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A model for the dissipation rate tensor in inhomogeneous
and anisotropic turbulence
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A model for the dissipation rate tensor in anisotropic inhomogeneous turbulence is developed. By
including terms that depend on gradients a dissipation model is developed that is exact in the limit
of very strong inhomogeneitisuch as near solid walls or free surfacé&apid distortion theory and
equilibrium theory are used to motivate the anisotropic terms in the model. The resulting model has
only one free constantfrom the equilibrium theorywhich is determined via comparisons with
turbulent channel flow at Re=598. priori tests of the model for two shear-free boundary layers,
channel flow at lower Reynolds numbers, and a backward facing step are presented. Full simulations
using the model in channel flow are also performed. Comparisons are made with a variety of
existing tensor dissipation rate models.2604 American Institute of Physics
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I. INTRODUCTION viscous diffusion and dissipatiomate) terms. The diffusion
term does not require a model, and the dissipation term is
given bye;; =2y Uj . This dissipation term is the focus of
the paper. The final two terms, the pressure-gradient velocity
correlation I;; =—(p/;u/ +p/u/), and the turbulent transport

Reynolds stress transpof®ST) equation closures for
turbulence(also referred to as single-point second-momen
closure$ are theoretically capable of predicting a wide vari-
ety of complex industrial flows. However, after many yearstermTijk:ui’uj’u{( also require models. Near a wall, the tur-

of development RST are still not widely used in industrial . . L
o . ) . bulent transport is small and is not critical. The pressure-
applications. This may be because in practice RST models

often do not perform significantly better than two equationgrac."ent vel_oc_ity correlaj[io(nclosely related to the pressure-
models in complex flows. Why has the potential of RSTStra'g t(larn) |sd|m|pofrtart1rtlju3'F ayva;;frortn tz% wall d that
models not been achieved? One possible explanation is th te dizrsiyp;rt]ic(;netgnsc:r w(;s ilzslfgpli?:nan%ngivr:rfst?ynlﬁe ex?)res
the development of RST models ° Iarggly based on quaSIhc;s_ion e =2¢4,;. Note that the dissipationis a scalar equal to
mogeneous or quasi-isotropic assumptibhhese assump- ij=3%9;- p q

tions are frequently not applicable in engineering flows, parPne-half of the trace of the dissipation tensor. The scalar
ticularly those involving walls. dissipation is assumed to be a known quantity that is deter-

In this work, the modeling of strongly inhomogeneousmined by its own transport equation. The assumption of isot-
turbulence is explored. In particular, the focus of this paper i§OPY is based on the argument that large velocity derivatives
on the modeling of one of the unclosed terms in the RrsTshould primarily occur at the smallest turbulence scales and
equations, often referred to as the dissipation rate tensor. Agrbulence is thought to be isotropic at the smallest scales
pointed out by Bradshaw and Pefahis tensor is not actu- (K0|m090r0ﬁ6)-
ally equal to the dissipation rate in inhomogeneous turbulent  While small-scale isotropy of turbulence has support
flows (the case of interest in this papeso for brevity and from some experiments, it is contradicted by some
historical reasons we simply refer to this tensor as the dissiothers>™ The recent theoretical analyses of Hallback,
pation tensor in this paper. Our particular interest in the disGroth, and Johansstfand Durbin and Spezidf¢ suggest
sipation tensor is due to the fact that this term dominates ithat under the action of mean velocity gradients, even the
the region near a wall. Correct prediction of the dissipationsmallest scales and hence the dissipation tensor must become
tensor is therefore an important first step towards accuratanisotropic. Brassetit discusses the issue in detail.

RST models for complex wall bounded turbulent flows. Since it is now widely recognized that the dissipation

The Reynolds stress transport equation can be written aensor is not isotropic in practice, it is often argued that the

dissipation anisotropy should be modeled along with the
dRj =~ (RyU:  + Ry Ui ) + 1Ry =& + T = T pressure-gradient velocity correlation following the practice
dt I T ke E T ke of Lumly and Newmart® There is, indeed, significant evi-
(1) dence to suggest that tlsow pressure-strain correlation and
the dissipation tensor anisotropy are closely related. How-
The first term on the right-hand side is the production termever, it should be observed that the dependence is one way.
It does not need to be modeled. The next two terms are th€he pressure terms respond to and tend to counteract the
production and dissipation terms. Fast pressure strain re-
dElectronic mail: perot@ecs.umass.edu duces the production anisotropy and slow pressure strain
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counteracts the dissipation anisotropy. In order to develoghown that the dissipation tensor anisotropy is not zero, but
effective slow pressure-strain models it is important to behalf of the Reynolds stress anisotropy. The work of Speziale
able to model the dissipation tensor anisotropy first. and Gatsk® suggests that in equilibrium the dissipation ten-

Some insight into the dissipation tensor anisotropy insor anisotropy should depend on the shear stress. Finally,
homogeneous turbulence can be obtained by using a Fouri@erot* has shown that these Reynolds number dependent
decomposition of the fluctuating velocity field. The dissipa-models are not correct for boundaries other than walls, such
tion tensor can then be written a§:f2vk2ﬁi’l]j’*dk. If the  as slip walls or free surfaces.
turbulence exists almost entirely at one wave-number mag- In order to account for the rapid distortion the¢BDT)
nitude thenk? can be removed from the integral amg  limit Hallback, Groth, and JohanssBn(HGJ) proposed a
:2vk2Rij, or solving in terms of the scalar dissipatieg nonlinear dissipation tensor model. This model adds an ad-
=(e/K)Rj;. This model was first proposed by Rotfat sug-  ditional term proportional to the square of the anisotropy and
gests that the dissipation anisotropy is equal to the Reynoldgas the form
stress anisotropy; =(8ij/e)—§5ij :(R”-/K)—§5ij =g;. In de- ) L
caying turbulence, at low turbulent Reynolds numbers only & =3&d; + fiea; + e (yay = 311ady ). 3
the large-scale structurga single significank magnitude
exists and this model for the dissipation tensor becomes exwherell ,=a;a; and the functions are given =3+,
act. The Rotta model is therefore frequently referred to as thend f,=—3. This model is realizable, meaning that the dissi-
low Reynolds number limit. However, it should be noted thatpation tensor in a certain direction is zero if the turbulence in
in many low turbulent Reynolds number situatigissich as  that direction is zero. A similar model that depends on the
near wall$ this critical hypothesis of a single wave number two-componentality parameteF,=def(3R;)/2k] was sug-
magnitude is not satisfied. gested by Sjogren and Johangéor(s\y. The two-

A number of dissipation tensor mod&id® are based on componentality factoF is 1 in isotropic turbulence and 0 in
the idea of blending the isotropic model and the Rotta modelwo-component2C) turbulence such as near a wall or a free
using a function that depends on the turbulent Reynoldsurface. Initial calibration of the SJ model suggefts1

number. These models have the form, -0.67F andf,=-1.18 (and these are the values used in our
testy. However, ultimately the SJ model usﬁsl—%F and
gj=(1 —f)%séij +f(e/K)R; = %sé‘ij +feay, (2) f,=0. This final SJ model goes to the Rotta model in the 2C

limit, and satisfies the RDT condition that the dissipation
wheref is 1 at low turbulent Reynolds numbers and 0 at highanisotropy is half the Reynolds stress anisotropy under the
Reynolds numbers. The model of Hanjalic and Lautftier action of large mean strains. These more complex models
used f=1/[1+0.1k?/ve)]. This model did not show very perform well (away from boundarigsand will be used for
good agreement with direct numerical simulat{@®NS) data  comparison in Sec. V where the model performance is evalu-
of channel flow at Re=18(Ref. 19 where the simpler ex- ated.
pressionf=1 (i.e., the Rotta modglwas shown to perform Speziale and GatsKihave proposed an algebraic formu-
better. Hallback, Johansson, and Buft?qwoposedf:l/[l lation for the dissipation tensor that is similar in construction
+(31/57)(KY2L;)/v] whereL; is the integral length scale. to algebraic models for the Reynolds stress tensor. In the
Note that the turbulent Reynolds number approaches zen@sulting model the dissipation tensor anisotropy is solely a
near a wall, so any formulation that uses a Reynolds numbeunction of the mean velocity gradients. Unfortunately, the
dependent blending functiqsuch as those described abpve resulting model reverts to th@ncorrec) isotropic model in
will go from approximately isotropic dissipation in the free the absence of mean velocity gradients. This model is there-
stream to the Rotta model near the wall. An asymptotic exfore incapable of representing the shear-free boundary layers
pansion of the dissipation tensor near the w@&@ec. 1l)  studied in Sec. V. However, the basic premise of using mean
shows that the Rotta model captures the zeroth order termeelocity gradients to parametrize the dissipation anisotropy
correctly at a wall, so these models show improvement ove(particularly in the equilibrium limit is a reasonable idea
pure isotropic dissipation for wall bounded flows. which is adopted later.

Other researchets? have proposed using models other  Transport equations for the dissipation tensor can also be
than the Rotta model for the near wabr low Reynolds formulated?®?® The Speziale and Gatski model mentioned
numbej region. These models have the formizgséij above is a simplification of such a transport equation. How-
+fe®, where the wall mode#}™" is trace free. Ofterg]'is  ever, this level of complexity may be unwarranted at this
defined in terms of the wall normal vector, which is ill de- time given the level of model uncertainty in the other RST
fined away from the wall or at corners. In addition, in thesemodel termgparticularly the pressure-strain

models the form oia}’jva" is formulated specifically for walls In Sec. Il of this paper, near boundary terms for the
and is incorrect at a free surface or at any other boundarglissipation tensor are developed that are accurate near walls
other than a wall. and surfaces. These near wall terms are derived from first

While Reynolds number dependent models capture therinciples and introduce no model constants. Section Il ana-
near wall region better, they all revert to the isotropic modellyzes the near wall asymptotics of these models near both
at high Re numbers and evidence suggests that even in thealls and free surfaces, and considers the limit of strong
high Re limit the dissipation tensor is not isotropic. In theinhomogeneity. In Sec. IV the model development in regions
rapid distortion limit Hallback, Groth, and Johans¥ohave away from boundaries is consideredl.priori tests of the
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model are presented in Sec. V and compared with a varietiower triangular, for example. The symmetric square root,
of existing model formulations. A brief discussion and con-however, seems to be the most natural. Like regular square
clusions appear in Sec. VI. roots, the sign of) is also not well defined. Sind® always
appears in pairs, this distinction is not important. With this
definition of Q, the second term of E@5) is identically zero,
and the model is given by

In strongly inhomogeneous flows, turbulent correlations
such as the dissipation tensor change rapidly as a function of
their position. Some of the change with position is due a
change in the underlying structure of the turbulence. How-
ever, most of the change is simply due to the spatial chang&here the fourth term of Eq5) is assumed to be negligible.
in the turbulence intensity. In the specific case of the dissi-  This near wall model is elegant, but inconvenient to
pation tensorg;; :zyui”kuj"k, the dissipation can change spa- implement. FindingQ requir_es determining th_e eigen\(ectors
tially for two reasons. Either the gradients correlate differ-and eigenvalues oR. In this paper we consider a simpler
ently, or (more likely) the magnitude of the velocity implementation of Eq(5). In order to gain implementation
fluctuations has simply changed. These different effects cagimplicity we therefore assume th is isotropic and is
be isolated by using the following decomposition. Let thescaled by the turbulent kinetic energy; =K*25;. With this
fluctuating velocity be decomposed as=Q;T;. The tensor ~ definition of Q, Eq.(4) gives the relatioR;/K=Ti; and the
Q; is assumed to be a known quantitglated to the velocity fourth term in Eq.(5) is identically zero. Equatiok5) then
fluctuation magnitude It is an average quantity and does not becomes
change in time for statistically steady flows or along homo-
geneous directions. The underlying temporal and spatial fluc- R R
tuations of the velocity field are captured by the dimension- & = 2u(K'/?) ,(K¥?) .~ + vK,n<—l) +Kg;), (73
less quantityd;. Changes in the dissipation due to changes in K K/
the turbulence magnitude will be captured@y. Changes in
the underlying turbulent structure will be manifesttn which is an exact relation. This can alternatively be written

Substituting this formula into the equation for the Rey-as
nolds stress tensor gives a relationship between the structure
correlation and the Reynolds stress tensor:

Ri ), e
Rij = ui, U]-' = Qinﬁanmﬁm = QinUanQjm- (4) &ij = Zy(Kl/Z)*n<FJ/_2) n * KS” ' (7b)

The magnitude tensor is not a fluctuating quantity and there-
fore can come out of the average. Substituting this decomNote that Eq.(7) only becomes a dissipation tensor model
position into the dissipation tensor formula gives when a quasihomogeneous dissipation tensor mofiel
_ T = = = = Kz;)) is hypothesized. The quasihomogeneous dissipation
i = 2vU5 Ui = 20(Qi U + Qipu imkUm + Qimu g . o
i = 20Uy = 20(Qinithn + Qinlinid Qi+ Qimtmid 40061 be significantly easier to model than the dissi-
_ — 1 = pation tensor itself. The quasihomogeneous model is dis-
_ZV{Qi“kavaku“u’“Jr z(Qi“Qim)vk(ﬁmu”)vk cussed in Sec. IV. In the following section, the near wall
behavior of Eq(7) is analyzed.

II. MODELING STRONG INHOMOGENEITY

&jj = 2VQin,ijn,k"' QinEanjmu (6)

+ Qianman,kam,k
1 -
+ E(Qin,ijm - Qianm,k)mm,kan _Uman,k)} . (5)

If it is required thatQ;; be invertible then the first two terms Ill. ASYMPTOTIC ANALYSIS NEAR BOUNDARIES

in the expression can be found from Eg) and are exact.

The third term is the dissipation of the velocity structure. It ~ The behavior of turbulence quantities near a boundary
requires a model. However, the velocity structure is quasihoean be determined by using Taylor series expansions in the
mogeneougby design, and so standard dissipation models coordinate direction normal to the boundatyaunder and

are expected to perform well in this context. The final term isReynoIdél). Using the convention thatis the direction nor-

the product of two differences. It is assumed to be small ananal to a wall the fluctuating velocity can be expanded as
evidence to that effect can be found in Ref. 29. In regions of
strong inhomogeneity the first term dominates and .
becomes exact irrespective of the model used for the third
term in Eq.(5) or the size of the fourth term.

One possible definition fo;; is that it represents all the At a solid wall the velocity goes to zero, so all thgare
magnitude information(Perot and Moif’). In this case zero. Continuity applied very close to the wall implibs
Uplim= 8,mand Eq(4) becomesR; =Q,,Q;, or R=QQ"andQ  =0.
is the matrix square root of the Reynolds stress tensor. This  Substituting Eq(8) into the definition for the dissipation
definition of Q is actually not uniqueQ) can be symmetric or tells us that near a wall,

U =820 +YBZY + Y620 + -+ (®)
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£11= 2v{(b2 + Y(4b101) + y2(401 + 6b1d1 + b1 o+ b 3) The t_)oundary _conditions ata _slip wadr stationary_ free
surface, impose different constraints on the expansion. We
ok now find thatb;=a,=b;=0, and continuity implies
812= 20{y(2b1Cy) + y(3byd, + 4ciC)) +y(4bye, + 6C1d, 81+ ag,+b, =0
+6d;c, + by 1Co1+ D1 sCoa) + o0}, (9 At a stationary free surface the dissipation behaves as
£50= 2V{y2(4c_§) +y3(12c,d,) + y4(9d_§ +16C,€, + gl €117 ZV{(%"' g,s) +yX(aq1C11+ 8 L1 3+ 40_%) + o0k
+ @ 4+ ... }

E10= 2V{y(a1’1b2'1+ a1’3b2‘3+ 2@) + yz(al,lcz,l

The e33 component behaves just likg,. A similar expansion _— — —
for the Reynolds stress tensor can also be performed: + 8,40 3+ 30yb,y +4CiC) + -+, 11

2 3 _ -
Rii=y (b )+y (2b101) o, . 2V{(b§) +y(4cby) + -+ 1,

Ri2= y3(01C,) + y4(bydy + i) + -+ (100 and the Reynolds stress tensor is
Roz= yH(C5) +Y°(2e5dy) + -+ Ry = (a) +y*(2aycy) + -,
The leading order terms in the dissipation tensor and the —_—
Reynolds stress tensor are very similar. However, the coeffi- Ri2= y(aiby) +y“(aycy) + -+, (12)
cient is different in each case. Rotta’'s model gets tt 0
terms of the dissipation tensor correcilye., the leading Ry, = yz(b)+y3(2b202)+

term of theeq; and 33 expansiol, but it will underpredict

the leading order terms of the other two dissipation compoAt a free surface there is no longer a clear relationship be-

nents. Although the wall is at a low turbulent Reynolds num-tween the dissipation tensor and the Reynolds stress tensor.

ber, Rotta’s model does not work entirely correctly. The am-Rotta’s model will cause,, to be zero at the surface when it

plitude of fluctuations normal to the wall and those parallelshould be finite. Also note that a free surface is no longer a

to the wall are very different, and the basic assumptions useldw turbulent Reynolds number situation, so blending mod-

to derive the Rotta model are violated. els[Eq. (2)] will produce the isotropic limit near the surface.
Even if leading order terms of;, and e,, are wrong, The isotropic model does give a finite value fgg but it will

does it matter? They still go to zero at the wall. Interestingly,be shown in Sec. V that it is far too large, and that the

if wall functions are not used it matters a great deaing  dissipation near a free surface is not close to isotropic.

wall functions with a RST model largely defeats the purpose  The near boundary behavior of the proposed model can

of having a RST model, see Spez?ﬁ}e Near the wall, the be determined from the behavior of the Reynolds stresses.

dissipation and pressure-gradient velocity correlation exactlfFor a no-slip wall we find that

balance the diffusion term. If the leading order behavior of -

the dissipation is incorrect, the Reynolds stresses are too K=y? (b2+b)+y 5(2bicy + 2bgcy) + - -+ (13

large near the wall and as a result they are also too large

away from the wall. Trying to reduce these Reynolds stressegnd

via terms in the mode(rather than fixing the root cause

often leads to instability in the wall bounded RST equat|on( 1/2) (KI/Z) =

system. Note that one reason elliptic relaxation models work

well has nothing to do with ellipticity. These models allow K. \2

an extra boundary condition to be imposg@ibcause they (—k>

hypothesize an extra equatjonThis additional boundary K

condition forces the correct near wall behavior of the Rey- 1{ (2b1c1+ 2b303) }

nolds stresses. In essence, the elliptic relation forces the near = ? (bz+ b2 2) (14)
wall behavior of the dissipation tensor to be correct via ad-
ditional boundary conditions. In standard RST modelsp|ugglng into the model equatidiEq. (7)] gives
(where six additional equations and their boundary condi-
tions are not availabje correct leading order behavior of 811:2,,{(?1) +y(4b,cy) + O(y)} + K311,
each dissipation term is highly desirable.
As mentioned earlier, it is also possible to formulate
models with the correct near wall asymptotics by using the £10= ZV{y(ZE) + y2<3@+ 3;02
wall normal vector or distance to the wall along with a
blending function. This works, and is standard practice, but —(R+W)
these models have serious deficiencies in their generality. +b1c2%) +O(Y3) [ + KZ1p, (15)
Typically they workonly at walls. (b1 +b3)
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(E+@)) very clearly. The importance of this 2C correction is demon-

£22= 2 YA(3C)) +y3<8@+ 2c3 = .2 strated in Sec. V.
(b7 +b3)

+ O(YA)} +Kgp,.

So the proposed expression for the dissipation tefiggqr V. QUASIHOMOGENEOUS DISSIPATION

(7)] captures theD(1) and O(y) terms exactly and at least

75% of the O(y?) terms, when implemented near a wall. In homogeneous turbulence, the boundé@oy gradient
SinceK is O(y?) this analysis shows that the quasihomoge-terms drop out entirely and the quasihomogeneous dissipa-
neous dissipation model can be as highO4$) at the walls, tion remains to be modeled. Hallback, Johansson, and
without affecting the near wall asymptotics described aboveBurderf® show that in initially isotropic homogeneous turbu-
Before considering the behavior of the quasihomogeneouence the dissipation anisotropy should be half of the Rey-
dissipation tensor in any more detail, let us consider the benolds stress anisotropy under the action of rapid irrotational
havior of the proposed decompositipeg. (7)] near a free strain or shear. This will be referred to as the RDT limit. The

surface. experiments of Cro# and Lee and Reynoldsshow that
Near a free surface the kinetic energy is given by this ratio does not remaié when the turbulence is aniso-
1 gy — | o——  — tropic, and in the extreme limit of axisymmetric 2C turbu-
K=3(a] +ag) +y5(0Cp+ 28,C; + 2a5C5) + -+ (160 |ence it is seen to be close to(which is the Rotta modgl
and The practice of expanding model parameters in polyno-
mial expansions of the potential unknowns is a rational way
K. \2 1 2 11 2 to proceed, and is certainly viable when the unknowns are
(2_Kk> :{{5(?1’“%),1] + [E(;ﬁ%),s} }/[(Ef known to be small. However, when the objective is to cap-
- ture an entire functional range the use of polynomial expan-
+a3) ]2+ 0(y?). sions can be detrimental. Rational polynomials have a

greater fitting capability. In this work, we propose a simple
tensorally linear model for the quasihomogeneous dissipa-
tion, in which the blending parametéris a function ofF.
K,k(—ll> =0(1), This is similar to the models of Johansson, however, we
K/ hypothesize a rational polynomial expansidm1/(1+F),

We can also show that

rather than a simple polynomial series. This results in the
KK<R—12> =0(y), (17h) quasihomogegeous modeEi-:E[F/(1+F)§5,j+12/(1+F)
Kk x(aj/K)]:s[gaij+1/(1+F)@J and g;=(R;/K)-58;. In
isotropic turbulence, this model gives the correct RDT aniso-
R\ _ 5 tropy ratio of £, and in 2C turbulence it gives the correct
Kk K k—O(y ), anisotropy ratio of 1. In theory, a slightly more complex
blending might be desired in whicti=1/[1+g(Rep)F],
so the near boundary terms in E@) have the same type of where the functiorg goes to zero as the turbulent Reynolds
behavior. This requires thg, model to go likeO(y) near the  number becomes small and approaches 1 at high turbulent
surface an@&,, to beO(1). Looking at the exact expressions Reynolds numbers. We have not pursued this added level of
for the dissipation tensor near a free surface it is clear thatomplexity at this time.
capturing the leading order;; and g, terms exactly is not Finally, we note that the dissipation anisotropy could be
possible. Derivative information is not available to a RSTa function of the mean flow gradients, not just the Reynolds
model. However, the leading two terms of thg expression  stress anisotropy. Typically, dissipation anisotropy is not
can, in theory, be obtained exactly from Reynolds stress inmodeled in this way because one does not expect sudden
formation. Also note that the error in both the wall and free-changes in the mean flow to have an instantaneous affect on
surface expressions fek, can be represented 99v/y*)R,,.  the dissipation. However, in equilibrium situations, there
The error is the same irrespective of the boundary type. Atould be a good correlation between the two tensors. Rey-
both boundaries, the flow becomes two component, so waolds stresses are frequently modeled using this type of hy-
will use the 2C parametd¥ to model this missing contribu- pothesis(eddy viscosity hypothesis of Bousingsdn fact,
tion for £,,. This extra term is 2(F¥9) (F¥?) \R,.8;/F.  models which only depend on the Reynolds stress anisotropy
Technically we are now modeling the quasihomogeneouwill have the dissipation anisotropy aligned along the same
dissipationKs;;. This is the near boundary contribution of the principal directions as the Reynolds stress anisotropy. We
guasihomogeneous dissipation due to the 2C nature of thenow that these anisotropy directions are not always aligned
turbulence near these boundaries. This term is higher ordéin channel flow they disagree by 8°wt =30). In this work
for 15 and e, terms near both walls and free surfaces, andwve therefore hypothesize that the quasinomogeneous dissipa-
so it only affects thes,, dissipation component. At a solid tion tensor can also be a linear function of the shear-stress
wall, this enhancement has only a very small affect on th&ensor,sj:%(Ui,j+Uj,i).
model. However, at a free surface the 2C affects can be seen The model for the dissipation tensor then becomes
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FIG. 1. Dissipation anisotropy in axi-
symmetric contraction. Open triangles
denote the experimental data of Crow
(Ref. 33 [S,(t=0)=0.5-2.0,Rg
~15-104, open circles denote the
experimental data of Lee and Rey-
nolds  (Ref. 34 [S,(t=0)
~0.97 to 0.71,Re=50], thick
dashed line denotes HGJ model, thin
line denotes isotropic model, thin
dashed line denotes Rotta model, and
thick line denotes the proposed model.
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-0.64 -0.56 -0.48 0.4 -0.32 -0.24 -0.16 -0.08 [¢]
G,
. disagreement is large enough, the numerical implementation
— 1/2 \2 51 ~_F E ' o . .
&ij = 2v(K™7 )Ry + VK,k( K ) k+81 +F35iJK (not the model becomes unstable. Quantities with high

power law behaviofR,,=0(y?#] can be quite hard to differ-
entiate accurately with low order numerical methods. For
this reason, the anisotropy equatiamather than Reynolds
stress equationgre somewhat easier to solve with low order
numerical methods.

1 Fl/2 1/2
YE Rt zv%@j +C*KS;. (18)

The single paramete* =0.18F/(1+F)? is set by compar-
ing thee,, component of turbulent channel flow at Re=590.
In theory, the constant* should be a function ofe/SK),
such thatC* goes to zero wher(e/SK) is zero(the RDT
limit). We have not explored this level of detail in this work. In this section, the proposed dissipation mdded. (18)]

The scalaf§=§7a” is the trace of the quasihomogeneousis compared against experimental and DNS data. The perfor-
dissipation. It has units of inverse time or frequency and camance of the model is compared to a number of other dissi-
be obtained by taking one-half the trace of Etg), Ke=¢ pation tensor models that have been mentioned in the text.
- 2u(KY2 )2-3u(F¥? R, F"2)/F. The quasihomogeneous The majority of the tests ar priori tests using data for the
dissipatione (or its closely related forn=Kz) is an inter- Reynolds stresses and dissipation plugged directly into Eq.
esting inverse time scale that has been used previously if18).
some near wall turbulence model®g.g., Launder and These tests are a useful way to directly isolate if the
Sharm85). It is attractive because at a wall it is finite, model can represent the dissipation tensor accurately. How-
whereas the standard inverse timesdal) is singular and  ever, it is possible to construct models, which perform well
goes likey™? at a wall. Note that from its definitiors is a  in a priori tests but do not perform well in practice. These
positive quantity. However, due to numerical inaccuracy inmodels are unstable and move away from the desired solu-
the calculation of gradients, calculatizgfrom the formula tion rather than towards it. To demonstrate stability we will
above can lead to large errors or negative values when impledso present at the end of this section some solutions of tur-
mented on a computer. In practical implementation either dulent channel flow that use this dissipation tensor model in
transport equation is solved directly f@r rather than the a full RST prediction.
more commore transport equatiofas in many low Re num- Our first test case does not involve the inhomogeneous
ber k/e modely, or we sometimes us&=(s/K)1/[1 terms at all. It is a test of the quasihomogeneous part of the
+101| V(KY?)|/K] to guarantee a positive inverse timescalemodel. Figure 1 shows the model performance in axisym-
with finite near wall behavior. metric rapid contraction of homogeneous turbulence. In this

While the proposed moddEq. (18)] looks somewhat flow the turbulence is initially isotropic and becomes in-
complex, it is relatively easy to implement. Many of the creasingly 2C as time proceeds. Because the turbulence is
terms combine with similar looking terms in the pressure-axisymmetric only one component of the dissipation needs to
strain model, and if the Reynolds stress anisotropy equatiohe analyzed. The figure shows teg component as a func-
is solved rather than the RST equation, then some of thdon of a;;, at various times during the simulatigexperi-
terms drop out or simplify even further. meny. The isotropic model gives a flat line, and the dashed

It is important when implementing this model to have aline with a slope of 1 is the Rotta model. This is a relatively
numerical method that is capable of accurately calculatindiigh Reynolds number test case, so models that switch be-
gradients. At the wall, certain terms should exactly balancetween the isotropic model and the Rotta model based on a
Numerically they will only approximately balance and if the blending parameter, which is a function of the turbulent Rey-

V. MODEL RESULTS
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FIG. 2. Shear-free turbulent boundary layer next to a solid wall. Circles denote DNS data of Perot andRb&foidg, thick dashed line denotes isotropic
model, thin dashed line denotes Rotta model, thin line denotes HGJ model, and thick line denotes proposed model.
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FIG. 3. Shear-free turbulent boundary layer next to a free sur{8e= Fig. 2 for caption.

0.00048

0.0004

0.00024

0.00016

BES

BES L : : BES : L :
0 05 01 015 02 025 03 035 04 045 05 0 005 [ R] 015 02 0% 03 (>3 04 045 05
y y
a) Shear-free surface b) Shear-free wall

FIG. 4. Each term in Eq(18) for shear-free turbulent boundary layers at time 2.0. The chain dotted line derwﬁte’éz’g)zR” +E(F/1+F)§§,JK+E(1/1
+F)R;, thin line denotesK (R;/K),, and thick line denotesiF*? R, F"2,/F)K3;. The shear-stress term is zero for both these flows.
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FIG. 5. Dissipation tensor in channel fldi®e=590. Circles denote DNS data from Ref. 37, long dashed line denotes SJ model, chained dashed line denotes
HGJ model, and thick line denotes proposed mogglthe figure ofey,, thick dashed line represents the proposed model without the shear-stregs term.

FIG. 7. Dissipation anisotropies in channel flgiRe=180. Circles denote DNS data from Ref. 37 and thick line denotes proposed model.
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FIG. 8. Dissipation anisotropies in rotating channel fig&d0=0.15,Re=19 Circles denote DNS data from Ref. 38 and thick line denotes proposed model.
Thin line in the last figure is the model witG* =0.

nolds number(most modely will be essentially isotropic to a solid wall are compared with DNS dafaLike the pre-
(very close to a horizontal line through the origithe HGJ  vious case, this flow is axisymmetric and time developing,
model was designed for this flow and therefore performsut unlike the previous case, it also has strong gradients in
well for this case. The SJ modglot shown performs much  the direction normal to the wall. The figure shows the

like HGJ. dissipation at two different times after the wall appears. As

Next, we wish to examine the inhomogeneous terr_ns_predicted by the asymptotic analysis, the Rotta model is too
The guasihomogeneous term cannot be completely elimi- . .
) . small near the wall. The HGJ model transits from a combi-

nated in any flow, but shear-free boundary layers provide an . (1 i &R I ; h I
opportunity to evaluate the model in a strongly inhomoge-natlon of; Isotropic and; Rotta well away irom the wall to

neous situation with few other complicating effects. In Fig.all Rotta near the wall where the turbulence is 2C. The SJ
2, the model predictions of a shear-free boundary layer nexiodel(not shown is almost identical to HGJ. Other models

FIG. 9. Dissipation tensor in the flow over backward-facing &gt h). Circles denote DNS data from Ref. 39, long dashed line denotes the isotropic model,

chain-dotted line denotes the Rotta model, thin line denotes the SJ model, the small dashed line denotes the HGJ model, and the thick line denotes the

proposed model.
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FIG. 10. Dissipation tensor in the flow over backward-facing st h). Circles denote DNS data from Ref. 39, long dashed line denotes the isotropic
model, chain-dotted line denotes the Rotta model, thin line denotes the SJ model, the small dashed line denotes the HGJ model, and the thiskiiee denote
proposed model.

which blend the isotropic and Rotta models based on the In Fig. 4, the various terms in the present model are split
Reynolds number will behave like the Rotta model near theout so that the magnitude and location of each contribution
wall. All but the proposed model, underpredict the normalcan be ascertained. Figuréajtis the shear-free surface at
dissipation component near the wall. time 2.0 and Fig. &) is the shear-free wall at time 2.0. It is
The shear-free boundary layer next to stationary-freeclear that the term involvingi2F*? R, .F'/2 )/F is critical
surface is shown in Fig. 3. Again two times are shown, andn the free-surface case.
the definitions of the lines and symbols are the same as in In Fig. 5 the model is tested in turbulent channel flow at
Fig. 2. This flow is no longer low Reynolds number near theRe=590:" The proposed model performs well for all the
surface, and so the underprediction of the Rotta and HGdissipation components. The other models have difficulty
models is even more obvious in this case. Most of the othepredicting thes;, ande,, components. The value &* was
models will behave like the isotropic model for this flow. tuned foreq, in this case. WithC* =0, the small dashed line
The proposed model captures the near-surface dissipatios obtained. The model predictions for channel flow at Re
correctly using no adjustable constants. =395 and Re=180 are shown in Figs. 6 and 7, respectively.

84

FIG. 11. Dissipation tensor in the flow over backward-facing $&pl0 h). Circles denote DNS data from Ref. 39, long dashed line denotes the isotropic
model, chain-dotted line denotes the Rotta model, thin line denotes the SJ model, the small dashed line denotes the HGJ model, and the thiskitiee denote
proposed model.
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1

y

FIG. 12. Dissipation anisotropies in flow over backward-facing ¢t h). Circles denote DNS data from Ref. 39, chained dashed line denotes SJ model,
dashed line denotes HGJ model, thin line denotes SJ model without nonlinear term, thick line denotes HGJ model without nonlinear term.

The lowest Reynolds number case shows some discrepanciescovery. The figures show good agreement with the DNS
for £4,. This might be fixed by making* a function of  datd® in the turning mixing layer. The boundary layer near
e/SK as suggested earlier. the wall is more difficult to see, but behaves similarly to the
The behavior of the model in rotating channel flow is previous channel flow results. In the mixing layer, this ten-
shown in Fig. 8. The test case is the Ro=0.15 DNS case dforaly linear model performs similarlor better in thes;,
Andersson and Kristofferséhat a Re of 194. The model case to the more complex nonlinear model of HGJ and is
does a good job of predicting the very different behaviors ormuch more accurate than the isotropic and Rotta models.
each side of the channétspecially given the very low Re It is interesting to quantify the effect of the nonlinear
number of the simulation term in the SJ and HGJ models. In Fig. 12, these models are
The proposed model is compared with DNS data for theshown withf, set to zero, for the 7 h downstream location
flow past a backward facing step in Figs. 9-11. Several loon the backward-facing step. The contribution of the nonlin-
cations are shown, both befof4 h) and neaK6 h) reattach- ear term is not that large, given its added complexity we have
ment, and well downstreafd0 h) during the boundary layer chosen to follow the example of Sjégren and Johansson and
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FIG. 13. Channel flow(Re=590. Circles denote DNS data from Ref. 37 and thick line denotes full RST model predictions.
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FIG. 14. Full RST prediction of the mean velocity in rotating channel flBw=0.15,Re =194 Circles denote DNS data from Ref. 38 and thick line denotes
the model prediction.

not include such a nonlinear term in the proposed model. Thprove the model performance in regions where gradients are
choice of the functionf=1/(1+F) allows us to satisfy the large.
RDT limit and realizability without the nonlinear term It is interesting to note that the resulting gradient terms
present. do have associations in other contexts. The term
A priori tests such as those described above can be vedw(KY?) (K?) 'is a common modification of the dissipa-
informative about the quality of a model. Nevertheless, it istion near a wall such that time scales at the wall remain
possible to formulate models which work wellarpriori test  finite, and the termvK (R;;/K) , appears in the Reynolds
but which fail in practice due to the inherent instability of the stress anisotropy transport equation.
proposed formulation. The proposed dissipation model has The quasihomogeneous term in Ef) is in many senses
been incorporated into a full RST closure and solved forthe harder part of the dissipation tensor to model. Our quasi-
turbulent channel flow. The details of the full RST closurehomogeneous model introduces a parameter to represent the
are given by Natd® Results of these simulations for channel affects of mean strain on the dissipation. In theory, this term
flow at Re=590 are shown in Fig. 13, and for the rotatingshould only be present in equilibrium situatiofvghen pro-
channel flow case in Fig. 14. These full model results araduction is roughly equal to dissipatipnThe near-wall 2C
highly dependent on the chosen pressure-strain model. Thegrm does not introduce any addition model constants but is,
are not, therefore, an indication of the accuracy of the dissilike the strain dependent term, motivated rather than derived.
pation tensor model. They are, however, an indication of thé-ortunately, these two modifications are not large in most
dissipation tensor model’s stability and computability. flow situations. The bulk of the dissipation model is carried
by the termz(F/{1+F})58,K+5(1/{1+F})R;. This model
satisfies an RDT limit and is realizable in the 2C limit. It
VI. CONCLUSION agrees reasonably well with data from axisymmetric expan-
The proposed model for the dissipation tensor deviategion.at both small and Iarge anisotrqpies. The key innovation
from all prior models in its use of terms which involve gra- in this term of the_model is the functional form of the b_lend-
. . " ing parametef. It is suggested that the common practice of
dients of various turbulence quantities. The appearance of : 2 . .
these gradient terms is not particularly surprising. There is ngxpgndlng parameters n simple polynomial series can be
. . ._detrimental. Such expansions do not perform well when the
reason to believe that the source terms in the RST equatm%%(pansion variablésuch asF) is O(1)
should not be functions of such gradients and, in fact, there is '
every reason to believe that gradients should dominate in
regions of strong inhomogeneity, such as near walls. ACKNOWLEDGMENT
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