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Direct numerical simulation is used to evaluate the effect of plane strain on isotropic
homogeneous turbulence. The subsequent return to isotropy after the removal of
the strain is also investigated. Large, moderate, and small strain rates are computed
at moderate turbulence Reynolds numbers. The initial turbulence is generated via
mechanical mixing so that the large scale turbulence develops relatively naturally.
Turbulence length scales, Reynolds numbers, decay rates, and anisotropy are com-
puted over the range of the simulations, with the goal of quantifying how anisotropic
decay behaves. The simulations indicate that large scale anisotropy may not decay
to zero at very large times. In agreement with experimental data, the presence of a
recovery region is discerned before the return process is observed. Trajectory crossing
is observed on the anisotropy invariant map indicating that anisotropy itself is not suf-
ficient to determine its time evolution. Model constants for classic return-to-isotropy
models are determined from the data and shown to vary with time. The oriented-eddy
collision model [M. B. Martell and J. B. Perot, “The oriented-eddy collision turbu-
lence model,” Flow, Turbul. Combust. 89(3), 335 (2012)], which includes turbulent
structure information, is shown to predict the salient structure of the straining and
return process. C© 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4821450]

I. INTRODUCTION

Isotropic turbulence subjected to plane strain is a canonical case for investigating the fundamen-
tal properties of turbulence and for developing turbulence models. In the situation of plane strain,
the mean velocity stretches the fluid in one direction while compressing it in another orthogonal
direction at a rate that makes the mean flow incompressible. In this work, stretching occurs in the x
direction while compression is in the y direction. The mean velocity during the strain is therefore, u
= Sx and v = −Sy, where S is a constant. This type of mean flow is found in 2D stagnation point
flows. The classic example is the leading edge of a wing or turbine blade. The flow is interesting
for this practical application but also because it is perhaps the simplest incompressible turbulent
flow that involves a mean flow gradient. This turbulent flow is the next step up in complexity from
decaying isotropic turbulence.

The decay of turbulence that has been subjected to plane strain is interesting because it is a
case in which the turbulence is homogeneous but not isotropic. After the strain, the fluctuations
have different magnitudes in the three different principal directions. The generation of anisotropy
via constant plane strain can be precisely defined and therefore accurately reproduced in both
experiments and in other numerical simulations. It is hypothesized that anisotropic turbulence tends
to return to the isotropic state if no other influences are present. This return process is part and
parcel of the energy cascade that transfers energy from large length-scale eddies to smaller length-
scale eddies. Studying return-to-isotropy is therefore equivalent to studying the energy cascade for
anisotropic turbulence. Since in practice, almost all turbulence is not isotropic, this is an important
endeavor.

The return-to-isotropy process is difficult to accurately model. Most turbulence models assume
that return-to-isotropy is solely a function of the degree of anisotropy of the velocity fluctuations.
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(a) (b) 

FIG. 1. (a) Pancake shaped eddies typical of many stratified turbulent flows and (b) long jet like eddies common in shear
flow.

However, one primary observation of this paper is that velocity fluctuation anisotropy, in itself, is
not sufficient to predict the-return-to-isotropy rates. The idea that more information than Reynolds
stress anisotropy is needed to predict anisotropic decay is not new. It has been present by Kassinos
and Reynolds2–5 and their co-workers. In addition, perhaps, the earliest references to the basic idea
can be attributed to the turbulence research group at Los Alamos.6, 7

The argument that Reynolds stress anisotropy is not sufficient to predict anisotropic turbulence
decay (developed by these prior groups) is as follows. Two turbulent flows can have identical
Reynolds stress tensors, and therefore identical anisotropy tensors, and yet be very different. For
example, turbulence stratified by density or rotation (as in the atmosphere or ocean) has pancake
shaped eddies that are “flat” in one direction (normal to gravity in the density stratified case). In
contrast, the turbulence generated by a shear flow tends to be elongated in one direction (cigar shaped)
(see Figure 1). Despite clear differences in their structure, both flows can have identical Reynolds
stress tensors and anisotropy tensors. This suggests that the fluctuations alone (the anisotropy tensor)
do not provide enough information about the turbulence to accurately predict the tensor’s evolution.
Reynolds and Kassinos define additional single-point tensor quantities based on the streamfunction
derivatives that contain additional information about the dimension, “circulicity,” and “stropholysis”
of the turbulence. In contrast, Harlow and co-workers use information from the two-point correlations
to provide the additional information required to predict anisotropic decay and return-to-isotropy.

In this paper, we will explore the use of two-point structure information similar to the Harlow
group (though developed without knowledge of that work) rather than one-point statistics of the
streamfunction derivatives (as done in the works of Kassinos, Reynolds, and co-workers) as the
additional information necessary to close the system. For rapid distortion theory (RDT) these two
approaches are equivalent, as they must be. But for the decay case (which is the antithesis of RDT) it
is no longer clear that both approaches to understanding and modeling the anisotropic decay process
are still equivalent.

Experiments of plane strain and the return to isotropy have a long history dating from the
experiments of Townsend8 in 1954 that used a 4:1 straining ratio. These experiments were followed
by those of Tucker and Reynolds9, 10 who used a higher straining ratio (6:1). Over a decade later,
Gence and Mathieu11 performed further experiments of plane strain and its subsequent return to
isotropy. Le Penven et al.12 performed two experiments, one of which was close to plane strain
in order to show that the simple Rotta model13 for return-to-isotropy was inadequate. Choi and
Lumley14 and Lumley and Newman15 used these prior experiments as well as their own to propose
models for return-to-isotropy.

Perhaps the first numerical simulations of plane strain were performed by Kwak16 in his Ph.D.
thesis completed in 1975. Those simulations, at 163 and 323 mesh resolutions, were soon replaced
by larger calculations using 1283 meshes. For example, Rogallo17 in 1981 demonstrated the moving
mesh numerical approach that will also be used in this work (though with a very different numerical
method). Then in 1985, Lee and Reynolds18 performed 1283 simulations for a variety of different
strain configurations that are still used widely today. Lee and Reynolds suggested that small scale
anisotropy relaxes rapidly initially but then relaxes with the large-scale anisotropy over longer
time scales. Rogers and Moin19 looked at the instantaneous flow structures in those configurations.
Recently Barre et al.20 have performed 963 direct numerical simulations (DNS) of particle laded
turbulent plane strain.
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Kevlahan and Hunt21 discuss the theory for turbulence when it is being strained. Under very large
strains, RDT22 applies. The turbulence evolution can be linearized and solved exactly in this limit.
Hällback et al.23 describe how this linear theory can even be applied to the nonlinear cascade related
terms like the dissipation rate tensor. RDT proves that Reynolds stresses alone contain insufficient
information to predict their own evolution when the turbulence is subjected to large strain. This
work hypothesizes (like Reynolds and Kassinos, and Harlow, before us) that the additional structural
information necessary to predict turbulence evolution under the influence of rapid strain (RDT)
remains important even after that strain is removed.

This work follows the strategy of Moin who has long advocated the use of direct numerical
simulation to investigate the fundamental physics of turbulent flows.24 In particular, it is the logical
successor to the pressure-strain investigations of Perot and Moin25, 26 on the return-to-isotropy
process near walls.

There is little in the way of theory that applies directly to the decay of anisotropic turbulence,
but isotropic decay has been very extensively studied. A review of isotropic decay theory can be
found in Perot.27 One of the most critical results for isotropic decay is due to Saffman28 and it shows
that the behavior of the large scale correlations (or small wave numbers) dictates the decay rate. This
means that both experiments and simulations must be careful to keep the large eddy length-scale
much smaller than the tunnel size or simulation domain. Reference 27 shows that L = K 3/2

ε
should be

less than 1/4 of the periodic domain size or the decay of isotropic turbulence becomes length-scale
constrained. In order to capture both the large and the small scales, the simulations reported in
this work will be at resolutions of 5123. The details of the numerical simulation are presented in
Sec. II. The additional resolution in the simulations is not used to increase the turbulent Reynolds
numbers over prior plane-strain calculations. It is used to capture the influential large scales better
and to produce smoother statistics. The simulations in this work are similar in Reynolds number and
resolution to the well resolved simulations of de Bruyn Kops and Riley.29 The turbulent Reynolds
numbers present in these simulations should be sufficient to capture the fundamental physics. The
turbulent Reynolds number in the majority of the cases simulated is nearly the same as the turbulent
Reynolds numbers in the classic decay experiments of Comte-Bellot and Corrsin.30

Another important aspect of the simulations presented in this work relates to the generation of
the initial isotropic turbulence. It is well understood that the small wavenumbers (or large correlation
scales) are set by the initial conditions and are invariant during the decay process. Most simulations
therefore inadvertently impose the decay behavior via the choice of the initial turbulence spectrum
or initial turbulence forcing. It is desired for these studies that the large scale correlations be formed
physically, and not via the specification of initial conditions. The initial flow for these simulations
is therefore a velocity and pressure of zero. The turbulence is then generated physically by having
small solid and stationary “mixing boxes” in the domain (768 of them for the 5123 simulations) (see
Figure 2). The fluid is driven past these boxes with a randomly time varying but spatially uniform
pressure gradient. After the turbulence is established (developing all the long range correlations

FIG. 2. On the left, stationary mixing cubes located in the simulation domain. On the right, 2D slices in the XY-plane help
to better show the mixing cube density.
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naturally), the boxes “melt” and become zero velocity fluid. More detail on the turbulence generation
process is provided in Sec. II and in Ref. 27.

Wind tunnel experiments have some problems producing truly isotropic initial conditions.
Kurian and Fransson31 show that the use of a contraction to isotropize the Reynolds stresses that
result from the anisotropic wind tunnel grid turbulence does not also isotropize the two-point
correlations. It is suspected that this underlying anisotropy in the turbulence structure has some
effect on both the strained turbulence and the subsequent return-to-isotropy.

Numerical simulation allows this investigation to observe the turbulence over very long times
and at high temporal resolution. Some of the quantities that will be of interest, such as the decay
rate, are extremely sensitive and require both high temporal resolution and long times to accurately
calculate. The turbulence statistics before, during, and after the straining are examined in Sec. III.
The modeling of the strain and return-to-isotropy process is described in Sec. IV, and a discussion
of the results is presented in Sec. V.

II. SIMULATION METHODOLOGY

A. Numerical method

The incompressible Navier-Stokes equations with constant viscosity are solved with the classic
2nd-order Cartesian staggered mesh spatial discretization of Harlow and Welch.32 A 3-step and
2nd-order low-storage Runge-Kutta method is used for time advancement. The pressure and in-
compressibility constraint are enforced by using the classic fractional step method33 or the exact
projection method.34 The inviscid, no penetration, boundary condition is directly enforced on walls
with this discretization because the normal velocity flux on a wall is a primary unknown of the
method. The viscous no-slip condition on walls is enforced by choosing velocity gradients on the
wall so that the tangential velocity goes to zero on the wall.

This numerical discretization has been widely used for turbulence simulations when complex
wall boundary conditions are present (see Perot and Moin,25 Le and Moin,35 Martell et al.,36 and the
references therein). This method is favored because it not only conserves mass and momentum like
finite volume and spectral methods but because it also conserves physically important secondary
variables such as vorticity and kinetic energy. The kinetic energy cascade is central to the correct
physical prediction by any DNS simulation, so it is attractive to know that this discrete system
respects the energy and vorticity physics of the Navier-Stokes equation system. The method is
validated in Sec. II C. Numerical methods with attractive secondary conservation properties are
discussed extensively in Perot,37 and a general methodology for generating such discretizations can
be found in Perot and Subramanian.38

Fourier spectral methods are common in DNS simulations of turbulence, and were used for
all the previously cited simulations of plane-strain turbulence. However, in the situation where
turbulence arises physically from mechanical stirring and it is not imposed as an ad hoc initial
condition or due to a forcing term, Fourier spectral methods are not appropriate. The required wall
boundary conditions cannot be imposed with an inherently periodic Fourier spectral method. The
reader should be cautioned about assuming that Fourier methods are significantly more accurate
than mimetic 2nd-order methods for DNS simulations. In DNS, the smallest scales are just barely
resolved. As a result it is incorrect to assume that only the leading-order error term of a Taylor series
expansion (or the order of accuracy) is the relevant measure of accuracy. The numerical method used
in this work is kinetic energy, vorticity, mass, and momentum conserving and resolves the energy
cascade and small scale fluctuations (dissipation spectra) at least as well as FFT based methods with
the same resolution (see Sec. II C).

B. Turbulence generation

The generation of the turbulence is a relatively important component of this work because
the large scale correlations have a direct affect on the decay process. It is therefore important that
those large scales arise from some physical process (such as mixing by cubes) and are not being
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directly imposed by any human choices about the initial conditions or the large scale forcing. For
the simulations shown in this work 768 small no-slip cubes are randomly distributed throughout the
domain (for the 5123 cases). These small mixing cubes fill less than 2% of the total fluid volume
(see Figure 1).

The cubes remain fixed in place and the turbulence is generated by imposing an external, constant
in space, acceleration. This is equivalent to performing the calculation in a time varying linearly
accelerating reference frame (shaking). The direction of this acceleration is changed randomly every
0.3 s, but its magnitude is specified by the user. The shaking time scale is much less than the initial
large eddy timescale (which is of the order of 2.0), but long enough to create a wake behind each
cube that is sufficiently long enough to interact on average with a neighboring cube. A typical value
of the acceleration is 100 cm/s2 (or about 1/10 the acceleration of gravity). The shaking is performed
for 5.1 s in most simulations (or 17 different accelerations). The primary acceleration (shaking) is
then turned off and a restoring acceleration, areturn, is allowed to act for another 1.9 s. After 1.9
s the restoring acceleration (which is exponentially decaying in time) causes the mean flow to be
extremely close to zero. A mean flow of zero is not necessary for the code, but it does allow the
simulation to take slightly larger timesteps (by minimizing the Courant–Friedrichs–Lewy condition
(CFL) stability criteria), and it does seem to lead to better statistical accuracy at very long times
when the fluctuations can become smaller than the mean flow. During this 1.9 s period the turbulence
changes from being accelerated to being in isotropic decay. At the end of this period (at a time of 7)
the boxes instantaneously turn into zero velocity fluid. It tends to take about one or two large-eddy
turnover times for the surrounding turbulence to fully merge with (chew up) the small regions of
zero velocity fluid where the stirring boxes used to be. The flow tends to behave like ideal (Saffman,
k2) decaying turbulence by a time of 12.

Physical units are not needed by the computer, but can be helpful for the reader, and make the
discussion simpler. If the simulated fluid is water at standard temperature and pressure (with ν =
10−2 cm2/s) then the domain size (after straining) is a cube that is 48 cm on a side. The small cubes
that stir the turbulence are 1.4 cm on a side. And in the 5123 simulations there are 768 of them
randomly placed in the domain. The total volume of all the stirring elements is therefore 1.93% of
the total simulation volume. The mesh size itself is 0.9375 mm (which is 1/15th of the stirring cube
size). At early times in the simulation, the timestep can be as small as 1/1000th of a second. In all
the simulations it is never larger than a 1/10th of a second. All the simulations run out to a time of
roughly 120 s. More details can be found in Ref. 27.

C. Validation

The 3D energy spectra and dissipation spectra are shown in Figures 3(a) and 3(b) at a time of
12 s (with solid black lines) for initial condition 2 (see Table I below). This is 5 s after the stirring
boxes have been removed and the point at which the kinetic energy decay exponent asymptotes to
its theoretical value of 6/5. These spectra are compared with other simulations and experiments.
Symbols are data from the second measurement station of Comte-Bellot and Corrsin30 (tU/M =
98). Dashed lines are the data from a simulation by Wray.39 The experiments of Comte-Bellot and
Corrsin have a Taylor microscale Reynolds number of 65.3 at this measurement station. The current
simulations have a Taylor microscale Reynolds number of 50.8 at a time of 12 s.

The peaks of the present simulations and the Wray data have been scaled to match the peak
in the experimental data. The wavenumbers were scaled to have the same large eddy length scale
L = K 3/2

ε
. Both the low wavenumber and high wavenumber (dissipation spectra) are well captured.

de Bruyn Kops and Riley29 also computed this Reynolds number with a spectral code and 5123 mesh
points, with very similar results.

D. Moving mesh for straining

When the fluid is being strained, the simulations are performed on a moving mesh that moves
with the mean flow. The incompressible Navier-Stokes equations in an arbitrary moving reference
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FIG. 3. (a) 3D energy spectra and (b) dissipation spectra. Solid lines (black) are the current simulations. Symbols are from
Comte-Bellot and Corrsin30 at tU/M = 98 (second station). Dashed lines (blue) are from a spectral 5123 simulation performed
by Wray.39

frame, moving with a velocity v, are

∂u
∂t + (u − v) · ∇u = −∇ p + ν∇2u. (1)

The equation for the mean velocity, which for the case of plane strain is constant in time and varies
linearly in space, then becomes

(ū − v) · ∇ū + ∇ · (u′u′) = −∇ p̄. (2)

The second term is zero for plane strain where the turbulence is homogeneous, and for these
simulations the reference frame moves with the mean flow (v = ū), so the first term is also zero.
This means that the mean pressure is spatially constant (and set to zero for simplicity). As a result
of Eq. (2), the equation for the fluctuating velocity, u′

i, in a moving frame is (in Cartesian tensor
notation)

∂u′
i

∂t + u′
j u

′
i, j + u′

j ūi, j = −p′
,i + ν∇2u′

i . (3)

This has a form similar to the Navier-Stokes equations but with an extra source term (third term
on the left hand side) that is due to the mean flow. For plane strain the mean velocity gradient tensor
is a diagonal tensor and the result of this extra term is to cause exponential decay for the x-direction
fluctuations and exponential growth of the y-direction fluctuations. Incompressibility, diffusion, and
advection then modify this forcing term. In the RDT limit, the mean gradient forcing term is large
and only the pressure is large enough to modify its effects.

Equation (3) is the Navier-Stokes equations in a reference frame moving with the mean flow.
This idea was also used by Rogallo17 in his FFT simulations of strained turbulence. Solution for the
fluctuations rather than the total velocity is attractive because it allows one to use periodic boundary
conditions for the sides of the simulation domain. In plane strain the total flow is not periodic because
the mean flow is not periodic, but the fluctuating velocity and pressure fields can be represented as
periodic fields.

In the simulations performed for this work the initial domain in which the stirring boxes reside
and in which the turbulence is initially generated is shorter in the x-direction and is given by
Linitial

x = Lze−ST , where T is the total straining time. Similarly, the initial domain is longer in the
y-direction and is given by Linitial

y = Lze+ST . The domain (and mesh size Lz) in the z-direction
remains fixed. The initial domain and mesh is shown in Figure 4(a). As the turbulence is strained
the domain grows in the x direction and shrinks in the y direction (Figure 4(b)). Finally, at the end
of the straining period the domain is perfectly cubic (Figure 4(c)). Different strain rates can be used
with the same initially distorted mesh. What must remain constant is the product of strain rate, S,
and the duration of the strain, T. For the computed plane strain cases in this work, ST = 0.5 with



110819-7 C. J. Zusi and J. B. Perot Phys. Fluids 25, 110819 (2013)

FIG. 4. Domain evolution during straining. (a) Domain at time 12.0 s before straining begins. (b) Domain at ST = 0.25,
halfway through the straining process. (c) Final cubic domain after straining is complete (at ST = 0.5).

all straining starting at time = 12 s. A strain S = 0.625 s−1, strains until 12.8 s (ST = 0.5), S =
0.3125 s−1 strains until 13.6 s, S = 0.15625 s−1 until 15.2 s, S = 0.0625 s−1 until 20 s, and the case
with S = 0.025 s−1 strains until 32.0 s. After the domain becomes cubic in shape the strain is turned
off. The resulting anisotropic turbulence now decays without strain, and with no more motion of the
underlying mesh.

III. RESULTS

A. Initial conditions

A number of plane strain cases were run to investigate the effects of non-dimensional strain rate.
Different initial conditions produce slightly different values for k and ε. Approximate values for the
initial Sk0/ε0 (at time = 12) are ≈0.35, 0.865, 1.73, and 3.46. The largest dimensionless strain rate will
be shown to approximate the theory of RDT well. These plane strain cases were also investigated
across three different initial conditions (IC1, IC2, and IC3). The different initial conditions are
generated by having a different random placement for the stirring boxes, and by shaking in different
random directions (though at the same amplitude). Table I describes the properties of the three
different initial conditions (at time = 12). In total there are 12 simulations involving 3 initial
conditions and 4 strain rates, all at roughly the same initial turbulent Reynolds number.

TABLE I. Initial conditions for the three test cases at a time = 12 seconds (when straining begins).

k0 ε0 Re0 Reλ0 T0 = k0/ε0 L0 = k3/2
0 /ε0 Sk0/ε0 Lη Lη/�X

IC1 0.848 0.151 477.466 56.419 5.628 5.184 Low = 0.352 0.051 0.541
Medium-low = 0.879
Medium-high = 1.759

High = 3.518

IC2 0.700 0.126 387.370 50.818 5.536 4.631 Low = 0.346 0.053 0.566
Medium-low = 0.865
Medium-high = 1.730

High = 3.460

IC3 0.534 0.099 287.880 43.809 5.396 3.941 Low = 0.337 0.056 0.602
Medium-low = 0.843
Medium-high = 1.686

High = 3.372
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Table I shows the initial kinetic energy K0, dissipation ε0 = −dk/dt, and turbulent Reynolds
number Re0 = K 2

νε
. It also shows the Taylor micro-scale Reynolds number Reλ0 = ( 20

3 Re0)1/2, large-

eddy turnover time T0 = K/ε, large-eddy length scale L0 = K 3/2

ε
, and the Kolmogorov length scale

Lη = ν3/4/ε1/4. A grid spacing �X that is twice the Kolmogorov length scale or smaller is considered
by most DNS practitioners to be more than sufficient for resolving small scales.

B. Time development

The behavior of the turbulent Reynolds number and the large-eddy length scale are shown as
a function of time in Figure 5. This figure shows the behavior for three different initial conditions
at the moderate strain rate (initial Sk0/ε0 = 1.76, 1.73, and 1.69). Other strain-rate cases behave
similarly. Note that the length-scales (increasing set of blue lines) grow rapidly during the straining
process (time 12–13.6) and the Reynolds number (decreasing set of green lines) also grows slightly
during the straining as energy is added to the turbulence via the mean flow gradients. At a time of
roughly 100 the turbulence is becoming box constrained. The IC1 case (solid blue line) exhibits the
most abrupt transition to a fixed length-scale limit. In isotropic decaying simulations a length-scale
of 10–12 is also found as the upper limit possible for the large-eddy length scale.27 In what follows,
results at times greater than 80 will be assumed to be influenced by the domain size of the simulation.

The Reynolds stresses for Sk0/ε0 = 1.76 and IC2 are shown in Figure 6 as they evolve in time.
Again this case is indicative of the other strain rates and initial conditions. The Reynolds stresses

Time
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FIG. 5. Large eddy length scale (blue: left y-axis, increasing curves) and turbulent Reynolds number divided by 100 (green:
right y-axis, decreasing curves) as a function of time for Sk0/ε0 = 1.76 for all three initial conditions. IC1 is solid line, IC2
is dashed line, and IC3 is dotted line.
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FIG. 6. Reynolds stresses for IC2 (with Sk0/ε0 = 1.76) as a function of time. R11, solid red line; R22, dashed green line; and
R33, dotted blue line.
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FIG. 7. Anisotropy tensor, bij resulting from IC2 subjected to Sk0/ε0 = 3.46. Strain runs from t = 12 to t = 12.8. b11, red
squares; b22, green diamonds; and b33, blue triangles. b12 (red, dashed-dotted line), b23 (green, dashed-dotted-dotted line),
and b13 (blue, dashed-dotted-dotted-dotted line). RDT predictions are shown (black solid lines) from t = 12 to t = 12.8.
There are 50 timesteps between each symbol in the figure.

decay with time, with an increase in R22 during the straining period and a more rapid decrease in
R11. In theory the off-diagonal components of the Reynolds stress tensor should be zero for this
flow so the off-diagonal components are not shown here. They are shown in Figure 7 below and are
small.

In this work, the dimensionless Reynolds stress anisotropy tensor is given by the expression
bi j = 〈ui u j 〉

K − 2
3δi j (other authors may use a similar definition that is 2 times smaller). This quantity

removes the effect of the strong decay that dominates Figure 6, and allows one to focus on the
deviations of the Reynolds stresses from the isotropic case. Figure 7 shows the anisotropy tensor
corresponding to the same case as Figure 6. For statistical reasons the off-diagonal components
of the anisotropy tensor are not zero. They are shown here (as lines without symbols) to give an
indication of the statistical variability present in the results. A dimensionless anisotropy below 0.05
is therefore essentially statistically equivalent to zero in our results.

Figure 7 confirms the theoretically expected behavior of turbulence subjected to plane strain.
For extension in the x-direction the b11 component of the tensor (red squares) decreases and becomes
negative. The turbulence fluctuations in the x-direction are suppressed. Similarly, compression in
the y-direction causes the b22 component of the anisotropy tensor (green diamonds) to increase.
Fluctuations are amplified in the compression direction. The z-direction (blue triangles) is only
indirectly affected by the strain. The turbulent fluctuations increase slightly in this direction as the
energy reorients due to mixing from the y-direction. Figure 7 also shows the RDT prediction (which
assumes very large dimensionless strain) for this case (solid, black lines) for the time 12–12.8. The
DNS agreement with the RDT prediction is very good for this highest strain-rate case (the RDT
lines lie right on top of the DNS data).

C. Strain rate

The influence of the strain rate on the anisotropy tensor is shown in Figure 8. This shows four
different strain rates applied to the same initial condition (IC2). Keep in mind that each case uses a
different strain rate. However, the total amount of strain in each case is the same so that the strain
rate multiplied by duration of strain remains a constant (ST = 0.5). This means that the smaller the
strain rate the longer it lasts.

To first order the curves are very similar after the straining is completed (their peak values and
the end of the straining process are reasonably close). This confirms that the total strain and not
the strain rate is the critical factor governing how much anisotropy is generated in the turbulence.
Another important observation that we will return to later is the fact that immediately after the strain
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FIG. 8. Diagonal components of the anisotropy tensor during strain and subsequent decay (return to isotropy). Red lower
curves, b11; green upper curves, b22; and central blue, b33. Strain rates of Sk0/ε0 = 0.346, 0.865, 1.73, and 3.46 for initial
conditions IC2.

is removed, the b11 and b33 components begin to return to isotropy, but the large b22 component
(green) goes away from isotropy for some time (1–2 s) before finally beginning to decrease. This
affect has been noticed in some experiments previously40 and is also discussed in Refs. 3 and 4.
We will refer to this period after the strain is removed, but before all components begin to reduce
their isotropy, as the recovery period. It is hypothesized in this work that in this recovery period, the
structures of the turbulence (the two-point correlation lengths) are returning to isotropy faster than
the velocity fluctuations are returning. Once the structures (two-point lengths) rapidly recover their
isotropic values the more classic mixing of eddies and return-to-isotropy of the velocity fluctuations
takes over which we refer to as return.

At very long times, the anisotropy curves do not appear to asymptote to zero. They seem to
asymptote to a fixed (non-zero) value. This could be a statistical effect, caused by the very largest
eddies (the only ones left after very long times) not having enough statistical sample in the finite
simulation domain. Experiments show similar results.9, 12

Figure 9 shows the effect of having different initial conditions and roughly the same strain rate
(Sk0/ε0 = 3.52 for IC1, Sk0/ε0 = 3.46 for IC2, and Sk0/ε0 = 3.37 for IC3). This figure confirms
that the trends described above (particularly the recovery region) are general and not a result of one
particular initial condition.
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FIG. 9. Effect of initial conditions IC1, IC2, and IC3 at Sk0/ε0 = 3.46. This shows the statistical variation due to different
realizations. Statistical anisotropy variation of the order of 0.05 is common.
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FIG. 10. Component of anisotropy tensor during strain and recovery of IC3 subjected to different strain rates. (a) b11, b22,
and b33 of the anisotropy tensor with time axis scaled as S*(t − t0). (b) log-log plot of b11 when each curve has been translated
on the x-axis such that the point in time at which straining is stopped coincides with a point on the Sk0/ε0 = 3.46 trajectory.

D. Scaling

Two different scalings of the time axis are shown in Figure 10. The first scaling shown in
Figure 10(a) uses a dimensionless timescale based on the strain rate, t* = S(t − 12). Under this
scaling all the curves travel along the same lines during the straining process. The only difference is
that the lower strain rates progress less far along those lines. Only the very lowest strain rate (Sk0/ε0

= 0.35) shows a noticeable difference. For this low strain rate, the return to isotropy mechanism is
strong enough to slow the straining trajectory as it moves away from isotropy.

To obtain a collapse of the curves after the strain, a different scaling must be used (since there is
no imposed external timescale anymore). The scaling used in Figure 10(b) simply shifts each curve
to the left (in time) until its peak value (at the end of the strain) lies on the highest strain curve.
This is essentially just a reset of the zero time to be the point at which strain ends. Interestingly, the
subsequent evolution of the anisotropy behaves very similarly (the curves lie almost on top of each
other). The linear behavior on the log-log plot indicates a power law decay.

E. Invariant map

The anisotropy invariant plot41 is a common way to look at the return-to-isotropy problem. The
anisotropy tensor has zero trace, so one can plot the state of the turbulence as a function of the
other two invariants II = −(1/8)bijbji, and III = (1/24)bijbjkbki. Figure 11 shows the variation of this
turbulence state as a function of time for all three initial conditions and two different strain rates.

The turbulence starts close to the origin (isotropy) at time 12. The solid red lines show the
evolution as the turbulence is strained and moves away from isotropy. When the strain is removed
on the high strain case (Figure 11(a)) the state moves to the right on the invariant map. This is
the recovery period and does not represent a significant return to isotropy. After some time the
recovery (motion to the right) stops, and the state moves downward towards the isotropic state.
At very long times, the trajectory wanders about near zero but no longer continues to approach it.
We believe this is a result of the statistical sensitivity and domain constraint at large times. The
three different initial conditions have somewhat different trajectories on the invariant map, but these
general characteristics remain true for all of them.

The low strain case (Figure 11(b)) has the same general structure of strain (solid) line moving
away from isotropy, and no strain (symbols) moving back towards isotropy. However, for the low
strain case, return is almost back along the upward straining trajectory. There is far less recovery,
or movement of the trajectory to the right. It is hypothesized that when the strain is weaker the
structure of the turbulence (two-point correlation lengths) can remain more isotropic even as the
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strain proceeds, so that the following recovery (to isotropic structure) is much weaker on removal
of the strain.

On this invariant map the classic linear return-to-isotropy model of Rotta13 would be trajectories
that only move downwards, never to the right. Those trajectories never overlap. More complicated
nonlinear return-to-isotropy models, such as that of Sarkar and Speziale42 do show trajectories that
move to the right. However, those trajectories can still never cross each other. In Figure 11(a) there
are a large number of trajectory crossings (for the different initial conditions). Trajectory crossing
confirms the hypothesis that the time evolution of the anisotropy depends on more than just the
anisotropy state itself.

F. Higher total strain

Figure 12 shows the effects of doubling the total strain for IC3 subjected to an initial strain-rate
of Sk0/ε0 = 0.337, 0.843, and 1.686. Both the original strain of ST = 0.5 and doubled strain of
ST = 1.0 are shown on each figure.

It can be seen that increasing the strain time increases the amount of anisotropy produced by
the straining. In addition, it appears that the recovery slope depends on the strain-rate, and not the
total strain. In fact, the low strain case (Figure 12(a)) appears to be recovering (moving to the right)
even as the turbulence is strained. The faster the strain-rate, the smaller the strain time and the
less recovery can happen during the straining process, and the more it happens after the strain is
removed.

Note that all the doubly strained curves (upper blue curves) tend to move away from isotropy
at very long times. This is probably because the mesh is no longer uniform at the end of the doubly
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FIG. 12. Effect of doubling the strain time on IC3 for strain rates: Sk0/ε0 = (a) 0.337, (b) 0.843, and (c) 1.686.
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strained simulation cases. The mesh is, in fact, the reverse of the initial condition mesh before the
straining. Differences in resolution in the three mesh directions may then cause slightly different
decay rates in the three directions moving the turbulence away from isotropy at very long times. The
very long time behavior of these doubly strained cases is therefore less accurate.

G. Decay rate

The decay rate is an extremely sensitive indicator of whether the turbulence is decaying like
isotropic turbulence. The velocity derivative skewness, which is a more commonly used indicator,
will stay at the classic value of −0.5 for all sorts of conditions where the decay rate shows a strong
variation from the theoretical values. Figure 13 shows the decay rate n as a function of time for three
different initial conditions and two different strain rates. The decay rate is given by n−1 = d(K/ε)

dt . It
represents the power at which the kinetic energy decays, (t) = K0(t − t0)−n. The numerical calculation
of this quantity requires small time increments for an accurate representation of the derivative.21 Be-
fore the strain is applied at time 12 the turbulence usually approaches the theoretically expected high
Reynolds number value of 6/5 determined by Saffman.43 Reference 27 shows this initial development
behavior before this time but this work focuses on the strain and subsequent recovery. After the strain,
the decay rate appears to approach the low Reynolds number Saffman theoretical value of 3/2. Then
after more time, the higher Reynolds number cases (IC1 and IC2, see Figure 5) drop back towards the
high Re decay rate, before finally moving towards the domain constrained decay exponent value of 2
(see Stalp et al.44 and Touil et al.45) at very long times (after about 100 s). The highest Re case (IC2,
at time 40) drops all the way to the high Re value. The medium Re case (IC1) only drops slightly,
but does not go to 6/5. In any case, Ref. 21 looked at Re effects for decaying turbulence in more
detail and showed that the decay rate transition from 6/5 to 3/2 is not solely related to the Reynolds
number.
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IV. MODELING

A. Anisotropy based models

Traditional return-to-isotropy models such as the linear Rotta,13 or the more general nonlinear
models (such as Sankar and Speziale42), attempt to characterize the return-to-isotropy using only
the anisotropy tensor itself. A typical model is

∏
i j /K = −(C1 − 1) ε

K ai j + Cn
ε
K aikak j , where

∏
ij

models the slow part of the pressure-velocity gradient correlation and the dissipation anisotropy.
Note that C1 should be greater than 1 or this model does not cause return to isotropy.

In the case of plane strain the anisotropy tensor has two independent quantities because the off
diagonal components are zero and the diagonal components sum to zero. It is therefore possible to
determine the two constants C1 and Cn from the two independent anisotropy components a11(t) and
a22(t), and their evolution in time (see Durbin and Reif46 for more details). The values for these
constants are shown in Figure 14 for the highest strain rate and three different initial conditions.

The analysis only applies after the strain stops (after 12.8 s). The general behavior of the
constants is the same for the different initial conditions, but it is important to note that the constants
change with time. There is an initial period where the linear return term (red solid line) is not causing
return (C = 1) and the nonlinear term (blue dashed line) is doing all the return. Then at long times,
the classic linear return model (with a value of about 1.7) seems to work very well.

Figure 15 shows the return constants for the IC3 case after a variety of different strain rates. The
conclusions remain the same. At early times, something complex is happening, and the nonlinear
model with a time varying constant is doing its best to capture the recovery (not return) of the
turbulence. At latter times, the simple linear Rotta return model works very well.

It is possible, that the constants in the models above are actually a function of the anisotropy
invariants (II and III) or other dimensionless variables such as the Re. References 14 and 15 contain
examples of models where such functions have been hypothesized. Note, that no matter how complex
the functional dependence of the model constants, a return-to-isotropy model that only depends on
information contained in the anisotropy tensor produces unique trajectories on the invariant map
that never cross (one state can never produce two different evolution paths for these models). The
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right axis) as a function of varying ICs (a) IC1 (Sk0/ε0 = 3.52), (b) IC2 (Sk0/ε0 = 3.46), and (c) IC3 (Sk0/ε0 = 3.37).
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crossings in Figure 11 suggest that additional information must be used in the return-to-isotropy
model. The Reynolds numbers in these test cases do not vary significantly between initial conditions,
or between the different strain rate tests, so it unlikely (in these simulations) to be the critical missing
information. Section IV B considers the performance of a model which can account for eddy structure.

B. Oriented-eddy collision model

The oriented eddy collision (OEC) model is discussed extensively in Ref. 1. This model looks
like a collection of Reynolds stress transport equations coupled with a set of transport equations for
the inverse two-point correlation lengths. The information contained in the OEC model can be used
to approximate the two-point correlation (not just its peak value which is the Reynolds stresses). In
the OEC model the two-point correlation is approximated by Qi j (x, r) = ∑

R̂i j (x, t) f (|q(x, t) · r|),
where R̂i j (x, t) and q(x, t) are determined by the model partial differential equations (PDEs) and
the function f is usually chosen to be a decaying exponential. The OEC model uses a classic linear
return-to-isotropy model for the velocity fluctuations, and also the simplest possible linear return-
to-isotropy model for the inverse correlation lengths, q. However, the time scale for the q-recovery
is faster than that for the velocity-return.

The ability of the OEC model to predict the plane strain return is shown in Figure 16. This figure
shows the Reynolds stresses for IC1 after 4 different strain rates. The OEC model is exact in the RDT
limit, so the ability to capture the effect of straining which is normally quite difficult for turbulence
models is not a problem for this model. The subsequent anisotropic decay (return-to-isotropy) is
not exact for the OEC model. But the model uses the same information used to exactly predict the
strain process, to also model the recovery process. The agreement over all 4 test cases (with the same
model constants) is encouraging.
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A more sensitive test of the OEC model is to plot the results on the anisotropy invariant map.
This is shown in Figure 17. The model produces the correct qualitative features. However, it tends
to overshoot the recovery and move too far to the right on the invariant map. Note that this model
can produce trajectory crossing like the DNS data demonstrates.

V. DISCUSSION

The simulations presented in this work have a 5123 mesh resolution in order to try to capture
the large scales well. Results suggest that the large-eddy length scale should be less than 1/4 of
the domain size to prevent the turbulence from becoming domain constrained. The large scales are
known from theory to govern the behavior of isotropic decay. They also appear to strongly influence
the behavior of anisotropic turbulence. In particular, at long times we do not see a return-to-isotropy,
but a return of the small scales to anisotropy and fixed background level of the large scale anisotropy.
Comte-Bellot and Corrsin30 make the same observations in their experiments as do Kang et al.47

George48 provides a possible theoretical argument for this behavior.
The initial conditions for the presented simulations were generated by moderate size cubes in

a way that all large scales were formed by the turbulence process itself. The very largest scales
of the turbulence (which govern the decay behavior) are much larger than the initial mixing cube
size. There is very little human input to the simulation that influences the large scale turbulence.
The very largest scales result from the Navier-Stokes equations and their interaction with a random
arrangement of small cubes.

Because the large scales are much smaller than the domain size in these simulations, the turbulent
Reynolds numbers are not large. Still, they are comparable to some experimental Reynolds numbers,
and they appear to be high enough (at least for IC2) to produce the isotropic decay rate (n = 6/5)
predicted by Saffman for high Re turbulent decay both before and well after the straining process. It
was found that after straining, the turbulent decay rate tends to be larger than the theoretical value
that one would expect for isotropic decaying turbulence (during the recovery phase). At longer times
after the strain, the decay rate returns to its classic theoretically expected value even though the
turbulence is not yet fully isotropic (during the return phase).

An important observation of this paper is the confirmation that the return-to-isotropy occurs in
two stages, a recovery stage immediately after the strain is removed in which some of the anisotropy
components can still be increasing (and the decay rate differs from its isotropic value), and after
some time the more classic return stage where the velocity fluctuation anisotropy tends to zero
(and the classic isotropic decay rates are applicable). We hypothesize that the recovery stage is the
turbulence structure (two-point correlation lengths) returning to isotropy at a faster rate than the
velocity fluctuations return (which is the classic return stage). The presence of crossing trajectories
on the invariant map is a critical observation because it demonstrates unequivocally that the evolution
of anisotropic turbulence cannot be captured by the information in the anisotropy tensor alone.

Classic models for return-to-isotropy process have been stymied because they did not account
for the presence of the recovery stage of anisotropic turbulent decay. It was shown that even for
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the same flow conditions, that different initial conditions produced quite different values for the
constants in the classic nonlinear return to isotropy models.

Like the OEC model, the models of Kassinos, Reynolds, and co-workers4, 5 can also predict the
two stages of anisotropic decay, recovery and return. However, the underlying models are related
but not the same because of the difference in what type of extra information is being included in
the model. Rather than the direct use of two-point information, Ref. 4 uses one-point correlations
of derivatives while Ref. 5 makes use of a reduced spectral representation. The modeling of the
results of Kassinos and Reynolds and the current DNS work both indicate that the recovery stage of
anisotropic decay requires knowledge of and some representation of the turbulent structure.

This work only examines one type of anisotropic turbulence (plane strain), but it is encouraging
that the OEC model gives fairly reasonably predictions for all the different initial conditions and
strain rates with a single set of constants. Simulation and modeling of other canonical turbulent
flows are ongoing.
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