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Abstract

A two-equation transport model is used to moddduience at any mesh resolution, from RANS,
to LES, to DNS. The two-equation model used isghsimodification of the standailde model
that allows the backscatter of energy to resohaades. A mathematical explanation is provided
for why RANS models (such as this two-equation nhodee applicable to LES. The model
automatically adapts to the mesh resolution praliged no interaction from the user is
necessary. This approach is tested on the problenoderately high Reynolds number isotropic
decaying turbulence and gives good predictionsigtnaesh resolution and with different initial
conditions. A detailed analysis shows that at LESlutions the solution remains fully unsteady
and three-dimensional and does not approach a RKkB Solution.



l. Introduction

Turbulence models are frequently classified by tago of how much turbulent energy is

represented by the model compared to how much lembwenergy is computed via first

principles. RANS (Reynolds averaged Navier-Stokes)dels represent the most turbulent
energy in the model. LES (large eddy simulatiornpates considerably more of the turbulent
energy via first principles and DNS (direct numalisimulation) simulates all the turbulent
energy correctly and models none. If a more detddeminology is desired, in between RANS
and LES lies URANS (unsteady RANS) and VLES (vargé eddy simulation). It is sometimes
even useful to use the term QR-LES (quasi-resoled) referring to an LES simulation that is
very nearly DNS. This range of turbulence modelshewn on Fig. 1 in relation to a turbulent
energy spectrum. Each model, tries to representrieegy in the spectrum to the right of the
model’s name.

Very recently there have been a number
of hybrid turbulence models develope~
that are designed to be able to perfo
over a broad range of the spectrum (i
URANS down through LES) dependin
on the situation. For example, the ve /
popular DES (direct eddy simulatior

model* behaves like a RANS or URANS
model near walls, but away from wall
the lengthscale is changed to the me
size and the model has an LES charac
Other hybrid models do not change the
character based on location relative to
wall, but on whether the mesh is muc
smaller than the energy containir :
turbulence scales (leading to LES) or n W
(leading to RANS or URANS). The ®s v o
earliest implementation of such a

approach Spezieﬁe used classic LES FIG. 1 lllustration of RANS — DNS energy spectra.
(Smagorinsky) and RANS @& models

to solve for both an LES and a RANS eddy viscoaitgl then blended these two viscosities
together based on a function of the mesh sizem@jii has developed a hybrid model that can
change its character based on input from the uber yser sets the desired ratio of modeled
turbulent kinetic energy). The SAS model of Mehtar an attempt to fix the lengthscale
deficiency of DES. The SAS idea has also been epplb ké models (and involves adding
another term to the dissipation equation similah®RNG correction).

In this work, we demonstrate a self-adapting twwbaé modeling approach that works at any
mesh resolution and over the entire spectrum.fttharefore do, RANS, URANS, VLES, LES
and even DNS. More importantly, the character & thodel is not set by the user or the
geometric location, but adapts to whatever levelrttesh can support. The proposed approach
therefore models only as much turbulent kineticrgynés necessary (for that mesh) and resolves
as much of the energy using first principles asyids. It is not correct to consider the proposed
approach to be a hybrid model in the classical es€timugh it has many similarities to those



models) because it does not blend an LES and a RAB&I together. The proposed model is
closer to DES or SAS in philosophy in that it isiagle set of transport equations that changes
its character (RANS, LES or DNS) depending on tbe Kituation.

In Sec. Il the mathematical background for a ‘urse model is presented following the ideas
of Germand. The model itself is presented in Sec.lll and nticad tests of the model are
analyzed in Sec. IV where tests of isotropic dewgyurbulence are performed. Section V has a
review of the key findings of this work and a bri$cussion of the results.

Il. Mathematical Background

The classic mathematical theory behind RANS and bi&Res these two modeling approaches
look fundamentally different. RANS is based on emsle averages (although time averaging is
very frequently substituted) and LES is based taring. At first glance, the possibility of a
single model that does both (without some sortvatch or blending function) seems remote.
However, a closer examination by Germamevealed some very important insights. Most
importantly, the exact but unclosed governing equat for RANS and LES (and URANS,
VLES and DNS) are mathematically identical. Soletthe RANS equations can be derived
from the assumption of ensemble averaging and #8 &quations from filtering operations,
these assumptions are overly restrictive and neiystem must be derived with those
assumptions. The only required assumption is theatvelocity field can be split into two parts
and that this splitting operation commutes withfaténtiation. With this assumption, the
equations for turbulence evolution are (from Apprd

U, +(@0),; =-p, +vu ; - R;; (1a)

where T, and pand the computed velocity and pressure &)c= uu;, —UU;, is the unknown
turbulent stress tensor. The exact (but unclosealugon equation for this stress tensor is

Rj,t +UkRj,k = VRj,kk - (Riji,k + RkUj ,k) (1b)
~ T~ (S PU>+<p,u>) -2 <u,,u;,>

where the bracket operation is given bﬁ,bj>5a1_bj—aﬁj and turbulent transport;, is
defined byT, =uu,u -uR, -u.R, ~uR, —uuu,. The turbulent transport and the bracketed

terms require a model if the system is to be solVedRANS the overbar might denote an
ensemble average. In LES the overbar might be plicéxiltering operation. However it can
also be an implicit operation, because in pradvgeen these equations are modeled and then
solved on a computer), the overbar operation isenectually performed. In this case, it is
assumed that an overbar represents whatever thdat&dn computes. It is not possible to prove
that an implicit filter commutes with differentiati, but it is a fairly reasonable assumption to
make (at least to first order).

To accurately model some of the terms in Eqns &ha) (1b) a third ‘scale’ equation is often
postulated that captures the turbulent energetigtfe or timescale. The epsilon equafids
perhaps the most commonly used scale equatiorgrbega (inverse timescalend lengthscale
equation$'° are also possible and can be advantageous. Te@iseesjuations can, in theory, be
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derived from first principles, but the subsequenteling assumptions, in practice, makes them
empirical.

Starting from the exact equation (1b) numerous nogl@pproaches are possible. In order of
increasing simplicity we briefly describe some feé more common approaches. Reynolds stress
transport (RST) models use a modeled form of egngtlb). The more popular two equation
RANS models (such dge or k/w) are a simplification of equation (1b) from a tensquation to

a scalar equation (by taking its trace). The primamknown, R, must then be reconstructed

from the scalar kinetic energ¥,, using a hypothesized algebraic relation suchhaseddy
viscosity hypothesis. One equation models, sucth@sSpalart-Allmaras modélused in DES,
solve a single transport equation directly for dakely viscosity and use an algebraic expression
for the lengthscale (such as the distance to thke erethe mesh size). Classic LES models (such
as Smagorinsky and its variants) are the simpléstllp as they solve only Egn (1a) and
algebraically obtain the necessary length and tales from the mesh size and the resolved
velocity gradients.

Traditionally, LES models have used the very simiplaodeling approach because of the issue
of cost. Early attempts at using more complex artsequations were not deemed worth the
extra effort. Deardortf used a RST model and Schum&nnsed ak/e model. Models and
computing power have changed considerably in thged@s since those first simulations. Some
more recent LES models now carry a single tranggguraition. This is certainly the case in DES,
and a kinetic energy transport equation was use@Hnsalet al.'* As the mathematical analysis
of German8 makes clear, there is no fundamental reason waynibre complex modeling
approaches (used currently only by RANS models)redralso be applied to LES. The apparent
natural evolution of turbulence models to includeren physics and therefore complexity,
suggests that two-equation transport models for &E€Sin fact, the next logical step.

lll. A Two-Equation LES Model

Thek/e system is used in this work in order to reach #ngdst audience possible. There are very
good reasons to prefer other two-equation modefesys However, since all two-equation
transport models are closely related, the proposedeling ideas can be easily generalized to
these other two-equation frameworks.

The unclosed equations (1a) and (1b) can be modsled the follow transport equations,

U+ (Uu;) ;= =(p+5K); +[(v+vra)(u ; +up))] (2a)
k,+(ku)), =[(v+v /o)k,]; +aP-¢ (2b)
g t(ew),; =lv+vr o] +{C,P-C, 4 (2¢)

where the overbar on the velocity and pressure Hmen dropped for convenience. The

production is given byP=v,(u ; +u;;)u; and eddy viscosity is given by, :Cﬂk—;(kfkr).

The constants are fairly standadg constantsC,, =1.55, o, =1.2, ¢, =1.0,C, =0.18. The
parameterc,,=4f +2 {2 is sensitive to the local turbulent Reynolds numhg =£ of the
modeled turbulence via the functiqths_g[ /1+§_g-1] as per the analysis of Perot and de Bruyn

Kops? This variesc,, from its theoretical limits of 11/6 at high Reydsinumbers to 3/2 at low



Reynolds numbers. Any Reynolds number dependent would probably be sufficient.

Reynolds number dependence is important in LES Usecdhe effective turbulent Reynolds
number rRe. =£ get smaller as the mesh is refined (and goes twvaero in DNS). For

incompressible flow, the pressure in Eqn (2a) ewceined from the constraint; ; =0. In this
systemk is the modeled turbulent kinetic energy akd=4(u'?+u'3+u') is the resolved
turbulent kinetic energy. Similarly is the modeled dissipation ang :v(u'i’ju'i’j) is the
resolved dissipation of turbulent kinetic energy.

A number of eddy viscosity formulations were testatt the formulation presented above
performed the best and is consistent with stantd&$¥. In the LES limit the turbulent length
scale L =¥* should be proportional to the mesh size (in arlatztion we show that this is

indeed the case). In this limit this formula foretheddy viscosity then becomes
Vs DCﬂ(Ax)z(ﬁ), which scales the same way with the mesh size ast ES models

(including the Smagorinsky model and its derivagjvdn the RANS Iimit(k+—'<kr) -1, and the
classic RANS eddy viscosity is recovered.

The other deviation from the clasdis model is the presence of the additional parameter
The proposed formulation assumes that the turbudeness tensor is reconstructed using the
modified eddy viscosity hypothesR, =2kd; —vra(u; +u;;). It will be shown that this

modified hypothesis can backscatter energy (wlihiée dlassic formulation cannot). While we
stick with the simplest and most common reconsimadbypothesis for simplicity, the proposed
ideas can easily be generalized to nonlinear edaysity and algebraic Reynolds stress models
as well. The simplest model possible is used is thork (along with the simplest test case
possible) in order to focus as directly as possilehe key idea of this paper - that it is possibl
to develop models that automatically work at angimessolution.

One key component of a self-adaptive turbulenceaeh@that it must be able to backscatter
energy from the unresolved (modeled) turbulencéhéoresolved (calculated) turbulence. For
example, if a simulation of isotropic turbulenceperformed on &4° grid, but the simulation is
initialized with almost all the energy in the mo@elid very little in the resolved field (i.e. it is
initialized from a RANS simulation), the model skibbe able to take energy from the modeled
turbulent energy and energize the resolved turbWeretic energy field. The idea of allowing
backscatter in a turbulence model is not a new lbmas been shown by Chashoand Caratet
al.'® that the -5/3 power law in isotropic decay is &efiredicted by (dynamic) LES models that
account for backscatter. Along similar lines, dieaisDES can not backscatter energy but it has
been recently shown by Piomedtial.'” that adding noise, a crude form of energy backegao
the DES model improved results for channel flow.

RST models based on Eqgn (1b) can, and do, backseatergy. However, any model based on a
positive definite eddy viscosity (such as the atak&E model or any two-equation model) is too
simplified and can not backscatter energy. The edsgosity is always positive and therefore
always removes energy from the mean flow (and puisto the modeled turbulent kinetic
energyk where it is eventually dissipated byo heat). This is the correct average behavioafor
turbulence model, but not necessarily locally atir(en space or time).
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The additional parametar has been added to the cladsic model to correct this important
flaw and control the energy flow. Usualty is positive (and order 1), but it can become simall
even negative (soon to be shown). Wherx0 the model is backscattering energy. The
parametera is not a model constant, instead it is a fieldt tharies in space and time, so
backscatter can happen in different regions atewdfit times. The transfer variabie also
appears in Egn (2b), the k-equation, so that tha& tarbulent kinetic energy (resolved plus
modeled) is a conserved quantity and can only gisapvia dissipation. Its presence is not
necessary in the scale equation, Egn (2c).

When a <0, the eddy viscosity in Eqn (2a) is essentially ateg@. Negative viscosity is anti-
diffusive, it amplifies (rather than damps) exigtiresolved velocity fluctuations. It amplifies
small wavelength modes (those closest to the mestiution) the most rapidly. This is a very
reasonable model for backscatter. It is not infgctenergy via some random forcing of the
resolved flow, rather it works to enhance the @xisinstabilities and modes. Moreover, the
energy transfer is local in spectral space. Ilti$eio take energy from the model (which has most
of its energy at scales just below the mesh resolutand preferentially delivers it to the
resolved flow at almost the same length scalej(laitabove the mesh resolution).

The model fora, the energy flow parameter, uses ideas from ersbimation for mesh
adaptation. If the variation across one mesh sizke computed solution is small, then the mesh
is deemed to be sufficient for first principles slation and the model should go away (the
modeled turbulent kinetic energy should become v@nall). This is akin to the situation
described earlier, where @4 grid is initialized with a RANS solution and sorsmall resolved
flow fluctuations. The model will detect this siticam as very highly resolved (lots of mesh
resolution for the given fluctuations). Due to @gyeconservation inherent in equations (2a) and
(2b), the modeled turbulent kinetic energy canjost disappear. In order to become small the
modeled turbulent energy must be transferred soraeh the only possibility is to the resolved
flow. Small estimated variations in the resolvedamfities implies there should be energy
backscatter (the mesh can handle more fluctuatiendirect simulation). At some point later in
time, the resolved velocity on tr@® mesh will be fully energized. If the Reynolds nwenls
high, then a64® mesh is still not sufficient to perform DNS (a nebds still necessary). In this
case the variation estimate will become largerlanger untila becomes positive and a normal
forward energy scatter down the energy cascadebeiiimposed. The larger the variation the
more energy is fed to the modeled turbulent kinetiergy and the more the model influences the
resolved flow evolution. If the Reynolds numbetdw enough, then £4° mesh may actually
be sufficient resolution for DNS and the variatiestimate stays small. In this case the model
continues to backscatter until it has almost nagneAt this point the model has no effect on
the resolved modes and DNS is achieved.

The proposed equation for the energy transfer biris,

a= 15(1—0 (W?[(ji"a{)%on]) (3a)

where k. is the resolved turbulent kinetic energy (at ataserlocation and time)k is the

modeled turbulent kinetic energy, and the empiljcaletermined constanC =0.28. The
quantity

(D% 252 1k, ={( x5y 2 +( 8y 25 2 +( 82289 3/ K (3b)



is a dimensionless measure of the gradients (sinidawhat is sometimes used in mesh
adaptation) that is well defined even on anisotrop&shes. In this formulation, the resolved

turbulent kinetic energyk =1 (u+u'2+u'y) is the indicator function that is being used to

estimate the mesh resolution. If the flow is DNS wereresolved (like a RANS initial condition
on an LES mesh) then this quantity is small, it&emse is large (but limited away from infinity
by the fairly arbitrary0.11 term), and the model tends to backscatter enémgyontrast, normal
energy transfer (from resolved scales to the madséales) occurs in the regions of the flow
where the gradient length scales are comparableetanesh size. This is shown in the results
section of the paper.

On very coarse meshes, RANS like behavior is the ¢ggdinit. In this casek. is expected to
be very small, but note th&f\x %)Z/kr will remain finite and independent of the magnitade

the resolved fluctuations. It just senses thelogism. In our simulations of isotropic turbulence
this term obtains an average value of 0.8 in the RANSit. This means that
a - 1.5-0.42/(0.8 0.1 1.c and the standard RANS model is very closely recalvémethe

RANS limit.

The particular form of the energy transfer functwas developed and tuned solely to obtain the
correct limits. Many other functional expressionsd/r indicator quantities are certainly
possible. The goal of this paper is not to advo@atehis particular function but to demonstrate
that self-adaptive turbulence models are possiatel this particularly function serves this
purpose adequately.

IV. Model Results

The governing equations were solved using a Cartestaggered mesh metfbavith exact
projectiort® for the pressure solution. Isotropic decaying ulebce was calculated using periodic
boundary conditions on a box of siza®818rtx 36r. The extra length in the third direction was to
compare directly with DNS results calculated elsenef? This third direction also has double the
resolution so the mesh size is the same in aktirections. The numerical method is second order
accurate in space and time and locally conservess rmad momentum. In addition, it locally
conserves circulation and kinetic energy in theembs of viscosity> The code is fully parallel
(using MPI) and optimized for execution on PC @tst’

A. High Reynolds Number | sotropic Decay

In isotropic turbulence, the turbulent kinetic gjyedecays with time. This process can be simulated
with a simple RANS model using only one spatiatl @ell, with LES using many cells, or with DNS
using enough cells to resolve the smallest lengites of motion. Results from such a test are shown

in Fig. 2. The initial turbulent Reynolds numbRe= &%) for this test case is 640 (comparable to

V(ete)
the Compte-Bellot and Corrsin 1971 experiméht)lhe DNS result was performed independently
by de Bruyn Kop® on a 768x768x1536 mesh using a Fourier spectrdiatend is given by the
large circles. Many aspects of the DNS (includipgcsra) have been closely compared with
experimental data and shown to agree ffielthe mesh resolution is identical in each dire;tand
the box size in the z-direction is twice as large.
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FIG. 2. Total turbulent kinetic energy predictions of ieptic decay at initial Re=640. Circles are DNSadatd
lines are model predictions for a variety of mes$otutions from RANS through LES.

A number of different simulations were performedngsmesh resolutions from 1x1x2 to
256x256x512. In each case the model is identicdl @iy the mesh and initial conditions are
changed. The initial conditions for the full DNS neebtained by running for a long time with as
little forcing of the large scales as possible @intain the kinetic energy. The initial conditic i
therefore not random Fourier modes — but Naviekedtdurbulence. Each model initial condition
was formed by averaging the same initial 768x76881%elocity field to the appropriate mesh size
using a simple box average. The initial modeletulent kinetic energy at each mesh location was
then determined by comparing the exact 768x768x1888&ity field to the smoother coarse mesh
field and calculating the sum of its difference.eTimitial modeled dissipation was calculated
similarly by using a box average of the exact DiéSidation field.

The simulations in Fig. 2 show that at any mesblugsn, the model predicts the decay of the
turbulence well. The ordinate is total turbulemtdtic energy normalized by the initial total tudmtl
kinetic energy at t=0.0s, the abscissa (Tau) i timon-dimensionalized by the inverse time

£+,

scale(kﬂ(r) at t=0.0s. Tau can appropriately be interpretetddy” turn over times.

The very lowest mesh resolution is clearly a RAMNEWYRANS) simulation and the largest mesh,
256x256x512, is a QR-LES simulation (with the maste roughly in the inertial range). The
intermediate resolutions might be considered URAMIES, or LES. The spectra for the initial
conditions are shown in Fig. 3. These spectra septeVLES (32x32x64), LES (64x64x128,



128x128x256), QR-LES (256x256x512), and DNS (768x1636) simulations. The spectra show
that the box averaging procedure of the initialaddbes remove some energy from the low
wavenumbers, especially at VLES (32x32x64) and L(E&<64x128). However, as resolution
increases, most of the energy is taken from theesigwavenmbers and the resolved spectra does
approach the DNS limit. All energy that is not leed is modeled by the varialite

575 siope — 768x768x1536 |
o S —— 256x256x512
—=— 128x128x256
64x64x128
32x32x64

k1

FIG. 3. Spectrum of the initial conditions for the Re = 6d6tropic decaying turbulence test case.

It might be expected that RANS equations shoulde gRANS (essentially the 1x1x2) results
irrespective of the mesh resolution used to sahasd equations. This is not the case, for two
reasons. First the variations will be different diifferent meshes which will affect the backsaatte
term. More importantly, the equations are nonlinead like the Navier-Stokes equations, have
multiple possible solutions (some of which are eady and three-dimensional). The ratio of the
modeled turbulent kinetic energy to the total tiehtikinetic energy is shown in Fig. 4 with one
curve for each of the mesh resolutions. The 1xbidtien is the top curve, with all its turbulent
kinetic energy contained in the model (giving @oraf 1.0) and the 256x256x512 simulation is the
bottom curve, with the smallest ratio of modeledbient kinetic energy (< 10%). Note that these
curves are relatively constant but decrease glightth time (as the simulation proceeds). Even
though the equation system looks like a classic RAhbdel — it is not. This two-equation model is
actually a ‘universal’ turbulence model applicaateany mesh resolution. There is no tendency for
the solutions to move towards the RANS solutiora(@ of 1.0).
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FIG. 4. Ratio of modeled turbulent kinetic energy (k) ttatdurbulent kinetic energy (k+k Re=640

The LES solutions stay entirely unsteady and tdmegensional. The slight decrease in this ratio
over time is the correct behavior. It is due tofte that over time the Reynolds number of thes/flo

is slowly decreasing and the mesh can, and therefoes, resolve a larger percentage of the
turbulent fluctuations. If the simulation was ramd enough, then the Reynolds number would drop
sufficiently for the 256x256x512 mesh to perform $Nand at this point the ratio should be
essentially zero (see Fig. 11). The small vamatb the beginning of each simulation shows the
initial condition is close to the correct ratio poptable by that mesh, but not perfect. The lameg t
behavior of this ratio is shown in Fig. 5. At thesey long times, the turbulence scales grow large
enough to feel the influence of the box size aeddécay rate no longer follows the classical theory
for homogeneous decay in an infinite domain. k@ teason the total turbulent kinetic energy at
these long times is not of interest. However, thrggltime behavior of the model ratio is still of
interest. Figure 5 shows that the coarse meshx®pappears to be approaching the RANS solution
(a ratio of 1.0) at very long times. The 8x8x16 dmtion initially tries to approach the RANS
solution, however this ratio eventually starts ¢éoréase. The finer meshes (16x16x32 — 64x64x128)
have enough resolution to compute a solution tlwesdnot return to the RANS limit. It is
hypothesized that steady (RANS-like) solutions oocsten the resolution is not sufficient to
maintain an energy cascade. For this test casenitial large eddy lengthscale of the turbulence
(L=k*?/¢) is 6, and the 8x8x16 simulation has a mesh dizlose to 7. Nikitiret al. has noted that

a similar effect occurs in under-resolved DES sirtioihs?”
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FIG. 5. Ratio of modeled turbulent kinetic energy (k) tdéataturbulent kinetic energy (k+kfor extended time.
Re=640

B. Effect of Initial Conditions

A truly adaptive model should be able to obtaindtwect behavior from incorrect initial conditions
For example, it is of considerable interest to ifee 64x64x128 mesh initialized with a RANS
solution can, over time, develop into a full LESwglation. In order to test the model in this wéng t
initial conditions were either smoothed or sharplensing a filtering operation. The filter used to
alter the initial conditions was a nearest neiglava@raging procedure,

uijf:tered = :Buijk + (1_ﬁ)(ui+1jk + ui—ljk + uij+:lk + uij—:lk + uijk+1+ uijk—l)% (4)
For smoothingB =0 was used. This replaces the value at a mesh Ippihie average of its nearest

neighbors. This type of filter removes energy primarom the highly oscillatory modes with
wavelengths close to the mesh size. In spectrabtérdamps the spectra in the region just abawe th
cutoff wavenumber. The effect is shown in Fig. &jck shows the original initial spectra for the
64x64x128 simulation, and the spectra for the shsabtand sharpened initial conditions.
Sharpening is performed by usity=1.5, this adds energy to the existing high frequenoges.
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FIG. 6. 1D energy spectra for 64x64x128 simulation. (Shiligrmal, Smooth)

Figure 7 shows the affect of smoothing and shangeifie initial conditions on the turbulent kinetic
energy ratio. When smoothing is used, energy i®venhfrom the resolved modes. In order to keep
the total turbulent kinetic energy the same, theehnow must start with more energy. Therefore the
ratios for the smoothed case start higher tharréefo
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FIG. 7. Ratio of modeled turbulent kinetic energy (k) ttatdurbulent kinetic energy (k+Hk Re=640
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As time proceeds the model achieves the sameinagpective of the initial conditions. At early
times, the smoothed solution has less variationtl@ckfore backscatters somewhat more than the
unperturbed initial condition. This removes enefigyn the model and makes the ratio decrease
faster, so that it approaches its original statesirAilar (but opposite) process happens when the
spectra is sharpened. In this case, the modelsématethe mesh can not support the input resolved
fluctuations, the eddy viscosity is increaseddagyand damping of the resolved modes occurs with
the resulting energy transfer to the model. No&t the rate at which the model adjusts to incorrec
initial conditions depends on the mesh resolutidihe higher mesh resolutions adjust much more
quickly. It is hypothesized that the time it takegransfer the energy scales on the timescalleeof t
turbulence at the cutoff (transfer) lengthscale .
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FIG. 8. Histogram of the energy transfer function alplog)t enlarged view of the negative alpha value$i¢bg).

It had been stated earlier that the energy trarfisfetionad was usually positive and order 1. In
order to visualize exactly what happens duringnaukition with perturbed initial conditions, a
histogram ofa is provided in Fig. 8. This figure (top view) shewhat with the correct initial
conditions (solid line)x obtains an average value of 0.87 for this padrcaiesh (64x64x128). The
bottom view of Fig. 8 is an enlarged section of tiegative valuest obtains. The histograms
include values ofa for the smooth (squares) and sharpened (diamamitla) conditions whose
spectra were shown in Fig. 6. As mentioned prelypssoothing the velocity field removes energy
from the resolved flow and places too much enanggythe model. To compensate for this error Fig.
8 shows thatx takes on a smaller average value around 0.80 @d kirastic increase in negative
values (more backscatter). Because the model newnloae backscattery is correctly displacing
energy from the model to the resolved field to @dtrfor the wrong initial condition.
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The opposite effect is shown for the sharpened Gdmesimulation has been started incorrectly with
too much energy in the resolved field. Here iteersthata obtains a slightly larger value than 0.87
to ensure more normal forward transfer of energgcaBse of this shift to the right, there is
considerably less (almost non-existent) negativevalues. This guarantees almost no backscatter
and an increase in forward scatter to correctritialiconditions.

The histograms of Fig. 8 are very similar for dltlie mesh resolutions. In all cases, the statulity
Eqgn (2b) is verified bya having an average positive value. This suppoe®tiergy cascade theory
that overall the transfer of energy will be fromgiato small scales. However, it is shown thatllpca
the energy transfer can go the other way and snadlunts of backscatter can indeed provide a
method for a self-adapting model.

C. Low Reynolds Number |sotropic Decay

In order to verify that the model works, even i tBNS regime, a lower Reynolds number
simulation was performed which is well resolved @Mt the largest resolution of 256x256x512.
The initial field for this lower Reynolds numberseawas generated by box averaging the high Re
initial 768x768x1536 field to 256x256x512. The slation was then run with a higher viscosity and
with a small amount of modeled turbulent kinetiergy. Using the higher viscosity reduces the
Reynolds number and also quickly damps the smalbedés of the turbulence.

1.1 T T T T

i

- — K¢/ g (256x256x512) 1
++ y=0.1442+0.7215x .

Ktotal / Eps total

0 | L | ! | ! ! I ! ! I !
0 0.1 0:2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3

Time (s)

FIG. 9. Turbulent time scal¢k+k ) / (€+€,) vs. simulation time for a 256x256x512 simulatiottiwwery little
modeled turbulent kinetic energy (DNS). Slopewfve fit (plus signs) give the inverse of decayangnt (n).
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k+k,
£+e,

The turbulent time scal ) is plotted vs. simulation time (solid line) ingk-i9 for the low Re

case. At early times, the small scales are adjgisti the low Re. Eventually, a power law decay
for the turbulent kinetic energy is obtained and #imulation is then considered to be fully
adjusted. On Fig. 9, a power law decay should apgea straight line. A linear curve fit is given
by the plus symbols. The inverse of the slope gimgithe curve fit is the kinetic energy decay
exponent,n=1.38. The simulation was considered to be well devealagtea time of 0.14s. This
field (at t=0.14s) was used in all the subsequantilgstions, as the initial well developed low
Reynolds number (Re=211) initial condition. The eabox averaging procedure as the high
Reynolds number case was also used to creatd gutiditions for the smaller meshes in the low
Reynolds case.

Figure 10 shows the total turbulent kinetic engoggdictions for the low Re test case. The circles
represent the essentially DNS simulation (thoughrttodel is on), the lines represent the various
simulations from 1x1x2 through 128x128x256. Theseia fairly good agreement with the DNS
data, as was observed for the high Reynolds nuodsa. The slight discrepancy at long times is
probably due to errors in the RANS model at lower R

OO DNS (256x256x512)
0.8 — 1x1x2 7
— 2x2x4
07} — 4x4x8 i
. 8x8x16

06l b — 16x16x32 |
U 32x32x64

— 64x64x128

oor R — 128x128x256

K /Ko

04} 4

03} - ,

01

O 1 1 1 1 1
0 1 2 3 4 5 6

Tau

FIG. 10. Total turbulent kinetic energy predictions of reglic decay at initial Re=211. Circles are DNSadand
lines are model predictions for a variety of mes$oiutions from RANS through LES.

The ratio of modeled turbulent kinetic energy isttgld in Fig. 11. The full RANS simulation
(1x1x2) is at the top of the figure (ratio of 1a)d the DNS is shown at the bottom of the figurtd wi
a ratio of roughly 18. Once again it is observed that there is no temydfor these solutions to move
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towards the RANS solution (ratio of 1.0). The LESusons stay entirely unsteady and three-
dimensional, and the correct decrease in this oo time is shown.

a5 l
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FIG. 11. Ratio of modeled turbulent kinetic energy (k) teatdurbulent kinetic energy (k+k Re=211

D. Scaling
In classic LES models the lengthscale is assuméx toroportional to the mesh siz&, and the
gradients scale like, ; ~ £°A™'°. The eddy viscosity is then constructed from $ieisling and has

the form, v, ~u ;A* ~ £°A*°. The use of the mesh size to infer the lengthsisalvhy classical

LES fails outside of the inertial range (closehte DNS or RANS regimes), and one reason why the
current model (which predicts the lengthscale ameschot infer it) can operate at with any mesh
size. However, the current model should still obttie classical LES behavior in its range of
applicability. The lengthscale predicted by the pipd, =k*?/¢, should be proportional to the

mesh size, when the model is operating in the l&gBre.

Figure 12 looks at predicted lengthscale (in lageycat a fixed time t=0.5s for the various meshes.
At small values ofAx (large numbers of mesh points) it is obvious thatlengthscale is indeed a

function of the grid spacing as would be expectéd wlassic LES. A reference line has been added
(dotted line) with a slope of 1.0 for comparisdha well defined -5/3 slope were to be observed in
the energy spectra, one would assume that claBSonould closely match the reference line in that
-5/3 region. Because the spectrum shown (Fig. 3Fad6) show only a weakly observable -5/3

slope, it is not surprising that the lengthscalewshin Fig. 12 does not match the reference line
exactly. One would expect viscous effects (theuarite of a viscous lengthscale) to reduce the
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scaling below linear and this is indeed observeak Tigure clearly shows how the turbulent
lengthscale is not related to the mesh spacingdeutse LES regime.

Mesh resolutions smaller than LES (64x64x128) doembibit the linear behavior because now the
relevant turbulent lengthscale is no longer relatethe mesh size. There is a transition regioh tha
one might call VLES (32x32x64), but not full LESh& 8x8x16 mesh might be considered the start
of URANS (as was shown in Fig. 5), where the largeales can just be resolved, and unsteady 3D
solutions maintained. Mesh resolutions smaller 8x8x16 are where the solutions can not sustain a
cascade because all the largest turbulence has sieat are smaller than the mesh size. Intergsting
Caratiet al.”® conducted LES simulations for isotropic decayimdptilence and determined that the
smallest mesh size possible for a classic (dynamoidel) LES simulation wag8’. This is in very
good agreement with the results of Fig. 12, afjusiswvhere the elbow in the curve occurs.

10 L T T T T 177 T T T 1T T 17 T T T 1 17T

T i HEE: LI[\IE 88x16 Ax4x8  2x2x4 1<>><1><2 i
5| 1 16x16x32 N
4L RANS e
3L 32x32x64 N
gl 64x64x128 |
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E 4L 128x128x256 |
| L i
0.7 .
0.5 256x256x512 &
0.4t <
03} .
02+ g
DNS
512x512x1024
01 | &1 | | | 1 | 1 L1 1 | 1 | 1 | 1 1 T T 1 1 1 | 1 | L1
0.050.07 0.1 0.2 0.3 05 0.7 1 2 3 4 567890 20 30 4050 70 100
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FIG. 12. Lengthscale behavior at the time = 0.5s.

V. Discussion

The primary goal of this paper is to demonstrase RANS models can be used to model turbulence
at any mesh resolution. The fundamental reasonthigtis possible is because the governing

equations are the same for RANS, URANS, VLES, L&f8l, DNS. However, just because the exact
equations are mathematically the same does not thaathe same models can be used in both the
RANS and LES regimes. This work indicates that witght modification, RANS models (which
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can represent fairly complex turbulence physics) alao model subgrid scale turbulence equally
well.

In order to reach as broad an audience as postiledea has been demonstrated with the well
known k/e model. There is every reason to suspect that ®&A&S models will work just as well.
The paper shows that two-equation models are mitelil to RANS modeling, they can be used to
model subgrid scale turbulence for LES and all thgions in between. The ‘universality’ or
automatic adaptivity of this approach is actuaiyywimportant, because in many practical turbulent
flows it is not possible to tell if a mesh is adiyiiable for LES ahead of performing the simudati

The implication here is that subgrid scale turbedeis not fundamentally more complex than
‘regular’ turbulence. It can be modeled using $hene RANS ideas. This paper shows that two-
equation models produce chaotic unsteady threendimaal solutions (just like the Navier-Stokes
equations do) when there are enough degrees dbfreeRANS models do not necessarily result in
RANS-like (steady) solutions.

The advantage of using a two-equation model fdsulence is that it is sufficiently powerful to
model the turbulence at any mesh resolution. @aksBS models based on the Smagorinsky

approach R, —5KJ; = —CA? |S|S;) are limited to meshes that lie in the inertialg@. This is

because they all assume that the relevant lengtd & the model is the mesh size. In the iakerti
range this assumption holds, but when the meshkris aoarse (in the energy containing range) or
very fine (in the DNS range) this assumption iimect® and the classic LES approach and its
variations like dynamic modeling are fundamenttidiyed.

Turbulence models based on a single transport iequdike DES) also have some of the same
problems of the classical approach. Single eguatiodels must use an algebraically specified
lengthscale to correctly represent dissipation ggses. When this lengthscale is not correct the
model fails. DES can therefore only be expectegoketéorm well if the turbulence is near a wall, or
the mesh is in the inertial range. The very sime# case presented in this paper is one in which
DES will fail. There is no way to accurately spgthe length scale for the coarse mesh cases. The
relevant length scale is no longer the mesh dizis.the energy containing eddy size which can not
be determined from a single model equation alone.

In our test case, the RANS model can predict tisgvanaccurately. For real industrial problems we
would expect the LES solutions to be better tharRANS solutions, since more of the turbulence is
calculated via first principles. A single ‘univefsaodel of the type demonstrated herein allows one
to consider doing mesh refinement studies for tertitflows that really do give a sense of whether
the solution (and model) are converging.

The proposed model may be attractive for indussitalations since the same code can be used
to perform coarse preliminary design simulationsvasl as highly refined ‘performance’
calculations of the final designs. The only inpequired by the user is the size of the mesh they
can afford. The model produces the best solutiossiple for that mesh resolution, since it
computes as much of the turbulence from first pplles as the mesh will allow.
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Appendix A

The incompressible Navier-Stokes equations are:

U =0 (A.2)
U +(UU) = =P + Ty (A.2)

Following the ideas of Germahahe moment of A.2 is taken with, , another moment of this
same equation with indices interchanged yields gojpm A.3 and A.4.

u;u; +U'(U'uk)k:_piuj+ujaikk (A.3)
ulujt+u(u uk)k U +U|Ujkk (A4)
Adding together A.3 & A.4 and using simple calcuiusan be shown that the resulting equation
can be written as:

(uiuj)yt + (uiujuk),k = _|:pui5jk + puja—ik _V(uiuj)yklk +2ij - ZVUi,kuj,k (A.5)

if a Newtonian fluidg; =vu, ; is assumed.

Recall that the turbulent stress tensor was preiyodefined asR, —uu -uu. , the double

i

bracket by <a, b.>E£—aB and the turbulent transport term was defined by

then substituting for the stress tensor, doublekmta and turbulent transport term will recover
the equations below.

Uk =0 (A.6)
Ui+ (UU) =P, VUi — R, (A7)
Rj,t +UkRj,k = VRJ kk _(Riji kT RkUj k)

Tie = <P U +<p; U> ) 12U Uy, >

T _ouuk U, RJk u. Rk ukRJ uk. Simply averaging equations A.1, A.2, and A.5 and

(A3

Hence it is shown that the averaging invariancecguare of Germano does indeed provide
evolutionary equations that are exactly the samethas Reynolds stress transport (RST)
equations.
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