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Abstract The Oriented-Eddy Collision (OEC) model treats turbulent flow as a
non-Newtonian fluid where the average behavior of turbulence is modeled as a
collection of interacting fluid particles which have inherent orientation. The model
is derived from the two-point velocity correlation transport equation, and has the
form of a collection of Reynolds-stress transport equations, with one set of transport
equations for each representative eddy direction. The addition of eddy orientation
information adds important physics to the model and allows the model to represent
structural (two-point) information about the turbulence. This structural information
is sufficient to allow the model to capture the effect of external forces and imposed
mean strains (such as rapid distortion theory) exactly. The only physical effects
that must be empirically modeled are those that are due to turbulence-turbulence
interactions, referred to as eddy collisions. The performance of the model in a
number of canonical flow situations is presented.

Keywords Turbulence · Turbulence modeling · PDF collision · Eddies ·
Two-point correlations

1 Introduction

One fairly limiting aspect of most turbulence models is that they do not capture the
linearized Navier-Stokes equations. In theory, a linear equation system should not
require a model at all (and should therefore be trivial to model) as all modes or
solutions to the linear equations are uncoupled and do not interact with one another.

M. B. Martell · J. B. Perot (B)
The University of Massachusetts Amherst,
168 Governor’s Drive, Amherst, MA 01003, USA
e-mail: perot@ecs.umass.edu



Flow Turbulence Combust

If one considers the case of incompressible fluid flow, the transport equation for the
fluctuating velocity (or turbulence) in a noninertial reference frame is
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where u j is the mean velocity, u′
j the fluctuating velocity, v the kinematic viscosity, εijl

the permutation tensor and �l is the external system rotation rate. This equation also
assumes constant viscosity and density, so the fluctuating incompressibility constraint
also holds, u′

i,i = 0, and determines the fluctuating pressure, p′. Note that only the
final term is nonlinear. If any of the other terms on the right hand side are very large,
then the last term can be neglected, the equation system becomes linear, and it is
sometimes even analytically solvable. The classic case of exact turbulence solutions is
rapid distortion theory (RDT), where the first term on the right hand side (involving
the mean strain) is large.

It is important to note that the pressure term is always the same order of
magnitude as the largest term on the right hand side of Eq. 1, and therefore never can
be neglected. It is key to obtaining the correct solution. The pressure is also the key
difficulty with existing turbulence models. Reynolds stress transport (RST) models
are derived directly from Eq. 1. They capture the first term on the right-hand-side
(the production term) exactly, but they model the pressure term (which is the same
size and therefore always important). Reynolds stress transport models therefore
cannot represent the simple case of linearized turbulence (RDT) properly. In fact, it
has been shown that models for the pressure effects that only involve the fluctuating
velocity are fundamentally incapable of representing all RDT flows correctly [1]
regardless of how many tuning constants are involved.

Fundamentally, the problem stems from the nature of the fluctuating pressure
which is elliptic and depends strongly on the neighboring velocity field, not the local
one. The pressure therefore depends on the shape or structure of the turbulent
eddies present in a given flow. The eddies generated by thermal buoyancy in the
atmosphere tend to be oblate (flattened) spheroids, while the eddies generated by
strong shear tend to be prolate (elongated) spheroids. The local velocity fluctuation
levels (Reynolds stresses) may be identical in both flows; however, the turbulence
(and therefore the mean flow) evolves differently in the two cases. A model which
can predict RDT exactly must somehow capture the effect of these different turbu-
lent eddy structures correctly.

The focus of turbulence modeling has long been on the Reynolds stress tensor
(or its divergence, the body force vector [2]) as this is the critical variable needed to
predict the mean flow evolution. What has recently become clear is that predicting
the Reynolds stress tensor evolution requires knowledge of the local turbulent
structure. The equations cannot be closed at the Reynolds stress tensor level such
that they predict linear effects (RDT) without including structural information.
Adding more information leads to a closure approach which captures a great deal
more of the physics exactly (including the RDT limit). In this work, it is hypothesized
that the remaining physics not represented directly by the Reynolds stress tensor and
additional structural information is relatively easy to model accurately.
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1.1 Models for linear turbulence

The first attempt to model RDT exactly was by Reynolds and Kassinos (see [3] and
the many references therein). Reynolds and Kassinos noted that the stress tensor
(velocity fluctuations) did not contain enough information to capture linearized
turbulence exactly. They suggested a model which transports a single, rank two
tensor, the “eddy axis tensor”, characterizing the shape and orientation of a turbulent
eddy. Their model employs algebraic equations of state to obtain the Reynolds stress
tensor and uses two scalar transport equations containing information about the di-
mensionality and componentality of the turbulence. The model managed to capture
many linear turbulence cases exactly, which was the first ever demonstration of an
RST-like turbulence model providing accurate solutions in this limit of turbulence.
Their work produced a powerful idea: perhaps the limitations of previous turbulence
models lie not in the model but instead was instead due to the absence of turbulence
structure.

Reynolds and Kassinos furthered this idea with the Particle Representation Model
(PRM) [4]. Kassinos and Akylas later extended it with the Interacting Particle
Representation Model (IPRM) [5]. The main difference between the PRM / IPRM
approaches and the Oriented-Eddy Collision model lies in the way the models
average over turbulent structure. The OEC approach averages over structures which
have the same orientation while PRM/IPRM approaches do not. Such averaging is
discussed in several of PRM papers, but is not used in practice. In addition, the OEC
approach folds both structure magnitude and direction into one quantity, the eddy
orientation vector. The PRM approach tends to use unit vectors.

Pope and Van Slooten [6] extended these ideas to the probability density function
(pdf) modeling framework. A typical pdf model computes the probability of a certain
velocity fluctuation at a certain location and time. In [3] the pdf was expanded
to compute the probability of a certain velocity and a certain “wavevector” at
some location and time (a 10 dimensional space). This model is also capable of
exactly predicting linearized turbulence (or rapid distortion theory) in homogeneous
turbulence.

The OEC model incorporates turbulence structure information into the model. In
this case, the model is derived from the exact two-point velocity correlation transport
equation. Two-point correlations are an intuitive representation for turbulence
structure. If two separated points have velocities that are closely correlated, those
two points have a high probability of being in the same eddy. When a correlation
gets close to zero that represents the final extent of the average eddy. It is therefore
possible that two-point correlations are a reasonable environment in which to con-
struct a general model for engineering applications (with inhomogeneous turbulence,
walls, and other complications), that is still capable of capturing rapid distortions (the
linearized limit) exactly.

The derivation of the model is presented in Section 2. The final result of this
section is a collection of Reynolds stress transport (RST) equations. There is one
tensor transport equation for each representative eddy orientation. Many existing
computational fluid dynamics (CFD) codes have RST models implemented already.
This structure of the OEC model makes it reasonably simple to incorporate into
existing CFD infrastructure. To illustrate this, the results in Section 3 were computed
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with the OEC model implemented in the open source collection of computational
fluid dynamics libraries, OpenFoam [7, 8]. Section 3 details canonical test cases
employed to benchmark the OEC model. Exact results in the RDT limit are shown as
well as other important limits, such as rotating decay and return to isotropy, that test
the other (inexact) aspects of the model. A short discussion of the results is presented
in Section 4.

2 The Oriented-Eddy Collision Model

The general form for the exact but unclosed equation for the evolution of the two-
point velocity correlation tensor is
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In the context of two point correlations, x is the vector representing the physical
location of the first point in a two point correlation and r a vector pointing toward
the second point x̃ ≡ x + r. Note that explicit dependence on x and x̃ is implied by
the index order and is not explicitly stated. In Eq. 2 above, the notation Q(ik) j implies
a triple correlation viz. u′

i(x)u′
k(x)u′

j (̃x), and similarly Qi(kj) = u′
i(x)u′

k (̃x) u′
j (̃x). Note

that an external forcing given by the term fi(x)u′
j (̃x) + u′

i(x) f j (̃x) has not been ex-
plicitly included. In the homogeneous turbulence limit, where the spatial derivatives
of turbulence quantities are zero and the mean flow gradients are constant, this
becomes [9],
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For an incompressible flow it can be shown that

∂ Qij

∂r j
= 0 (4)

which allows the pressure-velocity correlations (4th term on the right hand side of
Eq. 3) to be determined. In fact, the only unclosed terms in the two-point evolution
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equation are the terms involving the two-point triple-velocity correlations (the last
term in Eq. 3). If the triple-velocity correlations are neglected, Eq. 3 represents
linearized turbulence (RDT).

2.1 Linear OEC model

To derive the model we use the assumption that the correlations can be decomposed
using

Qij = 1
N

N∑
n=0

Rn
ij(t)

∂ F
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(
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where ηn = ∣∣r · qn
∣∣ and qn(t) is the eddy orientation direction. The shape function,

F = F(η) is some function (like a decaying exponential ∂ F
∂η

= e−η) that has a
derivative equal to unity at η = 0 and which drops quickly off to zero at infinity. It is
unitless, as is ηn. The orientation vector qn has units of inverse length. The function
F implies an assumption as to the shape of the two-point correlation subsets. No
assumptions are made about the variance. In each direction, given by the orientation
vector qn, that eddy’s contribution to the correlation will drop off according to the
inverse of the length of qn in the direction of qn and will not approach zero in the
plane perpendicular to qn. The summation allows us to have different correlation
lengths in different directions. As long as the number of eddies, N, is very large,
the total correlation will still go towards zero at infinite separation even though
individual contributions to the summation may not. In practical computations, a
finite sum (often around 20–100 eddies) is used, and the modeled correlations drop
to a maximum of 5%–1% at infinite separation. In what follows the orientation
superscript, n, is dropped, and summation is assumed to imply over all orientations.
Subscripts continue to refer to Cartesian tensor notation. For the cases considered
in this work, the same N eddies occupy all locations in space. This decomposition
does not require homogeneity. For the homogeneous flows considered here, all eddy
orientation vectors qn are initially distributed in a uniform manner on a unit sphere
(see Section 2.3).

The decomposition given by Eq. 5 is powerful. First, it allows complex correlations
to be represented simply. When Eq. 5 is plugged into the two-point evolution
equations for homogeneous turbulence (Eqs. 3 and 4) the equations for RDT are
recovered (see Appendix A for the derivation). For RDT these equations do not
depend at all on the choice of F. If the two-point correlation is required, a form
for F must be assumed. If the Reynolds stress tensor is the only necessary quantity
(which is often the case) then Rij = Qij (r = 0) = 1

N

∑
Rij and the system is again

independent of the choice of F.
Appendix A shows that the following equations for the decomposition coefficients

is a solution for the inviscid two-point RDT equations (Eqs. 3 and 4),
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where δij is the Kronecker delta, ui the mean velocity, and u∗
i, j = ui, j + εikj�k the

transformation-invariant velocity gradient tensor accounting for system rotation
effects. Equation 6a accounts for the advection and production of the Reynolds stress
tensor as well as the rapid pressure-strain redistribution. Equation 6b is the same as
the equation for the normal vector of passive disk embedded in a mean flow. As a
result we frequently refer to our eddies as disk-like (or planar) in shape. This does
not imply that the two-point correlation is disk-like, as it is a sum over many eddies
all located at the same place and time.

This system (Eqs. 6a and 6b) can be solved numerically to obtain exact RDT
results. The form of the equations is identical in form to the analytical Fourier
solution for exact rapid distortion theory from Pope [10]. However, it should be
remembered that Eqs. 6a and 6b were not derived with any relation to Fourier space,
and the ideas behind their construction can therefore be relatively easily extended to
Eq. 2 and general turbulence situations. While not common, other solutions in the
form of correlations exist, such as those proposed by Deissler [11].

2.2 The complete OEC model

For a full OEC model, the equation system must be generalized to account for
diffusion, as well as the nonlinear affects of turbulent dissipation, and return to
isotropy. These effects may appear in either or both Eqs. 6a and 6b. The turbulent
dissipation term is discussed in detail in de Bruyn Kops and Perot [12]. In summary,
the decay equations are

∂ Rij

∂t
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)
Rij (7a)

∂qi
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3
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where 1/τ R is the inverse turbulent timescale. These equations will produce the
exact decay behavior for isotropic turbulence in both the high Reynolds number
(Re) limit and the low Reynolds number limit. The constant α, which is currently
set to 15.0, determines the Reynolds number at which the switch from high to
low Reynolds number behavior occurs. The fraction 1/3 is exact for Saffman decay
[13, 14] (a low wavenumber spectrum of k2) which was determined to be appropriate
for turbulence generated by walls [15]. Note that a fraction of 1/5 is correct for
Kolmogorov/Bachelor decay (a low wavenumber spectrum of k4), if that is desired.
It is important to note that the viscous inverse time-scale is 2ανq2, and the turbulent
inverse time-scale is 1/τ R, and their effect is additive in this model.

The positive definite inverse eddy turnover time is modeled as 1/τR =
(

Kq2
)1/2 =

K
1/2 ( 1

N

∑
q2
)1/2

. The average kinetic energy over all eddies is defined as K =
1
N

∑( 1
2 Rii

)
where N is the number of eddies employed in a given simulation of

turbulent flow. Note that the overbar is used to indicate a quantity which has
been averaged over all eddies. The quantities of interest to the engineer are not
the individual eddies’ statistics but those quantities averaged over all eddies. For
example, Rij = 1

N

∑
Rij is the familiar Reynolds stress tensor.

Return-to-isotropy is another important result of the nonlinear turbulence-
turbulence interactions. A number of return-to-isotropy models are considered in
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Chartrand and Perot [16], including one just on the cusp of strong realizability that
has no tunable constants. In this work a modified version of Rotta’s linear return-to-
isotropy model [17] is employed for the orientation stresses in Eq. 6a.

− 1
τR

(
CR

1 + CBν/νT

)[
Rij − K

(
δij − qiq j

q2

)]
(8)

In expression (8), CR and CB are tunable constants. The first is quite important and
is set to 1.375. The latter, set to 1.0, is only active in the very low Reynolds number
limit where it sets the Re where return-to-isotropy goes to zero, recalling that at very
low Reynolds numbers the flow approaches Stokes flow and is once again linear with
effectively no modal interactions.

The positive definite turbulent viscosity is given by νT =
(

K2/Kq2
)1/2

. Note that
Reynolds stress isotropy is typically defined as the scalar kinetic energy multiplied
by the identity tensor, 2

3 Kδij. In expression (8), however, this tensor is modified by
the normalized outer product of the orientation vector qiq j/q2. This modification of
the term means that this return term is always orthogonal to the orientation vector.
Appendix A shows how orthogonality of the orientation stress and the orientation
vector is a direct result of the fluctuating incompressibility constraint. This form of
the return term means that this orthogonality is maintained even during return-to-
isotropy. While the two terms are similar in form, note that the formulation of the
eddy viscosity is not related to the formulation of the turbulent time scale.

Return to isotropy of the orientation vectors is similar but operates on a vector
rather than a tensor term:

Ai = − 1
τR

(
CQ

1 + CBν/νT

)[
3

qiqk

q2
− δki

]
qk (9)

The tensor qiqk/q2 represents the average orientations of the eddies. When one of
the diagonal components of this tensor is large, then most of the eddies point in that
direction, or the eddies that point in that direction have small sizes (and hence large
q2). The value of CQ is typically larger than CR and is set to 2.75 in this work. Isotropy
in the OEC model therefore occurs when the oriented stresses become isotropic, but
also when the eddy orientations become uniformly distributed on a sphere. Note that
mean flow gradients tend to distort the orientation distribution, and random mixing
by turbulence tends to return orientations to the isotropic state.

In order to maintain orthogonality (or fluctuating incompressibility), a term must
be added to the stress equation to account for the orientation return to isotropy:

(
Rlj

qi

q2 + Rli
q j

q2

)
(Al) (10)

Appendix B shows how this term makes ∂(Rijq j)
∂t = 0, which implies that orthogonality

is preserved by the transport equations if the system starts in an orthogonal state
which is necessary in order to be a consistent incompressible initial condition.

For flows far from features such as solid boundaries or shear free interfaces,
accounting for viscous diffusion is straightforward. The Laplacian of the effective
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viscosity ν+νT and the quantity of interest—the eddy orientation vector or Reynolds
stress tensor—will suffice:

+ [(ν + νT) Rij,k
]
,k and + 1

3

[
(ν + νT) qi,k

]
,k (11)

The factor of 1/3 is included to be consistent with the dissipation models but has no
real theoretical basis for inclusion in the diffusion term. It is also important for the
OEC model to respond properly to system rotation either due to the mean flow or
due to a non-inertial frame. This may be achieved by modifying the decay rate of the
orientation vectors to account for system rotation:
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where the absolute vorticity is �∗
k = εijkuk, j + �i. The term qk�

∗
k implies that tur-

bulence that is two-dimensional (i.e. has one component of the orientation always
zero) will not be affected by system rotation perpendicular to that plane (as theory
dictates). At low rotation rates this term becomes negligible, with the value of ‘low’
dictated by the constant 20. At high rotation rates the term in square parenthesis
approaches 4/3, leading to a theoretical decay rate for the kinetic energy of 6/13.
A value of 0.4 (rather than 0.25) for the second constant leads to a kinetic energy
decay rate of 3/5 (as cited in [18]) The two numerical constants in the Eq. 12 were
determined empirically through the work of Perot and Chartrand [19].

The complete transport equations for the Oriented-Eddy Collision model can now
be constructed. The orientations obey the equation
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Similarly, the evolution equation for the Reynolds stress tensor becomes
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This paper does not consider solid boundaries and boundary conditions. That topic
will be addressed in a later paper.
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2.3 Initial conditions

The initial conditions for the eddy orientation vectors and stresses must be addressed.
In theory, the more orientations used in the model, the better the representation
of the underlying physics. Based on the number of eddies N, each cell in the
computational domain is populated with N Reynolds stress tensors, and N eddy
vectors. For isotropic initial conditions, the eddy orientations are sampled uniformly
on a sphere. The magnitude of the eddy vectors governs the dissipation, so these
vectors must initially be scaled to have the correct magnitude for a given initial
kinetic energy and Reynolds number. The initial eddy vectors are scaled by the
positive root to the following quadratic equation (with roots β):

[
ν
(

q2 K0
)

α
]
β2 +

[(
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) 3

2
q2

1
2
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where K0 and Re0
T are the average initial kinetic energy and turbulent Reynolds

number. Recall that the average eddy magnitude is calculated by q2 = 1
N

∑
q2.

The Reynolds stresses are set by the initial average Reynolds stress tensor R0
ij and

the corresponding eddy orientation is set by the equation,
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These initial stresses are always orthogonal to the corresponding orientation. They
have the correct kinetic energy for each orientation in as much as they sum to the
initial Reynolds stress (R0

ij) when the orientations are distributed on a sphere (that
is, when they are isotropic).

3 Model Validation

3.1 Regular and rotating isotropic decay

The most basic test of the OEC model is isotropic decaying turbulence. Direct
numerical simulation data from de Bruyn Kops and Riley [20] is employed. The
initial kinetic energy for this case is K

0 = 0.075 m2/s2 and the initial turbulent
Reynolds number is Re0

T = 665. The OEC model accurately predicts the decay of the
turbulent kinetic energy, even though the decay process is non-linear and therefore
an entirely modeled phenomenon (Fig. 1). In addition, nine cases of turbulent
rotating decay with varying turbulent Rossby and Reynolds numbers, from Wigeland
and Nagib [21], are calculated. The initial conditions are summarized in Table 1,
noting the definition of the turbulent Reynolds number ReT ≡ K

2
/νε and turbulent

Rossby number RoT ≡ ε/
(
|�i| K

)
.

The OEC model predicts the decay of turbulent kinetic energy for all nine cases
within reasonable accuracy compared to data from Wigeland and Nagib. Figures 2, 3
and 4 show the model’s performance. A more marked deviation from the benchmark
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Fig. 1 Isotropic,
homogeneous decay of kinetic
energy predicted by the OEC
model (—) compared to DNS
data from de Bruyn Kops and
Riley [20] (�)

data are noted for the three cases with the highest rotation rate, especially at long
times.

Rotating decay was also tested with data taken from Jacquin et al. [22]. Note
that only the highest Reynolds number case is shown here, as agreement at lower
Reynolds numbers was excellent and tested previously. For the case considered, the
initial dissipation was ε = 30.96 m2/s3, the initial kinetic energy K = 0.444 m2/s2,
and the initial kinematic viscosity ν = 1.51E-5 m2/s. The case began with a turbulent
Reynolds number of ReT = 457 and initial turbulent Rossby number of RoT = 1.10.
Figure 5 compares the OEC model’s predictions to data from Jacquin et al. (case C),
the highest Reynolds number considered. Even at high Reynolds number the model
deviates from the experimental data by less than 5%.

The results of Mansour, Cambon, and Speziale’s [23] simulations of turbulent
rotating decay were employed as a final test of the OEC model’s ability to predict
such flows. The initial conditions for the four cases considered are listed in Table 2.
Thoroughly testing the model’s ability to accurately predict rotating decay was
necessary as the rotating dissipation model must remain stable for long times in order
to compute cases such as steady state shear flow.

Figure 6 shows the OEC model’s prediciton of normalized kinetic energy as a
function of time when subjected to the conditions presented in Table 2. Interestingly,
cases A and C, which were run at the highest turbulent Rossby numbers, show
the closest agreement to Mansour, Cambon, and Speziale’s data and matched to
within 5%. Cases B and D, with lower Rossby numbers, showed agreement only

Table 1 Initial conditions for Wigeland and Nagib [21]

A B C

ε
(
m2/s3) 14.85 14.67 14.94 2.96 3.49 3.36 2.77 3.36 22.26

K
(
m2/s2) 0.098 0.0975 0.105 0.045 0.0462 0.051 0.029 0.033 0.096

ν
(
m2/s

)
1.85E-5 1.8E-5 1.85E-5 1.85E-5 1.85E-5 1.85E-5 1.85E-5 1.85E-5 1.85E-5

ReT 36 36 41 38 34 43 17 18 23
RoT ∞ 7.52 1.78 ∞ 3.77 0.82 ∞ 5.09 2.9
|�i| 0 20 80 0 20 80 0 20 80
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Fig. 2 Rotating and
non-rotating decay of kinetic
energy from Wigeland and
Nagib [21], case A: |�i| = 0
(�), |�i| = 20 (�), |�i| = 80
(�), compared to predictions
from the OEC model (—)

to within 10%. Note that data from Mansour et al. [23] cases C and D run for
relatively brief periods of time, possibly indicating difficulty in attaining accurate
DNS simulations, especially case C (�) which only provides data up to 0.8 s.

3.2 Rapid distortion theory

The addition of orientation information to the OEC model enables it to accurately
capture turbulence in highly non-equilibrium conditions, such as those described by
rapid distortion theory (RDT). Amongst the RDT cases considered and used for
validation were the following: Axisymmetric expansion, akin to an expansion in a
wind tunnel in directions transverse to the mean flow; axisymmetric contraction in
which the turbulent flow is contracted in the transverse directions, plane strain, and
finally shear. The four cases are summarized in Table 3 and shown Figs. 7, 8, 9 and 10.

Fig. 3 Rotating and
non-rotating decay of kinetic
energy from Wigeland and
Nagib [21], case B |�i| = 0
(�), |�i| = 20 (�), |�i| = 80
(�), compared to predictions
from the OEC model (—)
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Fig. 4 Rotating and
non-rotating decay of kinetic
energy from Wigeland and
Nagib [21], case C: |�i| = 0
(�), |�i| = 20 (�), |�i| = 80
(�), compared to predictions
from the OEC model (—)

The tensor ui, j is the mean velocity gradient tensor applied to the turbulent flow to
produce rapid distortion, and S a scalar quantity that controls the amount of strain.
The exact RDT solutions can be found in numerous references.

One final case related to axisymmetric expansion, investigated by Lee and
Reynolds [24] among others, is that of slow axisymmetric expansion. Challenges
inherent to modeling such a flow are detailed by Kassinos et al. [25]. Single
point closure methods have difficulty capturing slow strain as the Reynolds stress
anisotropy is greater than that found in rapidly distorted cases. The OEC model
was subjected to slow axisymmetric expansion with SK0/ε0 = 0.41 and compared to
RDT case at a much higher SK0/ε0 = 20.0, both at a turbulent Reynolds number of
Re0

T = 200. Similar to the observations made by Kassinos and Reynolds [3, 26], slow
axisymmetric strain exhibits higher initial anisotropy when compared to standard
RDT. Figure 11 shows this interesting phenomenon, described in detail by Kassinos
et al. [25].

Fig. 5 Rotating and
non-rotating decay of kinetic
energy from Jacquin et al. [22]
(�) with RoT = 1.10 (case C)
compared to predictions from
the OEC model (—)
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Table 2 Initial conditions for
Mansour et al. [23] rotating
decay cases

A B C D

ε
(
m2/s3) 0.93 0.95

K
(
m2/s2) 0.964 0.977

ν
(
m2/s

)
3.67E-2 1.49E-2

ReT 27.2 67.1
RoT 0.37 0.037 0.24 0.1

Fig. 6 The OEC model’s
predictions for normalized
kinetic energy of rotating
decay compared to data from
Mansour et al. [23]. a Cases A
(�) and B (�) data from
Mansour et al. compared to
OEC’s predictions for cases A
(—) and B (- - -). b Mansour
cases C (�) and D (♦),
compared to OEC’s
predictions, (- - -) and (· · ·)
respectively

Table 3 Rapid distortion theory cases used for testing the OEC model

Axisymmetric contraction Axisymmetric expansion Plane strain

ui, j

⎡
⎣

S 0 0
0 − 1

2 S 0
0 0 − 1

2 S

⎤
⎦

⎡
⎣

−2S 0 0
0 S 0
0 0 S

⎤
⎦

⎡
⎣

S 0 0
0 −S 0
0 0 0

⎤
⎦
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Fig. 7 Plane strain data of
principal Reynolds stresses.

Symbols from RDT: R11/K
0

(�), R22/K
0

(�), R33/K
0

(�),
compared to the OEC model
(—), and the theoretical limit
1/2eSt(· · ·)

Fig. 8 Axisymmetric
expansion data of principal
Reynolds stresses as predicted

by the OEC model: R11/K
0

(–), R22/K
0 = R33/K

0
(- - -),

compared to the theoretical
long-time asymptotic growth
rates : e[St+log(0.75)] (�),
e[St+log(0.36)] (�)

Fig. 9 Axisymmetric
contraction data of principal
Reynolds stresses: RDT

results, R11/K
0

(�),

R22/K
0 = R33/K

0
(�),

compared to predictions from

the OEC model R11/K
0

(—)

and R22/K
0 = R33/K

0
(- - -)
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Fig. 10 A closer look at the
OEC model’s prediction of

R22/K
0

(—) compared to the
asymptotic growth rate 1/2eSt

(· · ·) for axisymmetric
contraction

3.3 Return to isotropy

Data from Le Penven et al. [27] is widely used to test return-to-isotropy. The flow,
which is initially isotropic, is rapidly strained to an anisotropic state and then allowed
to relax back toward isotropy. The velocity gradient tensor employed for the two
cases considered is shown in Table 4 and causes very different types of anisotropy.
Case A has one large stress value and case B has two large stress values. The initial
values for the Reynolds number are not provided in the data, and were deduced by
what produced the correct conditions at the end of the straining region.

Agreement between data from L. Le Penven, J. N. Gence, and G. Comte-Bellot,
case A [27] and the OEC model is within 8%, as shown in Fig. 12. While case B
(Fig. 13) shows less agreement, the model’s prediction for the return to isotropy of
stress tensor is reasonably accurate for both cases, and possibly within the error levels
of the experiment and initial condition specification.

Fig. 11 Anisotropy
predictions of the OEC model
for slow axisymmetric
expansion, SK0/ε0 = 0.41:
B11(—), B22 = B33 (- - -) and
B33 (· · ·). Compared to RDT
with SK0/ε0 = 20.0: B11 (�),
B22 = B33 (�). Anisotropy is
defined as Bij = Rij/2K − 1

3 δij
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Table 4 Summary of initial
conditions for shear flow cases
Le Penven et al. [27]

Le Peven et al. case A Le Peven et al. case B

SK/ε 0.43 0.33
ReT 612 846

ui, j

⎡
⎣

5.48 0 0
0 1.99 0
0 0 −7.47

⎤
⎦

⎡
⎣

8.86 0 0
0 −2.36 0
0 0 6.50

⎤
⎦

3.4 Shear

The shear flow benchmark comes from the 64×256×64 (X×Y×Z) simulation data
of Matsumoto et al. [28], the initial conditions and strain tensor of which are detailed
in Table 5. Unlike the previous return cases, the flow is subject to a constant shear
that persists for all time. The first case is at a very low turbulent Reynolds number,
ReT = 18, and is only considered for a short dimensionless time, St ≤ 4. The data are

Fig. 12 Principal Reynolds
stress and kinetic energy
decay. Symbols are data from
L. Le Penven, J. N. Gence, and
G. Comte-Bellot, case A [27]:
R11 (�), R22 (�), R33 (�),
K (♦); compared to the OEC
model: Rii (—), K (- - -)

Fig. 13 Principal Reynolds
stress and kinetic energy
decay. Symbols are data from
L. Le Penven, J. N. Gence, and
G. Comte-Bellot, case B [27]:
R11 (�), R22 (�), R33 (�),
K (♦); compared to
predictions from the OEC
model: Rii (—), K (- - -)
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Table 5 Initial conditions for
the shear flow cases of
Matsumoto et al. [28]

SK/ε 30.6 4.71
ReT 18.18 152

ui, j

⎡
⎣

0 28.28 0
0 0 0
0 0 0

⎤
⎦

⎡
⎣

0 30.0 0
0 0 0
0 0 0

⎤
⎦

presented in the form of the anisotropy tensor, Aij =
(

Rij/K
)

− 2δij/3. Of primary

interest is the OEC model’s ability to predict the shear stress, A12, over short times
(Fig. 14).

Agreement between OEC’s prediction of the evolution of stresses and available
data from Matsumoto et al. is reasonable and within 4%. The ability of the model to
remain accurate over such a short time is not surprising since this is almost an RDT
case. The higher Reynolds number case, ReT = 152, runs for a much longer time and
is the more difficult case. The data are also presented in the form of the anisotropy

Fig. 14 Anisotropy data

Aij =
(

Rij/K
)

− 2δij/3 at

ReT = 18 from Matsumoto
et al. [28]. A11 (�), A22 (�),
A33 (�), A12 (♦); compared to
results from the OEC
model (—)

Fig. 15 Anisotropy data

Aij =
(

Rij/K
)

− 2δij/3 at

ReT = 152from Matsumoto
et al. [28]. A11 (�), A22 (�),
A33 (�), A12 (♦); compared to
results from the OEC model
(—)
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tensor and shown in Fig. 15 against predictions of the OEC model. Unlike the low
Reynolds number case, the current data extends to relatively long dimensionless
time St ≈ 14.4. By time St ≈ 8 the flow has reached a steady, anisotropic state and
should remain so indefinitely. Agreement between the OEC model and data from
Matsumoto et al. is quite good considering the challenging nature of the benchmark.
It is interesting to note that A11 (�) and A22 (�) from Matsumoto et al. appear to
begin to return despite the presence of shear. This behavior may be due to the finite
size of the simulation domain for the DNS data.

4 Discussion

This paper demonstrates the OEC model’s ability to capture both equilibrium and
non-equilibrium turbulent flows. In addition, the model remains stable at long times
and when subjected to highly anisotropic flow conditions. The OEC model precisely
captures isotropic, homogeneous decaying turbulence as well as the rotating decay
cases. Further refinement of the dissipation-like term which handles frame rotation
may result in predictions even closer to experimental/DNS data. The model is
capable of returning the theoretical solution to turbulent flows in the rapid distortion
theory limit, setting it apart from most other turbulence models. The inclusion of
turbulent structure information is imperative to capturing linear turbulence, and
this physical information is captured in the OEC model by using turbulent eddy
orientation information. While adding to the overall cost and complexity of the
method, the benefits are obvious. Casting the OEC model in a form similar to
familiar Reynolds stress transport models aids comprehension and enables the user
to employ traditional solution methods when implementing the model.

It should be noted that the OEC model is an order of magnitude more compu-
tationally demanding than existing RANS models. This implies that in a turbulent
Navier-Stokes calculation, the computational effort required to calculate the turbu-
lence with the OEC model is now roughly equal to the computational effort required
to calculate the mean flow. In our estimation, this is not particularly expensive, and
corresponds to the appropriate level of effort since the turbulence physics represents
roughly half of the total physics of most turbulent flow problems. The OEC modeling
approach is still orders of magnitude less computationally demanding than large eddy
simulation (LES). The OEC modeling approach therefore occupies a useful niche in
the cost versus accuracy tradeoff, allowing much higher levels of predictive accuracy
than traditional RANS models at a cost significantly less than LES. Unlike typical
Reynolds stress models, the large number of equations means that each equation is
not particularly stiff.

Acknowledgements The authors would like to thank the Office of Naval Research for their direct
support of this work under grant number N00014-08-1-0275. The National Science Foundation also
contributed to the support of this research effort.
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Appendix A: Basis for the OEC Model

We begin with the simplified transport equation for the two-point correlation
Qij (x, r) ≡ u′

i(x)u′
j (x̃) (Eq. 3 in the text),

∂ Qij

∂t
= − (ūi,k + 2εkil�l

)
Qkj −

(
ū j,k + 2εkjl�l

)
Qik − rl

∂ūk

∂xl

∂ Qij

∂rk

+
(

∂u′
j p (x̃,−r)

∂ri
− ∂u′

i p
∂r j

)
+ 2ν

∂2 Qij

∂rk∂rk
+
(

∂ Q(ik) j

∂rk
− ∂ Qi(kj)

∂rk

)
(17)

and recall that incompressibility requires

∂ Qij

∂r j
= 0 (18)

The pressure velocity correlation equation can be expressed as

∂u′
i p

∂r j∂r j
= −2ū∗

k, j (x̃)
∂ Qij

∂rk
− ∂2

∂rk∂rk

(
u′

i(x)u′
k (x̃) u′

j (x̃)
)

+ u′
i(x) f j, j (x̃). (19)

The two point fluctuating velocity correlation Qij, as well as the pressure correla-
tion u′

i p, and the triple correlation u′
i(x)u′

k (x̃) u′
j (x̃), may be decomposed as

Qij =
∞∑
0

Rij
∂ F

∂(q · r)
, u′

i p =
∞∑
0

u′
i pF, and

u′
i (x) u′

k (x̃) u′
j (x̃) =

∞∑
0

u′
iu

′
ku′

jF (20)

respectively. Note the difference between Eqs. 19 and 5 in the text, where here
η = (q · r

)
and F = F (η) = F

(
q · r

)
is some positive function. We note several useful

derivatives involving the decompositions above,

∂ Qij

∂rk
=
∑ ∂2 F

∂(qkrk)2 qk Rij,
∂u′

i p
∂r j

=
∑ ∂ F

∂(q jr j)
q ju′

i p,

∂2u′
i p

∂r j∂r j
=
∑ ∂2 F

∂(q jr j)2

(
q j
)2

u′
i p (21)

noting that the summation limits have been dropped and η = (q · r
) = (qiri). Starting

with Eq. 19 and using the decompositions in (A4) and derivatives in Eq. 21 and
simplifying the second derivative of the triple correlation, we arrive at

∑ ∂2 F
∂(q jr j)2 q2u′

i p = −2ū∗
k, j(x̃)

∑ ∂2 F
∂(qkrk)2 qk Rij

−
∑

u′
iu

′
ku′

jqkq j
∂2 F

∂(rkqk)2 (22)
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noting the last term in Eq. 19 has been neglected. Dividing though by∑ [(∂2 F/∂(q jr j)
2)(q j)

2] yields

u′
i p = −2ū∗

k, j (x̃)
qk

q2 Rij − qkq j

q2 u′
iu

′
ku′

j (23)

Moving on to the two point velocity correlation equation, substituting decompo-
sitions and evaluating derivatives yields

∑(
Rij,t

∂ F
∂(q · r)

+ ∂2 F
∂(q · r)2 ql,trl Rij

)

= (2εikl�l − ūi,k
)∑(

Rkj
∂ F

∂(q · r)

)
+ (2ε jkl�l − ū j,k

)∑(
Rik

∂ F
∂(q · r)

)

−rlūk,l

∑ ∂2 F
∂(qkrk)2 qk Rij −

∑
u′

ju
′
ku′

iqk
∂ F

∂(q · r)
−
∑

u′
iu

′
ku′

jqk
∂ F

∂(q · r)

−
∑

qiu′
j p

∂ F
∂(q · r)

−
∑

q ju′
i p

∂ F
∂(q · r)

+ 2ν
∑

Rijq2 ∂3 F
∂(q · r)3 (24)

noting again that in Eq. 24 the forcing terms have been neglected. Equation 24 must
be simplified. This can be achieved by moving all terms to the right hand side of the
equation, grouping with respect to

∑
∂ F/∂

(
q · r

)
(and higher order derivatives), and

recalling u∗
i, j = ui, j + εikj�k,

0 =
∑ ∂ F

∂(q · r)

[
−Rij,t+

[
ūi,k+2ū∗

l,k

(
qiql

q2 − δil

)]
R jk+

[
ū j,k+2ū∗

l,k

(
q jql

q2 − δ jl

)]
Rik

−u′
iu

′
ku′

l

(
δ jl − q jql

q2

)
qk − u′

ju
′
ku′

l

(
δil − qiql

q2

)
qk

]

−
∑ ∂2 F

∂(q · r)2 rl
[
ql,t+ūk,lqk

]
Rij+

∑ ∂3 F
∂(q · r)3 2νk2 Rij (25)

In order to arrive at the fundamental basis for the OEC model, we must assume
the flow is subjected to rapid distortion. This is sensible considering the basis for
the model returns the RDT equations. To begin with, terms involving the triple
correlation are removed along with the viscous term involving ∂3 F/∂

(
q · r

)3. This
reduces Eq. 25 to

0 =
∑ ∂ F

∂(q · r)

⎡
⎢⎢⎢⎣

Expression “Y”︷ ︸︸ ︷
−Rij,t+

[
ūi,k+2ū∗

l,k

(
qiql

q2 −δil

)]
R jk+

[
ū j,k+2ū∗

l,k

(
q jql

q2 −δ jl

)]
Rik

⎤
⎥⎥⎥⎦

−
∑ ∂2 F

∂(q · r)2 rl

Expression “Z”︷ ︸︸ ︷[
ql,t+ūk,lqk

]
Rij (26)
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In Eq. 26, two expressions have been labeled, “Y” and “Z”. Equation 26 rep-
resents an infinite number of equations involving q and r. As such, a collection of
equations can be assembled representing this summation,

0 = ∂ F
∂(q · r)

(q1, r1) Y1(q1) + ∂ F
∂(q · r)

(q2, r1) Y2(q2) + ...

+ ∂2 F
∂(q · r)2 (q1, r1) Z1(q1) + ∂2 F

∂(q · r)2 (q2, r1) Z2(q2) + ...

0 = ∂ F
∂(q · r)

(q1, r2) Y1(q1) + ∂ F
∂(q · r)

(q2, r2) Y2(q2) + ...

+ ∂2 F
∂(q · r)2 (q1, r2) Z1(q1) + ∂2 F

∂(q · r)2 (q2, r2) Z2(q2) + ...

0 = ∂ F
∂(q · r)

(q1, r3) Y1(q1) + ∂ F
∂(q · r)

(q2, r3) Y2(q2) + ...

+ ∂2 F
∂(q · r)2 (q1, r3) Z1(q1) + ∂2 F

∂(q · r)2 (q2, r3) Z2(q2) + ... (27)

Equation set 27 can be assembled in to a linear system:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂ F
∂(q · r)

(q1, r1) + ∂ F
∂(q · r)

(q2, r1) + ... + ∂2 F
∂(q · r)2 (q1, r1) + ∂2 F

∂(q · r)2 (q2, r1) + ...

∂ F
∂(q · r)

(q1, r2) + ∂ F
∂(q · r)

(q2, r2) + ... + ∂2 F
∂(q · r)2 (q1, r2) + ∂2 F

∂(q · r)2 (q2, r2) + ...

∂ F
∂(q · r)

(q1, r3) + ∂ F
∂(q · r)

(q2, r3) + ... + ∂2 F
∂(q · r)2 (q1, r3) + ∂2 F

∂(q · r)2 (q2, r3) + ...

...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

×

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

Y1(q1)

Y2(q2)
...

Z1(q1)

Z2(q2)
...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
...

0
0
...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(28)

Considering the restrictions placed upon the function F(q · r), Y1(q1), Y2(q2),. . .
and Z1(q1), Z2(q2),. . . must all equate to zero in order to satisfy Eq. 28. This implies
that for any q and r

Yi (qi) = −Rij,t +
[

ui,k + 2u∗
l,k

(
qiql

q2 − δil

)]
R jk

+
[

u j,k + 2u∗
l,k

(
q jql

q2 − δ jl

)]
Rik = 0

Zi (qi) = ql,t + uk,lqk = 0 (29)
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Thus, equation set 29 returns the desired RDT equations and forms the fundamen-
tal basis for the OEC model. Note that neglecting the viscous term in Eq. 25 is not
strictly necessary and the argument above still holds if the term is included in Eq. 26.
This is because any Sturm-Liouville-type ordinary differential equation must obey
∂3 F/∂

(
q · r

)3 = ∂ F/∂
(
q · r

)+ (q · r
) [

∂2 F/∂2
(
q · r

)]
and therefore F

(
q · r

)
must sat-

isfy this condition.
The decomposition for the two-point velocity correlation Qij =∑ Rij

∂ F
∂(q·r) must

also be considered in the continuity equation,

∂

∂r j

(∑
Rij

∂ F
∂(q · r)

)
= 0 (30)

Expanding the derivative and rearranging, we arrive at

∑ ∂2 F
∂(q · r)2 Rijq j = 0 (31)

noting that that we are assuming homogeneous flow. By the same argument em-
ployed to arrive at Equation set 28, we conclude that Rijq j = 0 and therefore main-
taining incompressibility in a homogeneous flow is akin to ensuring orthogonality
between Rij and q j.

Appendix B: Ensuring Orthogonality with the OEC Transport Equations

Equation 31 requires that the transport equations for Rij and q j maintain orthogo-
nality between the two quantities for all time. More succinctly, it is necessary that

∂

∂t

(
Rijq j

) = 0 (32)

In order to ensure Eq. 32 is satisfied, Expression (10) was added to the Reynolds
stress transport equation (Eq. 14 above). Expanding Eq. 32 illustrates this,

∂

∂t

(
Rijq j

) = q j
∂ Rij

∂t
+ Rij

∂q j

∂t

= q j

{
− (uk Rij

)
,k +

[
ui,k +

(
qiql

q2 − δil

)
2u∗

l,k

]
Rkj

+
[

u j,k +
(

q jql

q2 − δ jl

)
2u∗

l,k

]
Rki −

(
ανq2 + 1

τR

)
Rij

−CR

τR

(
1

1 + CBν/νT

)[
Rij − K

(
δij − qiq j

q2

)]

+
(

Rlj
qi

q2 + Rli
q j

q2

)
Al + [

(ν + νT) Rij,k
]
,k

}
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+Rij

⎧⎨
⎩− (ukq j

)
,k − qlul, j

− 1
3
ανq2 + 1

τR
1 + 3

(
ql�

∗
l

)2
/q2

20.0q2 K + 0.25
(
�∗

l

)2 q j

+1
3

[
(ν + νT) q j,l

]
,l − CQ

τR

(
1

1 + CBν/νT

) [
3Nlj − δl j

]
ql

⎫⎬
⎭

(33)

Equation 33 is cumbersome and must be simplified. To begin with, we again
assume homogeneous turbulence and therefore neglect the viscous terms as well as
any expression involving the gradient of the mean velocity. Multiplying through by
q j and Rij, Eq. 33 reduces to

q j
∂ Rij

∂t
+ Rij

∂q j

∂t
= q j

[
ui,k +

(
qiql

q2 − δil

)
2u∗

l,k

]
Rkj+q j

[
u j,k +

(
q jql

q2 − δ jl

)
2u∗

l,k

]
Rki

− q j

(
ανq2 + 1

τR

)
Rij − q j

CR

τR

(
1

1 + CBν/νT

)

×
[

Rij − K
(

δij − qiq j

q2

)]
+ q j

(
Rlj

qi

q2 + Rli
q j

q2

)
Al − Rijqlul, j

−1
3

Rijανq2 + 1
τR

1 + 3
(
ql�

∗
l

)2
/q2

20.0q2 K + 0.25
(
�∗

l

)2 q j

− Rij
CQ

τR

(
1

1 + CBν/νT

) [
3Nlj − δl j

]
ql (34)

If we assume that the stress tensor and eddy orientation vector begin orthogonal
Rijq j

∣∣
t=0 = 0 (which the code ensures), then all terms in Eq. 34 which involve this

product must be zero initially. This further simplifies Eq. 34,

q j
∂ Rij

∂t
+ Rij

∂q j

∂t
= q ju j,k Rki + Rli Al − Rijqlul, j

−Rij
CQ

τR

(
1

1 + CBν/νT

) [
3Nlj − δl j

]
ql (35)

By substituting the definition of the eddy orientation vector return-to-isotropy
Al (Eq. 9) into Eq. 35,

q j
∂ Rij

∂t
+ Rij

∂q j

∂t
= q ju j,k Rki + Rli

[
CQ

τR

(
νT

νT + CBν

)
[3Nkl − δkl] qk

]

−Rijqlul, j − Rij
CQ

τR

(
1

1 + CBν/νT

) [
3Nlj − δl j

]
ql (36)
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and rearranging subscripts it is easily shown that q j
∂ Rij

∂t + Rij
∂q j

∂t = ∂
∂t

(
Rijq j

) = 0
and thus the transport equations maintain orthogonality between q j and Rij for
homogeneous turbulent flows.
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