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The dissipation of kinetic energy is one of the key features of turbulent flows that must be modeled
accurately in order to obtain useful engineering predictions. At high Reynolds numbers the assumption
of scale separation can be invoked in the modeling of the dissipation process. This paper focuses on
the more difficult issue of modeling the dissipation process at moderate and low Reynolds numbers.
The low and moderate Reynolds number range is very important for tuning turbulence models and
for many practical engineering problems. To approach this problem, an alternative formulation to the
classic dissipation scale equation is proposed. The interesting feature of this formulation, an inverse
lengthscale equation, is that it captures both the high Reynolds number and low Reynolds number
decay limits. A careful assessment of existing data then allows us to clearly identify the region of
transition between high and low Re and propose a very simple equation system which can accurately
model dissipation at any Reynolds number. The equivalent K/ε model is derived and the proposed
model is compared with a number of other low Re dissipation modifications for the K/ε equation
system. To complete the discussion, the issue of near-wall dissipation modeling is carefully examined
and shown to be fundamentally different from the low Reynolds number limit. This is shown to be an
important distinction of practical modeling importance.
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1. Introduction

The turbulent energy cascade, and associated dissipation of energy, is one of the key nonlin-
ear processes that govern the behavior of turbulence. Significant theoretical work has been
performed concerning how this process behaves at high Reynolds numbers. Considerably less25
theoretical analysis is available at moderate Reynolds numbers. However, the modeling of
dissipation at low and moderate Reynolds numbers is of direct engineering interest. Very low
turbulent Reynolds numbers are often present in the free-stream of external flows. Moderate
Reynolds numbers are fairly common in many applications (I.C. engines being one example).
Furthermore, the very useful technique of tuning and developing turbulence models based on30
direct numerical simulation (DNS) and experimental data requires that the moderate Reynolds
number regime be well understood (since all DNS simulations, and many experiments, occur
at moderate Reynolds numbers).

While this work does not provide any additional mathematical analysis of the moderate
and low Reynolds number dissipation regime. It does provide the very interesting and useful35
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observation that certain (nonstandard) two-equation model systems can capture the high and
low Reynolds number dissipation limits without using any model constants. In addition, we
show that this property is fundamentally not achievable by the classic k/ε two-equation model
system. In itself, accurate prediction of the dissipation alone does not fix the entire turbulence
modeling problem. Nevertheless, this work is a step in the direction of developing turbulence 40
models that predict real physical effects.

The canonical flow situation that focuses on the dissipation process is isotropic homoge-
neous decaying turbulence. A number of very different analyses [1–5] all suggest that decaying
turbulence should have a power law behavior in time,

K = K0

(
1 + ε0t

nK0

)−n

. (1)

In this expression, K0 and ε0 are the initial turbulent kinetic energy and dissipation rate at the 45
time t = 0 and n is a universal exponent. While the power law is found to hold, the exponent
is not universal. Values of the decay exponent of between 1.1 and 1.3 [22] are often observed
in high Reynolds number wind tunnel experiments. Compte–Bellot and Corrsin [18] report a
value of 1.26. Additional experimental and simulation values are shown on figure 1. Batchelor
and Townsend [6] presented the first analysis and experiments for very low Reynolds number 50
turbulent decay and suggested that the value of the decay exponent should be 5/2 in that
regime. This particular low Reynolds number limit is widely known and frequently used in
turbulence models, though perhaps incorrectly.

It is now understood that the decay exponent is closely related to the low wavenumber
portion of the 3D energy spectrum [7]. For isotropic turbulence in which the low wavenumber 55
portion of the spectrum goes as k2 (where k is the wavenumber) the low Reynolds number
exponent was shown to be 3/2 (not the frequently used 5/2) and the high Reynolds number
limit to be 6/5 [7] (in the range of what is commonly observed in experiments). However, if
the low wavenumber portion of the spectrum goes as k4, the exponent is indeed 5/2 in the low
Reynolds number limit and a slightly higher 10/7 in the high Reynolds number limit [2]. The 60
analysis of Kolmorgorov for the high Re k4 limit is only approximate because it assumes the
Loitzianskii integral is invariant. Simulation data [12] and EDQNM results [28] suggest this
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Figure 1. Power law exponent as a function of turbulent Reynolds number for a k2 low wavenumber spectrum.
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Table 1. Summary of theoretical values for the decay exponent n and the k/ε constant Cε2 for various low
wavenumber exponents and Re numbers.

n-High Re n-Low Re Cε2-High Re Cε2-Low Re

k2 6/5 3/2 11/6 5/3
k4 10/7 5/2 17/10 7/5
k p 2(p + 1)/(p + 3) (p + 1)/2 (3p + 5)/(2p + 2) (p + 3)/(p+1)

integral varies quite slowly in time and the actual value is not 10/7 but 3% (Lesieur) to 6%
(Chasnov) lower (1.38–1.34 instead of 1.428). At this time, it is not clear which (if either)
of the two different spectral behaviors k2 or k4 is physically more correct. It is possible that65
both are viable alternatives, though most experiments seem to the authors to be closer to the
k2 values. The book by Lesieur [28] gives a detailed description of how both the low and high
Re asymptotic limits are determined.

Two-equation models can (and in some sense, must) capture the low wavenumber portion
of the energy spectrum into the model formulation. The model’s assumed low wavenumber70
behavior is always implicit in the choice of certain model constants. This paper does not
actually concern itself with the debate of k2 versus k4 and so, unlike most dissipation models,
we leave the low wavenumber behavior as an explicit free parameter (for the users preference)
in the model. The authors currently use k2 in applied problems but the following analysis is
never bound to that choice and the k4 alternative is given equal consideration in this paper.75

The K/ε model is a useful and familiar point to begin the discussion of two-equation
dissipation modeling. Note that a capital K is used for turbulent kinetic energy and a lower
case k for wavenumber. For isotropic decaying turbulence, this model is very simple and is
given by

dK

dt
= −ε (2)

dε

dt
= −Cε2

ε2

K
. (3)

The first equation is exact and the right-hand side of the second equation represents the model.80
Substituting the power law expression (equation 1) into equation (2) shows that the dissipation
also has a power law behavior, ε = ε0(1 + ε0t

nK0
)−n−1. Substituting this power law expression

into equation (3) and again using equation (1) reveals the relation between the model constant
and the decay exponent, Cε2 = (n+1)

n . Since the decay exponent is not a universal constant, this
analysis makes it clear that Cε2 is not actually a model constant either, but is a model parameter85
that really should be a function of the turbulent Reynolds number and the low wavenumber
spectrum. For convenience, the theoretical behavior of the exponent and model constant are
summarized below. The general expression for k p at high Re is exact for p < 4. It is only a
good approximation when p = 4.

There are a large number of proposals concerning the functional form for Cε2. Almost all of90

these proposals are a function of the turbulent Reynolds number, ReT = K 2

νε
. A representative

sample of commonly used expressions is presented below.

Cε2 = 1.92
(
1 − 0.3e−Re2

T
)

[8] (4a)

Cε2 = C∞
ε2 min

(
1 ,

Re1/2
T

6

)
[9] (4b)

Cε2 = C∞
ε2 + (C∞

ε2 − 1.4) e−(ReT/6)2
[10] (4c)
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Cε2 = 1.4 + 0.38
(
1 − e−0.5Re1/2

T + 0.62 e−40Re−1/2
T

)
[11] (4d)

The last two expressions have correct low Reynolds number behavior (consistent with the
k4 spectrum) but typically use values more consistent with the k2 spectrum for the high Re
limit. The second model goes to zero in the low Reynolds number limit. This is a common 95
feature of models that are tuned/developed to work near-walls, since this type of behavior
fixes some near-wall modeling problems. Unfortunately a zero low Re limit causes other
problems (described in section 6) away from walls (in the free-stream). The first expression
was developed before the exact asymptotic limits were well known, but gets reasonably close
based purely on data fitting. The functional choices behind these models were motivated 100
largely by simplicity and the fact that each has the low and high Reynolds number asymptotic
limits desired by the developers.

In this paper, a model for Cε2 is derived from very basic modeling assumptions and a
functional form for Cε2 is arrived at rather than hypothesized. Section 2 of the paper describes a
K/λ model (where λ is an inverse turbulent lengthscale) where both the high and low Reynolds 105
number limits and low wavenumber behavior are represented well and independently of any
model constants. This interesting formulation (which is not possible with K/ε) forms the
basis for our dissipation model. The one constant that does exist in this model sets the region
of transition from low to high Reynolds number. This constant is very carefully determined
in section 3 using DNS and experimental data. In addition, a comparison with the commonly 110
used low Reynolds number dissipation models described above equation (4) is performed.
Section 4 is a short aside on how the decay exponent is determined within this paper, while
section 5 derives the equivalent expression for Cε2 that corresponds to the proposed K/λ

model. The problem of near-wall dissipation modeling, which is also a low Reynolds number
situation, is extensively discussed in section 6 and the importance of distinguishing between 115
near-wall and low Re effects is discussed. A summary of the papers conclusions and a brief
discussion is presented in section 7.

2. The K/λ model

We begin with the following general two-equation model for the decay of isotropic turbulence:

dK

dt
= −

{
αLνλ2 + αH K

1
2 λ

}
K (5a)

dλ

dt
= −

{
βLνλ2 + βH K

1
2 λ

}
λ, (5b)

where λ is the inverse lengthscale of the turbulence. The inverse lengthscale goes to zero 120
in a laminar flow and is therefore be an easier quantity to model than the lengthscale itself.
Equation (5b) essentially replaces the dissipation (or omega) equation as the second ‘scale’
equation in the two-equation model system. The problems with starting directly with the
dissipation equation are analyzed in detail in section 5. We note that these equations can easily
be generalized to anisotropic turbulence. 125

Equation (5a) was motivated largely by how the energy equation looks in wavespace and
how the exact two-point correlation equation looks. In those cases, the viscous and nonlinear
(cascade) terms in the energy equation are separate and additive. In wavespace the viscous
term does not require a model and has a form almost identical to the first term in equation
(5a). It is linear in the energy and quadradic in the wavenumber (which also has units of 130
inverse length). The high Re number nonlinear cascade term uses the simplest model possible
that is dimensionally correct and excludes the viscousity. Equation (5b) was largely modeled
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after (5a). The first term will make λ ∼ t−1/2 which is classical behavior for a lengthscale
under the influence of viscosity. The high Reynolds number (second) term in (5b) is the
simplest dimensionally correct term possible. Like the energy equation, this equation also135
assumes that the viscous and nonlinear effects are separate and additive. All modeling re-
quires some assumptions, but we consider these assumptions to be very reasonable and very
weak.

Like the standard k/ε equation system, this system has power law solutions. They are of
the form K = K0(1 + t

t0
)−n and λ = λ0(1 + t

t0
)−m . Substituting these solutions into equations140

(5a) and (5b) gives the relations

K0

t0
n

(
1 + t

t0

)−n−1

= αLν

(
1 + t

t0

)−2m−n

K0λ
2
0 + αH

(
1 + t

t0

)−3n/2−m

K 3/2
0 λ0 (6a)

λ0

t0
m

(
1 + t

t0

)−m−1

= βLν

(
1 + t

t0

)−3m

λ3
0 + βH

(
1 + t

t0

)−2m−n/2

λ2
0 K 1/2

0 (6b)

At high Reynolds numbers the terms involving the viscosity drop out and equation (6a) imply
that n +2m = 2 and n = αHλ0 K 1/2

0 t0. In addition, equation (6b) implies that n +2m = 2 and
m = βHλ0 K 1/2

0 t0. The first two conditions are identical. The second two constraints can be
cast into the alternative relation that145

n

m
= αH

βH
. (7a)

At high Re we know that n = 6/5 when the low wavenumber portion of the spectrum varies as
k2. This implies that m = 2/5 and βH = αH

3 . For a k4 low wavenumber spectrum it is expected
that n = 10

7 , implying m = 2/7 and βH = αH
5 . In either case we can write βH = αH

p+1 , where
p is the low wavenumber exponent.

At low Reynolds numbers the terms involving viscosity dominate the right-hand side of150
both equations (6a) and (6b). Equation (6a) therefore implies that m = 1/2 and n = αLνλ2

0t0
and equation (6b) implies m = 1/2 and m = βLνλ2

0t0. As in the high Reynolds number case,
the first two constraints are identical. The final two constraints produce a relation similar to
equation (7a):

n

m
= αL

βL
. (7b)

At low Re we know that n = 3/2 when the low wavenumber portion of the spectrum varies155
as k2, since m = 1/2, βL = αL

3 . For a k4 low wavenumber spectrum it is expected that n = 5
2 ,

so with m = 1/2, βL = αL
5 . As with the high Reynolds number case this can be generally

expressed as βL = αL
p+1 . Note that the value of m = 1/2 implies that the lengthscales grow

with classic viscous scaling with time in the low Re limit.
It is remarkable that this formulation of the problem reduces a number of seemly disjoint160

asymptotic limits to two very simple expressions for the model constants (equations (7)). It is
now possible to reformulate (5a) and (5b) as,

dK

dt
= − 1

τ
K (8a)

dλ

dt
= − 1

p + 1

1

τ
λ, (8b)
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where p is the exponent of the low wavenumber portion of the spectrum and the inverse time
scale is given by

1

τ
= αH

{
αL

αH
νλ2 + K

1
2 λ

}
. (8c)

We write it this way to emphasize that the constant αH is arbitrary and only serves to set the 165
ratio between λ and the large eddy lengthscale. For example, an obvious choice for the inverse
lengthscale is that it equals the large eddy lengthscale at high Reynolds numbers (λ = ε

K 3/2 ).
Since 1

τ
= ε

K (see equation (8a)) this choice implies αH = 1. We will use this value in all the
following results, but emphasize that any choice is possible, and any choice has absolutely no
effect on the model results. 170

The only parameter of real interest in this model is therefore, αL
αH

. This ratio sets the Re
number range where the model changes from high Reynolds number behavior (m = 2/5 or
m = 2/7) to low Reynolds number behavior (m = 1/2). Note that both the high and low Re
limits are not affected by the value of αL

αH
which only sets the transition point.

The simplicity of equations (8a)–(8c) and their ability to capture exactly all the asymptotic 175
limits are a suggestions, though certainly not a proof, that this approach to modeling low
and moderate Reynolds numbers is preferable to the classic k/ε approach where a functional
dependence for Cε2 is hypothesized.

Note that having a model that is mildly sensitive to the low wavenumber portion of the
spectrum in no way invalidates the conceptual interpretation of the epsilon equation as a 180
model for the energy cascade. However, it is clear from the analysis of Saffman [7] and
others [2, 6] that the details of the cascade (the actual value of the decay rate and therefore
the constant in the epsilon equation) is influenced by the shape of the energy spectrum. The
present model can take information about the spectrum shape as an input and reproduce the
known cascade behaviors (decay exponents). 185

3. Intermediate range

Direct numerical simulation (DNS) data and experimental results indicate that the crossover
between high and low Reynolds number decay rates occurs roughly in the range 0.1 ≤
ReT ≤ 100. Other works on this topic often use the Taylor microscale Reynolds num-
ber, Reλg = λg( 2

3 K )1/2

ν
, where λg is the transverse Taylor microscale (not to be confused 190

with our inverse lengthscale, λ). The relationship between the two Reynolds numbers in
isotropic turbulence is Reλg = ( 20

3 ReT)1/2. It is probably not an accident that the crossover
point occurs at a value where these two Reynolds numbers have roughly the same
magnitude.

In DNS simulations and experiments it is easy to poorly estimate ReT if the low wavenumber 195
portion of the spectrum is not very well resolved, whereas Reλg (which depends on the small
scale structure) is less prone to this type of error and is the more reliable indicator. On the
other hand, ReT is the variable almost universally used in turbulence models, and we use it in
this work for that reason.

Figure 1 shows the behavior of the kinetic energy power law exponent, n, as a function 200
of the Reynolds number for the case when the low wavenumber behavior of the spectrum is
k2. The two horizontal lines are the theoretical high and low Reynolds number asymptotic
limits of 1.2 and 1.5, respectively. The dotted lines are results from five different 2563 LES
simulations of Chasnov [12]. These simulations start with reasonable, but not Navier–Stokes
turbulence, and therefore have an initial oscillatory transient that violates the high Re number 205
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upper bound. In addition, it is shown in the following section that Chasnov’s method for
estimating the exponent is a consistent underestimate with the error being very large at early
times. The lowest Reynolds number case also violates the low Re number bound. We speculate
that this could be due to lack of resolution. A too small box causes the magnitude of n to be
too large [13–15] (approaching a value of 2).210

In addition to the data of Chasnov, the five lowest Reynolds number 2563 DNS simulations
of Mansour and Wray [16] (thin dashed lines) are shown. Their method for calculating n is
better, but the initial conditions for these simulations are still unphysical and hence results at
early times are still suspect. Huang and Leonard [17] also performed 2563 DNS simulations but
only provide a single value for the decay exponent. The two simulations with the best resolved215
k2 low wavenumber portion of the spectrum are shown because the other two simulations may
be affected by the small box size of the simulation.

At the upper end of the Reynolds number range the results from the 5123 DNS simulation
of de Bruyn Kops and Riley [13] are shown (star). This DNS is a very close approximation (in
terms of spectra and Reynolds number) to the experiments of Comte–Bellot and Corrsin [18]220
but provides considerably more detail. Wray [19] performed a similar 5123 DNS simulation
(indicated by the triangle). The difference between these two simulations shows the difficulty
of estimating the decay exponent, and the strong influence that the low wavenumbers have
on the decay exponent (the two simulations were initialized with slightly different numerical
approximations of the Comte–Bellot spectra). In addition, figure 1 shows the experiments of225
Dickey and Mellor [20] (circle). Many other experiments exist, but the results are usually too
noisy to accurately predict a decay exponent. Finally, the thick lines represent the predictions
of the proposed model. Three different curves are presented for values of αL

αH
equal to 6, 15 and

30. We recommend the value of 15. Note that the results are not highly sensitive to this ratio
and that with this one constant the functional variation of the decay exponent is well captured230
over its entire range.

Figure 2 is similar to figure 1, except that results for a spectrum with a k4 low wavenumber
behavior. The horizontal dashed lines are the asymptotic high and low Reynolds number limits.
The thin dashed lines are four 2563 DNS simulations of Mansour and Wray. The four thin
solid lines are some more recent 1283 LES simulations of Yu et al. [21]. Three 2563 DNS235
simulation results from Huang and Leonard are also included. No experimental values have
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Figure 2. Power law exponent as a function of Reynolds number for a k4 low wavenumber spectrum.
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Figure 3. Comparison of low Reynolds number models for the k2 low-wavenumber spectrum.
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been included on this plot because they would all fall under the high Re value—even if that
value were adjusted downward by 6%.

The thick solid curve is the proposed model prediction with αL
αH

= 25, the dashed curve is
αL
αH

= 10 and the small thick dashed line is αL
αH

= 50. A single constant captures the functional 240
variation reasonably well over its entire range. The data do not support finding this ratio very
precisely. Given the level of accuracy of the data the simple previous value of αL

αH
= 15 is

probably sufficient at this time. Note that αL
αH

= 15 implies that at very low Reynolds numbers

the inverse lengthscale, λ, is proportional to the inverse of the Taylor microscale, λ = √
ε

K 15ν
=√

2
3

1
λg

=
√

4
3

1
λ f

. The inverse lengthscale therefore has a firm physical interpretation at both 245
high and low Re.

For comparison the models described by equations (4a)–(4d) are compared with the pro-
posed model in figure 3 for the k2 low wavenumber spectra case. The models tend to be close
to 2.5 in the low Re limit. This is due to Bachelor’s renowned ‘final period of decay’ work.
Unfortunately, the applicability of this result and the utility of these models may be limited by 250
the fact Bachelor’s result is for a k4 low wavenumber spectrum which may be rare in practice.
The model of Durbin has a decay exponent that goes to infinity around a turbulent Reynolds
number of 10 and then gives a negative exponent when Cε2 < 1 . This is due to the fact that
it is tuned for walls—not low Re, and as discussed in section 5 the two situations are really
very different. 255

4. Decay exponent estimation

The decay exponent is very difficult to determine accurately. Batchelor and other early ex-
periments assumed that at large times K = K0(1 + ε0t

nK0
)−n ≈ Ct−n and therefore n could

be obtained from the slope of a log–log plot. Even a few current researchers such as
Chasnov use this method to estimate n. However, in practice, the virtual origin cannot be 260
neglected and doing so leads to an underestimate. Since log K = log K0 − n log(1 + ε0t

nK0
)

the slope on a log–log plot is really the decay exponent times a number that is less than
1, d ln K

d ln t = −n ε0eln t /nK0

(1+ε0eln t /nK0) = −n 1
(nK0/ε0t+1) . At early times (less than an eddy turnover time)
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this underestimate is severe. At 10 eddy turnover times (the limit of many experiments),
the error is still 10% (which is significant when the values only vary between 1.2 and265
1.5). Chasnovs data extends further than 10 eddy turnover times and this estimate becomes
acceptable.

Later estimates attempted to account for the ‘offset’ by finding the correction that produced
the straightest line on a log–log plot22. Mohamed and LaRue [22] show (in their figure 7) that
the estimate for the decay exponent is significantly affected by differences in this assumed270
offset, and that very different offsets can still produce lines which continue to look very
linear on a log–log plot. Looking at which line is the most linear (in a least squares sense)
is unreliable since these best fits are frequently corrupted by the data at early or late times,
where the turbulence is still wakes (early times) or is affected by walls (late times). For these
reasons, most of the quoted values available in the literature should be used with considerable275
caution.

Mansour and Wray use equations (2) and (3) and the relation Cε2 = (n+1)
n to obtain the

expression

1

n
= K d2 K

dt2

( dK
dt )2

− 1. (9a)

This method performs best when data are available with very small time increments so the
second derivative is accurately calculated. An alternative method used in this work is280

1

n
= − d

dt

(
K
dK
dt

)
. (9b)

In addition to these complications the low Reynolds number regime can also be strongly
affected by the computational or experimental setup. Touil et al. [14] show that when walls
(or computational periodicity) constrains the flow the low wavenumber spectrum is truncated
and the decay exponent approaches n = 2. The extremely precise experimental measurements
of Ling and Huang show this effect very clearly [23]. In addition, boundary layers in wind285
tunnel experiments can contaminate the core flow after long times or at low Reynolds numbers
[24]. This remains a fundamental flow situation in which careful experiments could be very
valuable.

5. Implications for K/ε models

The inverse time constant is related to the dissipation by 1
τ

= { αL
αH

νλ2 + K
1
2 λ} = ε

K (assuming290
αH = 1). This expression can be inverted to obtain an explicit expression for the inverse
lengthscale. Starting with K αL

αH
νλ2 + K

3
2 λ − ε = 0, we find that only one root is physical and

is given by

λ = K
1
2

[(
1 + 4

αL

αH

1

ReT

)1/2

− 1

]/[
2

αL

αH
ν

]
. (10)

When the Reynolds number is large this becomes λ ≈ K
1
2

νReT
= ε

K
3
2

. When the Reynolds number

is small it becomes λ ≈ ( αL
αH

K
ε
ν)−1/2 = ε

K 3/2 ( αH
αL

ReT)1/2. It is convenient to write the inverse295

lengthscale as λ = ε

K
3
2

f , where f = ReT[(1 + 4 αL
αH

1
ReT

)1/2 − 1]/[2 αL
αH

]. At high Reynolds

numbers f ≈ 1 and at low Reynolds numbers f = ( αH
αL

ReT)1/2 .
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Since we have ε = K { αL
αH

νλ2 + K
1
2 λ}, the dissipation equation can also be derived,

dε

dt
= αL

αH
ν

(
2λ

dλ

dt
K + λ2 dK

dt

)
+ 3

2
K

1
2

dK

dt
λ + K

3
2

dλ

dt
, (11a)

which simplifies to

dε

dt
= − αL

αH
ν

(
2

p + 1
+ 1

)
ελ2 −

(
3

2
+ 1

p + 1

)
K

1
2 ελ. (11b)

Substituting for the inverse lengthscale gives our final expression, 300

dε

dt
= −ε2

K

{
αL

αH

(
2

p + 1
+ 1

)
1

ReT
f 2 + 1

2

(
2

p + 1
+ 3

)
f

}
. (11c)

The dissipation constant Cε2 can now be identified as the term in brackets and is given by the
expression Cε2 = { 1

2 ( 2
p+1 + 3) f + αL

αH
( 2

p+1 + 1) 1
ReT

f 2}. At high Reynolds numbers the first
term dominates and at low Reynolds numbers the second term dominates. This expression can
also be written as

Cε2 = f

{
1 +

(
1

p + 1
+ 1

2

)[(
1 + 4

αL

αH

1

ReT

)1/2]}
. (12)

We note that the ideas developed in section 2 cannot be applied directly to the k/ε equation 305
system. The fundamental reason for this is that the variable ε represents two physical effects
(viscous dissipation and nonlinear dissipation) at the same time. In detail, this difficulty is
explained below.

If we start with the general k/ε system

dK

dt
= −ε (13a)

dε

dt
= −

{
βLν

ε2

K 3
+ βH

ε

K

}
ε (13b)

and assume power law solutions of the form K = K0(t + t0)−n and ε = ε0(t + t0)−m , then the 310
following relations are obtained:

K0n(t + t0)−n−1 = (t + t0)−mε0 (14a)

ε0m(t + t0)−m−1 = βLν(t + t0)−3m+3n K −3
0 ε3

0 + βH (t + t0)−2m+n K −1
0 ε2

0. (14b)

At high Reynolds numbers, the system works fine and we find that βH = 11
6 for the k2

low wavenumber spectrum and βH = 17
10 for the k4 low wavenumber spectrum. In general,

βH = 3p+5
2p+2 , where p is the spectrum exponent.

However, at low Reynolds numbers (the case of interest) it is found that for power law 315
solutions to exist, n = 1 and m = 2 is required. This is the fully self-similar state determined
by Speziale and Bernard [5] but it is not the correct power law behavior that is sought at low
Reynolds numbers. This deficiency of equations (13) is, of course, corrected in the classic
modeling approach by making βH and βL (or equivalently Cε2) some function of the Reynolds
number. But this is invariably an ad hoc fix that is avoiding a real issue that equations (13) 320
are trying to point out (a single variable should not represent two very different physical
processes).

The k/ω model is traditionally derived by setting ω = K/ε. In this case the scale transport
equation becomes dω

dt = −(Cε2 − 1)ω2 . Wilcox [29] recommends a value for this constant
that is equivalent to Cε2 = 11

6 , which is the k2 high Re theoretical limit. Commercial CFD 325
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literatures often recommend this model for low Re situations but what they really mean to
refer to is near-wall situations.

6. Near-wall modifications

Near the wall (in the laminar sublayer) the viscous diffusion and dissipation terms dominate the
evolution equations The production term goes like y3 near the wall and the turbulent transport330
terms like y2 or higher, where y is the distance to the wall. For this reason these terms are
neglected in any analysis of the near-wall model behavior. Since the viscous diffusion term
does not require a model, it is the dissipation model that controls the behavior in this region.

The classic epsilon equation dissipation term (−Cε2
ε2

K ) goes to infinity at a no-slip wall
because the turbulent kinetic energy goes to zero and the dissipation is finite. This is a disaster335
and low Reynolds number models that integrate up to a wall attempt to fix this problem. A
very common solution is to make Cε2 a function of the turbulent Reynolds number. Since the
turbulent kinetic energy and hence the turbulent Reynolds number go to zero at a no-slip wall,
it is simple to invent functions of the turbulent Reynolds number that force Cε2 to go to zero
near the wall. Equation (4b) was chosen as a representative example of these types of models.340

In what follows we show that any Cε2 that goes to zero at low Reynolds numbers is not
a good solution to the near-wall singularity problem. These models not only give incorrect
low Reynolds number predictions for isotropic decay, but are actually unstable in that limit.
As mentioned earlier, the low Reynolds number decay limit is not an esoteric one and is not
limited to the near-wall region. The core flow above a turbulent boundary layer is frequently345
very low Reynolds number decaying turbulence as well. This type of instability can cause
problems in practical flow situations, and may explain why free-stream turbulence levels in
RANS simulations are frequently forced to be higher than in the corresponding experiments
(to keep the Re well above this instability).

Consider the classic k/ε equation system for decaying turbulence in which Cε2 is understood350
to be a function of the turbulent Reynolds number,

dK

dt
= −ε (15a)

dε

dt
= −Cε2

ε2

K
. (15b)

The equation for the turbulent timescale is then

d

dt

(
K

ε

)
= 1

ε
K,t − K

ε2
ε,t = −1 + Cε2. (16)

As soon as Cε2 drops below 1 the time scale decreases when it should be increasing linearly
in time. The problem is not self-correcting. The small time scale leads to an even smaller
turbulent Reynolds number (and hence smaller Cε2). Eventually, the time scale itself, k/ε ,355
becomes negative which is unphysical (and corresponds to either K or ε becoming negative).
This analysis makes it clear that Cε2 should never be less than 1 and an alternative solution
for the near-wall singularity is required that does not require Cε2 to go to zero. In summary,
the near-wall singularity problem should never be accounted for by using functions of the
Reynolds number.360

Near a wall, the proposed model takes the low Re limit for Cε2, Cε2 = 1 + 2
p+1 , which is

greater than 1, but which does not fix the near-wall singularity problem. How can the proposed
approach address the near-wall singularity issue?
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One solution (used in a few low Re k/ε models) is to note that while the Reynolds number
goes to zero near a wall, the turbulent length and time scales should not go to zero, they should 365
have viscous lower limits. With this interpretation the dissipation equation can be written as

dε

dt
= −Cε2

ε̂

K
ε, (17)

where the inverse time scale, ε̂
K , is finite at the wall. For the same reasons outlined above, it is

not sufficient for the modified dissipation, ε̂, or the inverse time scale ε̂
K , to simply be functions

of the Reynolds number. Some other information about the system is necessary besides the
Re. 370

Sometimes this variable is defined as an explicit function of the distance to the wall. How-
ever, wall distance functions are an ad hoc solution that is not very well defined for complex
geometries. A better solution is to note that the near-wall region is a region of strong inhomo-
geneity, not just a region of low Reynolds number. The modified dissipation could therefore
be a function of the inhomogeneity. It can be shown that at a no-slip wall 2ν[∇(K 1/2)]2 = ε. 375
In fact, it can even be shown that ε−2ν[∇(K 1/2)]2 = O(y2) in the vicinity of a no-slip wall25.
The singularity can therefore be removed by defining

ε̂ = ε − 2ν[∇(K 1/2)]2. (18)

However, significant care is necessary while implementing this correction in a computer code,
so that the singularity is also properly eliminated in the numerical approximation. The classic
solution is to define the modeled epsilon transport equation to be directly for ε̂ rather than for 380
ε. An alternative formulation [26] is to define,

ε̂ = ε

/(
1 + C∗ ν|∇(K 1/2)|

K

)
, (19)

where the value C∗ = 10 is suggested [25].
These corrections are only significant very near the wall where the inhomogeneity is large

and the Reynolds number is small. This type of near-wall correction (of the time scale rather
than Cε2) does not affect any of the prior results for homogeneous decay or our conclu- 385
sions about the appropriate functional form for Cε2. Figure 4 shows the modified dissipation
(equations (18) and (19) and the actual dissipation near the wall using the DNS data of Moser
et al. [27]. It is clear that the modification is limited to the laminar sublayer.

This approach to removing the singularity can be readily adapted to the inverse lengthscale
equation. Normally the inverse lengthscale is also singular as the wall is approached, since 390
λ ≈ K 1/2

ν
( αL
αH

ReT)−1/2 = ( αH
αL

ε
νK )1/2 near a wall. To make this nonsingular at the wall it is de-

sired that λ ≈ ( αH
αL

ε̂
νK )1/2 as the wall is approached. In keeping with the previous assumption

of additive terms for each physical dissipation effects we add an additional term for inho-
mogeneous dissipation (which is exact in the limit of very strong inhomogeneity). Close to
the wall, where production and turbulent transport are negligible, this results in the following 395
equation system:

dK

dt
= − 1

τ
K − 2ν[∇K 1/2]2 + ν∇2 K (20a)

dλ

dt
= − 1

p + 1

1

τ
λ + ν∇2λ, (20b)

with the inverse time scale still defined by 1
τ

= { αL
αH

νλ2 + K
1
2 λ}. The additional inhomoge-

neous term (2nd term on the right-hand side of equation (20a)) is exact near-walls and forces
K to have O(y2) behavior near the wall even when only the boundary condition K = 0 is im-



styleb.cls TFJI068-04-190650 August 17, 2006 14:21

Modeling turbulent dissipation at low and moderate Reynolds numbers 13

y+

D
is

s
ip

a
ti
o

n

0 10 20 30 40
0

50

100

150

200

ε-2ν[∆K1/2]2
ε

ε/(1+10ν|∆K|/K)

Figure 4. Comparison of dissipation and modified dissipation formulas in channel flow at Reτ = 590. Note the
O(y2) behavior at the wall and the restriction to the laminar sublayer.

4C/Art

posed. The lengthscale is now given by λ = K
1
2 {[1 + 4 1

R̂e
αL
αH

]1/2 − 1}/[2 αL
αH

ν] which is almost400
the same as equation (10) but uses a modified Reynolds number, R̂eT = K 2

ν{ε−2ν[∇(K 1/2)]2} .

7. Conclusions

A new K/λ model has been proposed that very simply accounts for the dissipation of mod-
erate and low Reynolds number turbulence. This model obtains the correct high and low
Reynolds number asymptotic limits for any low wavenumber form of the spectra (with405
k2 and k4being the most likely choices). It uses one simple constant, αL

αH
= 15 to cap-

ture the entire range of Reynolds numbers to within the scatter of the data. Unlike previ-
ous low Re models no hypothesized functionals of the Re were necessary to achieve this
behavior.

A translation of this model to the more familiar k/ε framework was performed to facilitate410
implementation in existing codes. While the model is slightly less elegant when viewed from
the k/ε framework, the proposed functional form for Cε2 now has a rational physical basis,
is sensitive to the low wavenumber form of the spectrum, and has the correct high and low
Reynolds number limits. The paper also shows that it is not possible to perform a similar
analysis starting directly from the k/ε equation system.415

The difficulties that can occur when applying low Reynolds number dissipation mod-
els to the near-wall region were carefully examined. It is demonstrated that the singular-
ity near the wall is not fundamentally a low Reynolds number issue and cannot be solved
by using Reynolds number corrections. The proposed model was easily extended to the
near-wall situation by incorporating an exact inhomogeneous dissipation term. This modi-420
fication was additive and directly in keeping with the original philosophy of the modeling
approach.
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