinRim
−1

1 + sun − ũndsum − ũmd
Pin

Ppp
Rim

−1

3E fvm8 + sum − ũmdgfvn8 + sun − ũndgvpf ] v, sD6d

]up

]t
= CM

«

2K
Pii ûp

− CM
«

2K

PinRim
−1

1 + sun − ũndsum − ũmd
Pin

Ppp
Rim

−1

3SE vm8 vn8vp8f ] v + RmnupD
− CM

«

2K

PinRim
−1

1 + sun − ũndsum − ũmd
Pin

Ppp
Rim

−1

3fRmpsun − ũnd + Rnpsum − ũmd

+ sum − ũmdsun − ũndupg. sD7d

Conservation of momentum therefore requires that
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CM
«

2K
Pii ûp = CM

«

2K

PinRim
−1

1 + sun − ũndsum − ũmd
Pin

Ppp
Rim

−1

3HE vm8 vn8vp8f ] v + Rmnup + fRmpsun − ũnd

+ Rnpsum − ũmd + sum − ũmdsun − ũndupgJ ,

sD8d

which simplifies to

ûpF1 + sun − ũndsum − ũmd
Pin

Ppp
Rim

−1G
=

PinRim
−1

Pii
E vm8 vn8vp8f ] v + up +

Pin

Pii
Rim

−1fRmpsun − ũnd

+ Rnpsum − ũmdg +
Pin

Pii
Rim

−1sum − ũmdsun − ũndup sD9d

and

sûp − updF1 + sun − ũndsum − ũmd
Pin

Ppp
Rim

−1G
=

Pin

Pii
Rim

−1SE vm8 vn8vp8f ] v + Rmpsun − ũnd

+ Rnpsum − ũmdD . sD10d

APPENDIX E: GENERAL REYNOLDS TRANSPORT
EQUATION

Below, the Reynolds transport equation is derived for the
general relaxation model,

]Rlp

]t
= CM

«

2K1PiiE vl8vp8fs2pd3detsR̂nmdg−1/2

3e−s1/2dR̂nm
−1 v̂n8v̂m8 ] v

−E PinRim
−1ṽm8 ṽn8

1 + sun − ũndsum − ũmd
Pin

Ppp
Rim

−1

vl8vp8f ] v2 .

sE1d

Substitution gives

]Rlj

]t
= CM

«

2K̂
PiiE fv̂l8v̂ j8 + sûl − uldsûj − ujdg

3fs2pd3detsR̂nmdg−1/2e−s1/2dR̂nm
−1 v̂n8v̂m8 ] v

− CM
«

2K̂

PinRim
−1

1 + sun − ũndsum − ũmd
Pin

Ppp
Rim

−1

3E vl8v j8ṽm8 ṽn8f ] v, sE2d

]Rlj

]t
= CM

«

2K̂1Pii R̂l j + Piisûl − uldsûj − ujd

−
PinRim

−1

1 + sun − ũndsum − ũmd
Pin

Ppp
Rim

−1
E vl8v j8ṽm8 ṽn8f ] v2 .

sE3d

If we chooseun= ũn and use the general form of the
Reynolds stress model,]Rlj /]t=−s« /2KdsPimRmj+P jmRmid,
we arrive at the following equation:

− sPimRmj + P jmRmid

= CMPiiSR̂lj + sûl − uldsûj − ujd

−
PinRim

−1

Pii
E vl8v j8vm8 vn8f ] vD , sE4d

which gives us the definition ofR̂

R̂lj =
− 1

CMPii
sPimRmj + P jmRmid − sûl − uldsûj − ujd

+
PinRim

−1

Pii
E vl8v j8vm8 vn8f ] v. sE5d
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