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A model for the dissipation rate tensor in anisotropic inhomogeneous turbulence is developed. By
including terms that depend on gradients a dissipation model is developed that is exact in the limit
of very strong inhomogeneity(such as near solid walls or free surfaces). Rapid distortion theory and
equilibrium theory are used to motivate the anisotropic terms in the model. The resulting model has
only one free constant(from the equilibrium theory) which is determined via comparisons with
turbulent channel flow at Re=590.A priori tests of the model for two shear-free boundary layers,
channel flow at lower Reynolds numbers, and a backward facing step are presented. Full simulations
using the model in channel flow are also performed. Comparisons are made with a variety of
existing tensor dissipation rate models. ©2004 American Institute of Physics.
[DOI: 10.1063/1.1801392]

I. INTRODUCTION

Reynolds stress transport(RST) equation closures for
turbulence(also referred to as single-point second-moment
closures) are theoretically capable of predicting a wide vari-
ety of complex industrial flows. However, after many years
of development RST are still not widely used in industrial
applications. This may be because in practice RST models
often do not perform significantly better than two equation
models in complex flows. Why has the potential of RST
models not been achieved? One possible explanation is that
the development of RST models is largely based on quasiho-
mogeneous or quasi-isotropic assumptions.1,2 These assump-
tions are frequently not applicable in engineering flows, par-
ticularly those involving walls.

In this work, the modeling of strongly inhomogeneous
turbulence is explored. In particular, the focus of this paper is
on the modeling of one of the unclosed terms in the RST
equations, often referred to as the dissipation rate tensor. As
pointed out by Bradshaw and Perot,3 this tensor is not actu-
ally equal to the dissipation rate in inhomogeneous turbulent
flows (the case of interest in this paper), so for brevity and
historical reasons we simply refer to this tensor as the dissi-
pation tensor in this paper. Our particular interest in the dis-
sipation tensor is due to the fact that this term dominates in
the region near a wall. Correct prediction of the dissipation
tensor is therefore an important first step towards accurate
RST models for complex wall bounded turbulent flows.

The Reynolds stress transport equation can be written as

dRi j

dt
= − sRikUj ,k + R jkUi,kd + nRi j ,kk − «i j + Pi j − T i jk,k.

s1d

The first term on the right-hand side is the production term.
It does not need to be modeled. The next two terms are the

viscous diffusion and dissipation(rate) terms. The diffusion
term does not require a model, and the dissipation term is
given by«i j =2nui,k8 uj ,k8 . This dissipation term is the focus of
the paper. The final two terms, the pressure-gradient velocity
correlationPi j =−sp,j8ui8+p,i8uj8d, and the turbulent transport
term T i jk =ui8uj8uk8 also require models. Near a wall, the tur-
bulent transport is small and is not critical. The pressure-
gradient velocity correlation(closely related to the pressure-
strain term) is important just away from the wall.

Early models for the dissipation tensor4,5 assumed that
the dissipation tensor was isotropic and given by the expres-
sion«i j =

2
3«di j . Note that the dissipation« is a scalar equal to

one-half of the trace of the dissipation tensor. The scalar
dissipation is assumed to be a known quantity that is deter-
mined by its own transport equation. The assumption of isot-
ropy is based on the argument that large velocity derivatives
should primarily occur at the smallest turbulence scales and
turbulence is thought to be isotropic at the smallest scales
(Kolmogoroff6).

While small-scale isotropy of turbulence has support
from some experiments,7 it is contradicted by some
others.8–11 The recent theoretical analyses of Hallbäck,
Groth, and Johansson12 and Durbin and Speziale13 suggest
that under the action of mean velocity gradients, even the
smallest scales and hence the dissipation tensor must become
anisotropic. Brasseur14 discusses the issue in detail.

Since it is now widely recognized that the dissipation
tensor is not isotropic in practice, it is often argued that the
dissipation anisotropy should be modeled along with the
pressure-gradient velocity correlation following the practice
of Lumly and Newman.15 There is, indeed, significant evi-
dence to suggest that theslowpressure-strain correlation and
the dissipation tensor anisotropy are closely related. How-
ever, it should be observed that the dependence is one way.
The pressure terms respond to and tend to counteract the
production and dissipation terms. Fast pressure strain re-
duces the production anisotropy and slow pressure straina)Electronic mail: perot@ecs.umass.edu
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counteracts the dissipation anisotropy. In order to develop
effective slow pressure-strain models it is important to be
able to model the dissipation tensor anisotropy first.

Some insight into the dissipation tensor anisotropy in
homogeneous turbulence can be obtained by using a Fourier
decomposition of the fluctuating velocity field. The dissipa-

tion tensor can then be written as«i j =e2nk2ui8̂uj8̂
*dk. If the

turbulence exists almost entirely at one wave-number mag-
nitude thenk2 can be removed from the integral and«i j

=2nk2Ri j , or solving in terms of the scalar dissipation«i j

=s« /KdRi j . This model was first proposed by Rotta.16 It sug-
gests that the dissipation anisotropy is equal to the Reynolds
stress anisotropy,eij =s«i j /«d− 2

3di j =sRij /Kd− 2
3di j =aij . In de-

caying turbulence, at low turbulent Reynolds numbers only
the large-scale structures(a single significantk magnitude)
exists and this model for the dissipation tensor becomes ex-
act. The Rotta model is therefore frequently referred to as the
low Reynolds number limit. However, it should be noted that
in many low turbulent Reynolds number situations(such as
near walls) this critical hypothesis of a single wave number
magnitude is not satisfied.

A number of dissipation tensor models17,18 are based on
the idea of blending the isotropic model and the Rotta model
using a function that depends on the turbulent Reynolds
number. These models have the form,

«i j = s1 − fd 2
3«di j + fs«/KdRij = 2

3«di j + f«aij , s2d

wheref is 1 at low turbulent Reynolds numbers and 0 at high
Reynolds numbers. The model of Hanjalic and Launder18

used f =1/f1+0.1sk2/n«dg. This model did not show very
good agreement with direct numerical simulation(DNS) data
of channel flow at Re=180(Ref. 19) where the simpler ex-
pressionf =1 (i.e., the Rotta model) was shown to perform
better. Hallbäck, Johansson, and Burden20 proposedf =1/f1
+s31/5pdsk1/2Lfd /ng where Lf is the integral length scale.
Note that the turbulent Reynolds number approaches zero
near a wall, so any formulation that uses a Reynolds number
dependent blending function(such as those described above)
will go from approximately isotropic dissipation in the free
stream to the Rotta model near the wall. An asymptotic ex-
pansion of the dissipation tensor near the wall(Sec. III)
shows that the Rotta model captures the zeroth order terms
correctly at a wall, so these models show improvement over
pure isotropic dissipation for wall bounded flows.

Other researchers21,22 have proposed using models other
than the Rotta model for the near wall(or low Reynolds
number) region. These models have the form,«i j =

2
3«di j

+ feij
wall, where the wall modeleij

wall is trace free. Often,eij
wall is

defined in terms of the wall normal vector, which is ill de-
fined away from the wall or at corners. In addition, in these
models the form ofeij

wall is formulated specifically for walls
and is incorrect at a free surface or at any other boundary
other than a wall.

While Reynolds number dependent models capture the
near wall region better, they all revert to the isotropic model
at high Re numbers and evidence suggests that even in the
high Re limit the dissipation tensor is not isotropic. In the
rapid distortion limit Hallbäck, Groth, and Johansson12 have

shown that the dissipation tensor anisotropy is not zero, but
half of the Reynolds stress anisotropy. The work of Speziale
and Gatski23 suggests that in equilibrium the dissipation ten-
sor anisotropy should depend on the shear stress. Finally,
Perot24 has shown that these Reynolds number dependent
models are not correct for boundaries other than walls, such
as slip walls or free surfaces.

In order to account for the rapid distortion theory(RDT)
limit Hällback, Groth, and Johansson12 (HGJ) proposed a
nonlinear dissipation tensor model. This model adds an ad-
ditional term proportional to the square of the anisotropy and
has the form

«i j = 2
3«di j + f1«aij + f2«saikakj −

1
3II adi jd , s3d

where II a=aijaji and the functions are given byf1= 1
2 + 3

8II a

and f2=−3
4. This model is realizable, meaning that the dissi-

pation tensor in a certain direction is zero if the turbulence in
that direction is zero. A similar model that depends on the
two-componentality parameter,F=detfs3Rijd /2kg was sug-
gested by Sjögren and Johansson25 (SJ). The two-
componentality factorF is 1 in isotropic turbulence and 0 in
two-component(2C) turbulence such as near a wall or a free
surface. Initial calibration of the SJ model suggestsf1=1
−0.67F and f2=−1.18F (and these are the values used in our
tests). However, ultimately the SJ model usesf1=1−1

2F and
f2=0. This final SJ model goes to the Rotta model in the 2C
limit, and satisfies the RDT condition that the dissipation
anisotropy is half the Reynolds stress anisotropy under the
action of large mean strains. These more complex models
perform well (away from boundaries) and will be used for
comparison in Sec. V where the model performance is evalu-
ated.

Speziale and Gatski23 have proposed an algebraic formu-
lation for the dissipation tensor that is similar in construction
to algebraic models for the Reynolds stress tensor. In the
resulting model the dissipation tensor anisotropy is solely a
function of the mean velocity gradients. Unfortunately, the
resulting model reverts to the(incorrect) isotropic model in
the absence of mean velocity gradients. This model is there-
fore incapable of representing the shear-free boundary layers
studied in Sec. V. However, the basic premise of using mean
velocity gradients to parametrize the dissipation anisotropy
(particularly in the equilibrium limit) is a reasonable idea
which is adopted later.

Transport equations for the dissipation tensor can also be
formulated.26–28 The Speziale and Gatski model mentioned
above is a simplification of such a transport equation. How-
ever, this level of complexity may be unwarranted at this
time given the level of model uncertainty in the other RST
model terms(particularly the pressure-strain).

In Sec. II of this paper, near boundary terms for the
dissipation tensor are developed that are accurate near walls
and surfaces. These near wall terms are derived from first
principles and introduce no model constants. Section III ana-
lyzes the near wall asymptotics of these models near both
walls and free surfaces, and considers the limit of strong
inhomogeneity. In Sec. IV the model development in regions
away from boundaries is considered.A priori tests of the
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model are presented in Sec. V and compared with a variety
of existing model formulations. A brief discussion and con-
clusions appear in Sec. VI.

II. MODELING STRONG INHOMOGENEITY

In strongly inhomogeneous flows, turbulent correlations
such as the dissipation tensor change rapidly as a function of
their position. Some of the change with position is due a
change in the underlying structure of the turbulence. How-
ever, most of the change is simply due to the spatial change
in the turbulence intensity. In the specific case of the dissi-
pation tensor,«i j =2nui,k8 uj ,k8 , the dissipation can change spa-
tially for two reasons. Either the gradients correlate differ-
ently, or (more likely) the magnitude of the velocity
fluctuations has simply changed. These different effects can
be isolated by using the following decomposition. Let the
fluctuating velocity be decomposed asui8=Qij ũj. The tensor
Qij is assumed to be a known quantity(related to the velocity
fluctuation magnitude). It is an average quantity and does not
change in time for statistically steady flows or along homo-
geneous directions. The underlying temporal and spatial fluc-
tuations of the velocity field are captured by the dimension-
less quantityũj. Changes in the dissipation due to changes in
the turbulence magnitude will be captured byQij . Changes in
the underlying turbulent structure will be manifest inũj.

Substituting this formula into the equation for the Rey-
nolds stress tensor gives a relationship between the structure
correlation and the Reynolds stress tensor:

Rij = ui8uj8 = QinũnQjmũm = QinũnũmQjm. s4d

The magnitude tensor is not a fluctuating quantity and there-
fore can come out of the average. Substituting this decom-
position into the dissipation tensor formula gives

«i j = 2nui,k8 uj ,k8 = 2nsQin,kũn + Qinũn,kdsQjm,kũm + Qjmũm,kd

= 2nHQin,kQjm,kũnũm +
1

2
sQinQjmd,ksũmũnd,k

+ QinQjmũn,kũm,k

+
1

2
sQin,kQjm − QinQjm,kdsũm,kũn − ũmũn,kdJ . s5d

If it is required thatQij be invertible then the first two terms
in the expression can be found from Eq.(4) and are exact.
The third term is the dissipation of the velocity structure. It
requires a model. However, the velocity structure is quasiho-
mogeneous(by design), and so standard dissipation models
are expected to perform well in this context. The final term is
the product of two differences. It is assumed to be small and
evidence to that effect can be found in Ref. 29. In regions of
strong inhomogeneity the first term dominates and Eq.(5)
becomes exact irrespective of the model used for the third
term in Eq.(5) or the size of the fourth term.

One possible definition forQij is that it represents all the
magnitude information(Perot and Moin30). In this case
ũnũm=dnm and Eq.(4) becomesRij =QinQin or R=QQT andQ
is the matrix square root of the Reynolds stress tensor. This
definition ofQ is actually not unique,Q can be symmetric or

lower triangular, for example. The symmetric square root,
however, seems to be the most natural. Like regular square
roots, the sign ofQ is also not well defined. SinceQ always
appears in pairs, this distinction is not important. With this
definition ofQ, the second term of Eq.(5) is identically zero,
and the model is given by

«i j = 2nQin,kQjn,k + Qin«̃nmQjm, s6d

where the fourth term of Eq.(5) is assumed to be negligible.
This near wall model is elegant, but inconvenient to

implement. FindingQ requires determining the eigenvectors
and eigenvalues ofR. In this paper we consider a simpler
implementation of Eq.(5). In order to gain implementation
simplicity we therefore assume thatQ is isotropic and is
scaled by the turbulent kinetic energy,Qij =K1/2di j . With this
definition ofQ, Eq. (4) gives the relationRij /K= ũiũj and the
fourth term in Eq.(5) is identically zero. Equation(5) then
becomes

«i j = 2nsK1/2d,nsK1/2d,n
Rij

K
+ nK,nSRij

K
D

,n
+ K«̃i j , s7ad

which is an exact relation. This can alternatively be written
as

«i j = 2nsK1/2d,nS Rij

K1/2D
,n

+ K«̃i j . s7bd

Note that Eq.(7) only becomes a dissipation tensor model
when a quasihomogeneous dissipation tensor model(for
K«̃i j) is hypothesized. The quasihomogeneous dissipation
tensor should be significantly easier to model than the dissi-
pation tensor itself. The quasihomogeneous model is dis-
cussed in Sec. IV. In the following section, the near wall
behavior of Eq.(7) is analyzed.

III. ASYMPTOTIC ANALYSIS NEAR BOUNDARIES

The behavior of turbulence quantities near a boundary
can be determined by using Taylor series expansions in the
coordinate direction normal to the boundary(Launder and
Reynolds31). Using the convention thaty is the direction nor-
mal to a wall the fluctuating velocity can be expanded as

ui8 = aisx,z,td + ybisx,z,td + y2cisx,z,td + ¯ . s8d

At a solid wall the velocity goes to zero, so all theai are
zero. Continuity applied very close to the wall impliesb2

=0.
Substituting Eq.(8) into the definition for the dissipation

tells us that near a wall,
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«11 = 2nhsb1
2d + ys4b1c1d + y2s4c1

2 + 6b1d1 + b1,1
2 + b1,3

2 d

+ ¯ j,

«12 = 2nhys2b1c2d + y2s3b1d2 + 4c1c2d + y3s4b1e2 + 6c1d2

+ 6d1c2 + b1,1c2,1+ b1,3c2,3d + ¯ j, s9d

«22 = 2nhy2s4c2
2d + y3s12c2d2d + y4s9d2

2 + 16c2e2 + c2,1
2

+ c2,3
2 d + ¯ j.

The«33 component behaves just like«11. A similar expansion
for the Reynolds stress tensor can also be performed:

R11 = y2sb1
2d + y3s2b1c1d + ¯ ,

R12 = y3sb1c2d + y4sb1d2 + c1c2d + ¯ , s10d

R22 = y4sc2
2d + y5s2c2d2d + ¯ .

The leading order terms in the dissipation tensor and the
Reynolds stress tensor are very similar. However, the coeffi-
cient is different in each case. Rotta’s model gets the 0(1)
terms of the dissipation tensor correctly(i.e., the leading
term of the«11 and «33 expansion), but it will underpredict
the leading order terms of the other two dissipation compo-
nents. Although the wall is at a low turbulent Reynolds num-
ber, Rotta’s model does not work entirely correctly. The am-
plitude of fluctuations normal to the wall and those parallel
to the wall are very different, and the basic assumptions used
to derive the Rotta model are violated.

Even if leading order terms of«12 and «22 are wrong,
does it matter? They still go to zero at the wall. Interestingly,
if wall functions are not used it matters a great deal(using
wall functions with a RST model largely defeats the purpose
of having a RST model, see Speziale32). Near the wall, the
dissipation and pressure-gradient velocity correlation exactly
balance the diffusion term. If the leading order behavior of
the dissipation is incorrect, the Reynolds stresses are too
large near the wall and as a result they are also too large
away from the wall. Trying to reduce these Reynolds stresses
via terms in the model(rather than fixing the root cause)
often leads to instability in the wall bounded RST equation
system. Note that one reason elliptic relaxation models work
well has nothing to do with ellipticity. These models allow
an extra boundary condition to be imposed(because they
hypothesize an extra equation). This additional boundary
condition forces the correct near wall behavior of the Rey-
nolds stresses. In essence, the elliptic relation forces the near
wall behavior of the dissipation tensor to be correct via ad-
ditional boundary conditions. In standard RST models
(where six additional equations and their boundary condi-
tions are not available), correct leading order behavior of
each dissipation term is highly desirable.

As mentioned earlier, it is also possible to formulate
models with the correct near wall asymptotics by using the
wall normal vector or distance to the wall along with a
blending function. This works, and is standard practice, but
these models have serious deficiencies in their generality.
Typically they workonly at walls.

The boundary conditions at a slip wall(or stationary free
surface), impose different constraints on the expansion. We
now find thatb1=a2=b3=0, and continuity implies

a1,x + a3,z + b2 = 0.

At a stationary free surface the dissipation behaves as

«11 = 2nhsa1,1
2 + a1,3

2 d + y2sa1,1c1,1+ a1,3c1,3+ 4c1
2d + ¯ j,

«12 = 2nhysa1,1b2,1+ a1,3b2,3+ 2c1b2d + y2sa1,1c2,1

+ a1,3c2,3+ 3d1b2 + 4c1c2d + ¯ j, s11d

«22 = 2nhsb2
2d + ys4c2b2d + ¯ j,

and the Reynolds stress tensor is

R11 = sa1
2d + y2s2a1c1d + ¯ ,

R12 = ysa1b2d + y2sa1c2d + ¯ , s12d

R22 = y2sb2
2d + y3s2b2c2d + ¯ .

At a free surface there is no longer a clear relationship be-
tween the dissipation tensor and the Reynolds stress tensor.
Rotta’s model will cause«22 to be zero at the surface when it
should be finite. Also note that a free surface is no longer a
low turbulent Reynolds number situation, so blending mod-
els [Eq. (2)] will produce the isotropic limit near the surface.
The isotropic model does give a finite value for«22 but it will
be shown in Sec. V that it is far too large, and that the
dissipation near a free surface is not close to isotropic.

The near boundary behavior of the proposed model can
be determined from the behavior of the Reynolds stresses.
For a no-slip wall we find that

K = y21
2sb1

2 + b3
2d + y31

2s2b1c1 + 2b3c3d + ¯ s13d

and

sK1/2d,ksK1/2d,k
1

K

= SK,k

2K
D2

=
1

y2H1 + y
s2b1c1 + 2b3c3d

sb1
2 + b3

2d
+ ¯ J s14d

plugging into the model equation[Eq. (7)] gives

«11 = 2nhsb1
2d + ys4b1c1d + Osy2dj + K«̃11,

«12 = 2nHys2b1c2d + y2S3b1d2 + 3c1c2

+ b1c2
sb1c1 + b3c3d

sb1
2 + b3

2d
D + Osy3dJ + K«̃12, s15d
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«22 = 2nHy2s3c2
2d + y3S8c2d2 + 2c2

2sb1c1 + b3c3d
sb1

2 + b3
2d

D
+ Osy4dJ + K«̃22.

So the proposed expression for the dissipation tensor[Eq.
(7)] captures theOs1d and Osyd terms exactly and at least
75% of the Osy2d terms, when implemented near a wall.
SinceK is Osy2d this analysis shows that the quasihomoge-
neous dissipation model can be as high asOs1d at the walls,
without affecting the near wall asymptotics described above.
Before considering the behavior of the quasihomogeneous
dissipation tensor in any more detail, let us consider the be-
havior of the proposed decomposition[Eq. (7)] near a free
surface.

Near a free surface the kinetic energy is given by

K = 1
2sa1

2 + a3
2d + y21

2sb2c2 + 2a1c1 + 2a3c3d + ¯ s16d

and

SK,k

2K
D2

= HF1

2
sa1

2 + a3
2d,1G2

+ F1

2
sa1

2 + a3
2d,3G2JYfsa1

2

+ a3
2dg2+ Osy2d.

We can also show that

K,kSR11

K
D

,k
= Os1d,

K,kSR12

K
D

,k
= Osyd, s17bd

K,kSR22

K
D

,k
= Osy2d,

so the near boundary terms in Eq.(7) have the same type of
behavior. This requires the«̃12 model to go likeOsyd near the
surface and«̃22 to beOs1d. Looking at the exact expressions
for the dissipation tensor near a free surface it is clear that
capturing the leading order«11 and «12 terms exactly is not
possible. Derivative information is not available to a RST
model. However, the leading two terms of the«22 expression
can, in theory, be obtained exactly from Reynolds stress in-
formation. Also note that the error in both the wall and free-
surface expressions for«22 can be represented bys2n /y2dR22.
The error is the same irrespective of the boundary type. At
both boundaries, the flow becomes two component, so we
will use the 2C parameterF to model this missing contribu-
tion for «22. This extra term is 2nsF1/2d,nsF1/2d,mRnmdi j /F.
Technically we are now modeling the quasihomogeneous
dissipationK«̃i j . This is the near boundary contribution of the
quasihomogeneous dissipation due to the 2C nature of the
turbulence near these boundaries. This term is higher order
for «11 and«12 terms near both walls and free surfaces, and
so it only affects the«22 dissipation component. At a solid
wall, this enhancement has only a very small affect on the
model. However, at a free surface the 2C affects can be seen

very clearly. The importance of this 2C correction is demon-
strated in Sec. V.

IV. QUASIHOMOGENEOUS DISSIPATION

In homogeneous turbulence, the boundary(or gradient)
terms drop out entirely and the quasihomogeneous dissipa-
tion remains to be modeled. Hallbäck, Johansson, and
Burden20 show that in initially isotropic homogeneous turbu-
lence the dissipation anisotropy should be half of the Rey-
nolds stress anisotropy under the action of rapid irrotational
strain or shear. This will be referred to as the RDT limit. The
experiments of Crow33 and Lee and Reynolds34 show that
this ratio does not remain12 when the turbulence is aniso-
tropic, and in the extreme limit of axisymmetric 2C turbu-
lence it is seen to be close to 1(which is the Rotta model).

The practice of expanding model parameters in polyno-
mial expansions of the potential unknowns is a rational way
to proceed, and is certainly viable when the unknowns are
known to be small. However, when the objective is to cap-
ture an entire functional range the use of polynomial expan-
sions can be detrimental. Rational polynomials have a
greater fitting capability. In this work, we propose a simple
tensorally linear model for the quasihomogeneous dissipa-
tion, in which the blending parameterf is a function ofF.
This is similar to the models of Johansson, however, we
hypothesize a rational polynomial expansion,f =1/s1+Fd,
rather than a simple polynomial series. This results in the
quasihomogeneous model«̃i j = «̃fF / s1+Fd 2

3di j +1/s1+Fd
3sRij /Kdg= «̃f 2

3di j +1/s1+Fdaijg and aij =sRij /Kd− 2
3di j . In

isotropic turbulence, this model gives the correct RDT aniso-
tropy ratio of 1

2, and in 2C turbulence it gives the correct
anisotropy ratio of 1. In theory, a slightly more complex
blending might be desired in whichf =1/f1+gsReTdFg,
where the functiong goes to zero as the turbulent Reynolds
number becomes small and approaches 1 at high turbulent
Reynolds numbers. We have not pursued this added level of
complexity at this time.

Finally, we note that the dissipation anisotropy could be
a function of the mean flow gradients, not just the Reynolds
stress anisotropy. Typically, dissipation anisotropy is not
modeled in this way because one does not expect sudden
changes in the mean flow to have an instantaneous affect on
the dissipation. However, in equilibrium situations, there
could be a good correlation between the two tensors. Rey-
nolds stresses are frequently modeled using this type of hy-
pothesis(eddy viscosity hypothesis of Bousinesq). In fact,
models which only depend on the Reynolds stress anisotropy
will have the dissipation anisotropy aligned along the same
principal directions as the Reynolds stress anisotropy. We
know that these anisotropy directions are not always aligned
(in channel flow they disagree by 8° aty+ =30). In this work
we therefore hypothesize that the quasihomogeneous dissipa-
tion tensor can also be a linear function of the shear-stress
tensor,Sij =

1
2sUi,j +Uj ,id.

The model for the dissipation tensor then becomes
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«i j = 2nsK1/2
,nd2Rij + nK,kSRij

K
D

,k
+ «̃

F

1 + F

2

3
di jK

+ «̃
1

1 + F
Rij + 2n

F1/2
,mRmnF

1/2
,n

F
di j + C * KSij . s18d

The single parameterC* =0.18F / s1+Fd2 is set by compar-
ing the«12 component of turbulent channel flow at Re=590.
In theory, the constantC* should be a function ofs« /SKd,
such thatC* goes to zero whens« /SKd is zero (the RDT
limit ). We have not explored this level of detail in this work.

The scalar«̃= 1
2«̃ii is the trace of the quasihomogeneous

dissipation. It has units of inverse time or frequency and can
be obtained by taking one-half the trace of Eq.(18), K«̃=«
−2nsK1/2

,nd2−3nsF1/2
,mRmnF

1/2
,nd /F. The quasihomogeneous

dissipation«̃ (or its closely related form«̂=K«̃) is an inter-
esting inverse time scale that has been used previously in
some near wall turbulence models(e.g., Launder and
Sharma35). It is attractive because at a wall it is finite,
whereas the standard inverse timescales« /Kd is singular and
goes likey−2 at a wall. Note that from its definition,«̃ is a
positive quantity. However, due to numerical inaccuracy in
the calculation of gradients, calculating«̃ from the formula
above can lead to large errors or negative values when imple-
mented on a computer. In practical implementation either a
transport equation is solved directly for«̃ rather than the
more common« transport equation(as in many low Re num-
ber k/« models), or we sometimes use«̃=s« /Kd1/f1
+10nu¹ sK1/2du /Kg to guarantee a positive inverse timescale
with finite near wall behavior.

While the proposed model[Eq. (18)] looks somewhat
complex, it is relatively easy to implement. Many of the
terms combine with similar looking terms in the pressure-
strain model, and if the Reynolds stress anisotropy equation
is solved rather than the RST equation, then some of the
terms drop out or simplify even further.

It is important when implementing this model to have a
numerical method that is capable of accurately calculating
gradients. At the wall, certain terms should exactly balance.
Numerically they will only approximately balance and if the

disagreement is large enough, the numerical implementation
(not the model) becomes unstable. Quantities with high
power law behaviorfR22=Osy4dg can be quite hard to differ-
entiate accurately with low order numerical methods. For
this reason, the anisotropy equations(rather than Reynolds
stress equations) are somewhat easier to solve with low order
numerical methods.

V. MODEL RESULTS

In this section, the proposed dissipation model[Eq. (18)]
is compared against experimental and DNS data. The perfor-
mance of the model is compared to a number of other dissi-
pation tensor models that have been mentioned in the text.
The majority of the tests area priori tests using data for the
Reynolds stresses and dissipation plugged directly into Eq.
(18).

These tests are a useful way to directly isolate if the
model can represent the dissipation tensor accurately. How-
ever, it is possible to construct models, which perform well
in a priori tests but do not perform well in practice. These
models are unstable and move away from the desired solu-
tion rather than towards it. To demonstrate stability we will
also present at the end of this section some solutions of tur-
bulent channel flow that use this dissipation tensor model in
a full RST prediction.

Our first test case does not involve the inhomogeneous
terms at all. It is a test of the quasihomogeneous part of the
model. Figure 1 shows the model performance in axisym-
metric rapid contraction of homogeneous turbulence. In this
flow the turbulence is initially isotropic and becomes in-
creasingly 2C as time proceeds. Because the turbulence is
axisymmetric only one component of the dissipation needs to
be analyzed. The figure shows thee11 component as a func-
tion of a11, at various times during the simulation(experi-
ment). The isotropic model gives a flat line, and the dashed
line with a slope of 1 is the Rotta model. This is a relatively
high Reynolds number test case, so models that switch be-
tween the isotropic model and the Rotta model based on a
blending parameter, which is a function of the turbulent Rey-

FIG. 1. Dissipation anisotropy in axi-
symmetric contraction. Open triangles
denote the experimental data of Crow
(Ref. 33) fS2

*st=0d<0.5–2.0,Rel
<15–100g, open circles denote the
experimental data of Lee and Rey-
nolds (Ref. 34) fS2

*st=0d
<0.97 to 0.71,Rel<50g, thick
dashed line denotes HGJ model, thin
line denotes isotropic model, thin
dashed line denotes Rotta model, and
thick line denotes the proposed model.
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FIG. 2. Shear-free turbulent boundary layer next to a solid wall. Circles denote DNS data of Perot and Moin(Ref. 36), thick dashed line denotes isotropic
model, thin dashed line denotes Rotta model, thin line denotes HGJ model, and thick line denotes proposed model.

FIG. 3. Shear-free turbulent boundary layer next to a free surface.(See Fig. 2 for caption.)

FIG. 4. Each term in Eq.(18) for shear-free turbulent boundary layers at time 2.0. The chain dotted line denotes 2nsK1/2
,nd2Rij + «̃sF /1+Fd 2

3di jK+ «̃s1/1
+FdRij , thin line denotesnK,ksRij /Kd,k, and thick line denotes 2nsF1/2

,mRmnF
1/2

,n/FdKdi j . The shear-stress term is zero for both these flows.
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FIG. 5. Dissipation tensor in channel flowsRe=590d. Circles denote DNS data from Ref. 37, long dashed line denotes SJ model, chained dashed line denotes
HGJ model, and thick line denotes proposed model.(In the figure of«12, thick dashed line represents the proposed model without the shear-stress term.)

FIG. 6. Dissipation anisotropies in channel flowsRe=395d. Circles denote DNS data from Ref. 37 and thick line denotes proposed model.

FIG. 7. Dissipation anisotropies in channel flowsRe=180d. Circles denote DNS data from Ref. 37 and thick line denotes proposed model.
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nolds number(most models), will be essentially isotropic
(very close to a horizontal line through the origin). The HGJ
model was designed for this flow and therefore performs
well for this case. The SJ model(not shown) performs much
like HGJ.

Next, we wish to examine the inhomogeneous terms.
The quasihomogeneous term cannot be completely elimi-
nated in any flow, but shear-free boundary layers provide an
opportunity to evaluate the model in a strongly inhomoge-
neous situation with few other complicating effects. In Fig.
2, the model predictions of a shear-free boundary layer next

to a solid wall are compared with DNS data.36 Like the pre-
vious case, this flow is axisymmetric and time developing,
but unlike the previous case, it also has strong gradients in
the direction normal to the wall. The figure shows the«22

dissipation at two different times after the wall appears. As
predicted by the asymptotic analysis, the Rotta model is too
small near the wall. The HGJ model transits from a combi-
nation of 1

2 isotropic and1
2 Rotta well away from the wall to

all Rotta near the wall where the turbulence is 2C. The SJ
model(not shown) is almost identical to HGJ. Other models

FIG. 8. Dissipation anisotropies in rotating channel flowsRo=0.15,Re=194d. Circles denote DNS data from Ref. 38 and thick line denotes proposed model.
Thin line in the last figure is the model withC* =0.

FIG. 9. Dissipation tensor in the flow over backward-facing step(at 4 h). Circles denote DNS data from Ref. 39, long dashed line denotes the isotropic model,
chain-dotted line denotes the Rotta model, thin line denotes the SJ model, the small dashed line denotes the HGJ model, and the thick line denotes the
proposed model.
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which blend the isotropic and Rotta models based on the
Reynolds number will behave like the Rotta model near the
wall. All but the proposed model, underpredict the normal
dissipation component near the wall.

The shear-free boundary layer next to stationary-free
surface is shown in Fig. 3. Again two times are shown, and
the definitions of the lines and symbols are the same as in
Fig. 2. This flow is no longer low Reynolds number near the
surface, and so the underprediction of the Rotta and HGJ
models is even more obvious in this case. Most of the other
models will behave like the isotropic model for this flow.
The proposed model captures the near-surface dissipation
correctly using no adjustable constants.

In Fig. 4, the various terms in the present model are split
out so that the magnitude and location of each contribution
can be ascertained. Figure 4(a) is the shear-free surface at
time 2.0 and Fig. 4(b) is the shear-free wall at time 2.0. It is
clear that the term involving 2nsF1/2

,mRmnF
1/2

,nd /F is critical
in the free-surface case.

In Fig. 5 the model is tested in turbulent channel flow at
Re=590.37 The proposed model performs well for all the
dissipation components. The other models have difficulty
predicting the«12 and«22 components. The value ofC* was
tuned for«12 in this case. WithC* =0, the small dashed line
is obtained. The model predictions for channel flow at Re
=395 and Re=180 are shown in Figs. 6 and 7, respectively.

FIG. 10. Dissipation tensor in the flow over backward-facing step(at 6 h). Circles denote DNS data from Ref. 39, long dashed line denotes the isotropic
model, chain-dotted line denotes the Rotta model, thin line denotes the SJ model, the small dashed line denotes the HGJ model, and the thick line denotes the
proposed model.

FIG. 11. Dissipation tensor in the flow over backward-facing step(at 10 h). Circles denote DNS data from Ref. 39, long dashed line denotes the isotropic
model, chain-dotted line denotes the Rotta model, thin line denotes the SJ model, the small dashed line denotes the HGJ model, and the thick line denotes the
proposed model.
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The lowest Reynolds number case shows some discrepancies
for «12. This might be fixed by makingC* a function of
« /SK as suggested earlier.

The behavior of the model in rotating channel flow is
shown in Fig. 8. The test case is the Ro=0.15 DNS case of
Andersson and Kristoffersen38 at a Re of 194. The model
does a good job of predicting the very different behaviors on
each side of the channel(especially given the very low Re
number of the simulation).

The proposed model is compared with DNS data for the
flow past a backward facing step in Figs. 9–11. Several lo-
cations are shown, both befores4 hd and nears6 hd reattach-
ment, and well downstreams10 hd during the boundary layer

recovery. The figures show good agreement with the DNS
data39 in the turning mixing layer. The boundary layer near
the wall is more difficult to see, but behaves similarly to the
previous channel flow results. In the mixing layer, this ten-
soraly linear model performs similarly(or better in the«12

case) to the more complex nonlinear model of HGJ and is
much more accurate than the isotropic and Rotta models.

It is interesting to quantify the effect of the nonlinear
term in the SJ and HGJ models. In Fig. 12, these models are
shown with f2 set to zero, for the 7 h downstream location
on the backward-facing step. The contribution of the nonlin-
ear term is not that large, given its added complexity we have
chosen to follow the example of Sjögren and Johansson and

FIG. 12. Dissipation anisotropies in flow over backward-facing step(at 6 h). Circles denote DNS data from Ref. 39, chained dashed line denotes SJ model,
dashed line denotes HGJ model, thin line denotes SJ model without nonlinear term, thick line denotes HGJ model without nonlinear term.

FIG. 13. Channel flowsRe=590d. Circles denote DNS data from Ref. 37 and thick line denotes full RST model predictions.
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not include such a nonlinear term in the proposed model. The
choice of the functionf =1/s1+Fd allows us to satisfy the
RDT limit and realizability without the nonlinear term
present.

A priori tests such as those described above can be very
informative about the quality of a model. Nevertheless, it is
possible to formulate models which work well ina priori test
but which fail in practice due to the inherent instability of the
proposed formulation. The proposed dissipation model has
been incorporated into a full RST closure and solved for
turbulent channel flow. The details of the full RST closure
are given by Natu.40 Results of these simulations for channel
flow at Re=590 are shown in Fig. 13, and for the rotating
channel flow case in Fig. 14. These full model results are
highly dependent on the chosen pressure-strain model. They
are not, therefore, an indication of the accuracy of the dissi-
pation tensor model. They are, however, an indication of the
dissipation tensor model’s stability and computability.

VI. CONCLUSION

The proposed model for the dissipation tensor deviates
from all prior models in its use of terms which involve gra-
dients of various turbulence quantities. The appearance of
these gradient terms is not particularly surprising. There is no
reason to believe that the source terms in the RST equations
should not be functions of such gradients and, in fact, there is
every reason to believe that gradients should dominate in
regions of strong inhomogeneity, such as near walls.

When attempting to add gradient information to a model,
the variety of choices is so large that the traditional approach
of expanding a quantity(such as the dissipation) in terms of
all the possible unknowns becomes intractable. This paper
has demonstrated a rational approach to derive the gradient
terms in the model. The resulting terms[Eq. (7)] do not have
any additional model constants, but do tend to greatly im-

prove the model performance in regions where gradients are
large.

It is interesting to note that the resulting gradient terms
do have associations in other contexts. The term
2nsK1/2d,nsK1/2d,n is a common modification of the dissipa-
tion near a wall such that time scales at the wall remain
finite, and the termnK,nsRij /Kd,n appears in the Reynolds
stress anisotropy transport equation.

The quasihomogeneous term in Eq.(7) is in many senses
the harder part of the dissipation tensor to model. Our quasi-
homogeneous model introduces a parameter to represent the
affects of mean strain on the dissipation. In theory, this term
should only be present in equilibrium situations(when pro-
duction is roughly equal to dissipation). The near-wall 2C
term does not introduce any addition model constants but is,
like the strain dependent term, motivated rather than derived.
Fortunately, these two modifications are not large in most
flow situations. The bulk of the dissipation model is carried
by the term«̃sF / h1+Fjd 2

3di jK+ «̃s1/h1+FjdRij . This model
satisfies an RDT limit and is realizable in the 2C limit. It
agrees reasonably well with data from axisymmetric expan-
sion at both small and large anisotropies. The key innovation
in this term of the model is the functional form of the blend-
ing parameterf. It is suggested that the common practice of
expanding parameters in simple polynomial series can be
detrimental. Such expansions do not perform well when the
expansion variable(such asF) is Os1d.
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