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Abstract

A higher-order mimetic method for the solution of partial differential equations on unstructured meshes is developed
and demonstrated on the problem of conductive heat transfer. Mimetic discretization methods create discrete versions of
the partial differential operators (such and the gradient and divergence) that are exact in some sense and therefore mimic
the important mathematical properties of their continuous counterparts. The proposed numerical method is an interesting
mixture of both finite volume and finite element ideas. While the ideas presented can be applied to arbitrarily high-order
accuracy, we focus in this work on the details of creating a third-order accurate method. The proposed method is shown to
be exact for piecewise quadratic solutions and shows third-order convergence on arbitrary triangular/tetrahedral meshes.
The numerical accuracy of the method is confirmed on both two-dimensional and three-dimensional unstructured meshes.
The computational cost required for a desired accuracy is analyzed against lower-order mimetic methods.
� 2006 Elsevier Inc. All rights reserved.

Keywords: High order; Unstructured; Staggered; Dual mesh; Mimetic; Diffusion
1. Introduction

The accuracy of a numerical method can be increased either by refining the mesh or by increasing the order
of accuracy of the discretization scheme. A discussion of the use of mimetic methods with mesh refinement is
found in Perot and Nallapati [1,2]. In contrast, this work focuses on increasing the discretization order of
accuracy. Higher-order accuracy is useful for constructing multiscale turbulence models [3] and for minimizing
the influence of discretization error on dynamic subgrid-scale models for large Eddy simulation (LES) [4].
Higher-order accuracy may also be attractive for problems involving moving meshes since the mesh motion
overhead is proportionally smaller.

There are three fundamentally different approaches to increasing the order of accuracy of discrete opera-
tors. Finite volume methods tend to increase the effective stencil of the discrete operators (either explicitly
or implicitly) but keep the number of unknowns used to solve the PDE fixed [5,6]. Finite element methods
increase the number of unknowns (and equations) but keep the stencils highly local. Finally, Padé schemes
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keep both the stencil and the number of unknowns small, but use implicit unknowns (and therefore global
coupling requiring matrix inversion) to increase the accuracy. Although Padé schemes are highly desirable
on one-dimensional stencils (or Cartesian products of one-dimensional stencils), the use of Padé schemes
on general stencils is unlikely since cross derivatives become far too numerous as the order increases. The
method presented herein uses the finite element approach of more unknowns to obtain higher-order accuracy
but otherwise has the basic traits of a finite volume (or discontinuous Galerkin) method. Since this is an
entirely new approach to obtaining higher-order accuracy in finite volume methods, the focus in this paper
is on the numerical method, and a straightforward demonstration problem (heat transfer) is used.

The use of large stencils in classic higher-order finite volume schemes leads to a number of difficult issues.
Boundary conditions become difficult to implement. Either higher derivatives must be known or lopsided sten-
cils must be used. The later are prone to instability. While the formal order may be higher when using a large
stencil, the accuracy at practical resolutions is frequently not improved by using a larger stencil. Large stencils
become problematic when material properties change rapidly. This is related to the boundary condition issues.
When implementing these methods on parallel distributed memory computers, such as the PC clusters, large
stencils require a great deal of domain overlap and repeated data communication. On unstructured meshes,
large stencils can be expensive and unwieldy to program. They can be implemented implicitly through the
repeated action of small local stencils, but the use of repeated small stencils tends to be very cache inefficient.

While there are both practical and performance issues associated with using large stencils, these are not our
primary reason for exploring the use of small stencils (and more unknowns). The principal motivation of this
work is to obtain high-order discrete operators that behave correctly and can be guaranteed not to cause spu-
rious numerical phenomena. It will be demonstrated that by using more unknowns it is possible to create
higher-order discrete operators which are, in some sense, exact.

Unstructured meshes can be automatically generated in arbitrarily complex domains. Using mesh motion,
unstructured meshes are easy to adapt anisotropically while maintaining fixed solution cost. The adaptation
tends to be smooth compared to Cartesian mesh refinement and unstructured meshes accurately capture com-
plex domain surfaces. The focus is on unstructured meshes in this paper for these reasons and the fact that
generalizing unstructured methods to the Cartesian case is fairly trivial whereas the converse is not true.
Mimetic finite difference methods on polygonal meshes have been developed by Shashkov et al. [7] and Franco
Brezzi et al. [8]. Methods for obtaining high-order mimetic operators on Cartesian meshes using the traditional
finite volume approach of enlarging the stencil have been developed by Morinishi, Vassiliev, Verstappen and
Veldman [9–13]. Our approach to producing mimetic methods combines ideas from both finite volume meth-
ods and finite element methods and is appropriate for unstructured meshes.

For simplicity, this paper focuses on the diffusion equation,
oðqCvT Þ
ot

¼ r � krT ð1Þ
This simple equation allows the emphasis to be placed on the numerical method and the procedure for obtain-
ing higher-order rather than the intricacies of the equation being solved. While the ultimate intent is to use
these numerical procedures to discretize the incompressible Navier–Stokes equations [14,15], there are many
issues concerning discretization of the Navier–Stokes equations (such as how pressure and the incompressibil-
ity constraint are treated [16,17]) that we wish to avoid when outlining the fundamentals of the method.

The diffusion equation (Eq. (1)) occurs in many areas of science and engineering. We will discuss it here in
the context of heat conduction since this is perhaps its most familiar physical context, but the actual physical
interpretation is not central to this paper. In heat conduction, T is the unknown temperature. The material
under investigation determines the conductivity k and the heat capacity qCv. In this paper, it is assumed that
the mesh is always aligned with material discontinuities. Since the mesh can move this is easy to achieve.

The derivation of the higher-order mimetic scheme is presented in Section 2. This derivation first obtains an
exact but finite system of equations and unknowns. The exact system is then closed via some interpolation
assumptions which dictate the numerical accuracy but which have no impact on the discrete operators (which
are exact). Numerical tests to confirm the accuracy and compare the cost to low-order methods are presented
in Section 3. Finally, Section 4 presents a short discussion and some conclusions about the efficacy of this
approach.
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2. Dual mesh discretization

2.1. Background

The heat equation, like all partial differential equations, is essentially an infinite number of equations (one
for every point in space) for an infinite number of unknowns (temperature at every point in space). Since a
computer solution must deal with the finite, it is commonly assumed that some approximation (and associated
loss of information) must be made in order to turn a partial differential equation (like the example heat equa-
tion) into a finite system of equations and unknowns. For this reason, it is usually assumed that discretization
(making a PDE into a finite system) involves the introduction of errors. While discretization usually does
involve the introduction of errors, it does not have to.

In the dual-mesh (or mimetic) method that is described herein the discretization process is exact. All numer-
ical approximation is introduced only where physical approximations are made – in the constitutive equations
(not in the calculus). The catch to this remarkable observation that exact discretization is quite possible is that
the resulting exact finite system has too many unknowns. While there are a finite number of unknowns, they
reside on different meshes and the system is therefore not closed. In dual-mesh methods all numerical approx-
imation occurs in the coupling approximation between the unknowns on the two different meshes. The cou-
pling approximation can either have a finite volume or a finite element character. In this work the focus is on
the finite volume flavor of dual-mesh methods. Higher-order finite element dual-mesh methods (for electro-
magnetics) are discussed among other places in [18–22]. To our knowledge higher-order unstructured finite
volume dual-mesh methods have never previously been discussed.

In dual-mesh methods it is important to separate the physics and mathematics from the material assump-
tions. The heat equation, as it is presented in the form given in Eq. (1), combines and therefore obfuscates
these different aspects of the problem. Consider instead the alternative form,
oi
ot
¼ �r � q ð2aÞ

q ¼ �kg ð2bÞ
i ¼ qCvT ð2cÞ
g ¼ rT ð2dÞ
where q is the heat flux and i is the internal energy. Eq. (2a) contains the physics (energy is conserved). Eq. (2d)
is simply mathematics (definition of the gradient). However, Eqs. (2b) and (2c) are constitutive relations. They
are by no means ‘true’. They are simply physical approximations that are commonly made and which close the
system. They happen to be reasonably good assumptions for a wide variety of materials, but they are inven-
tions of humans not properties of mathematics or physics. In the context of heat conduction (2b) is referred to
as Fourier’s Law, and (2c) is the assumption of a perfectly caloric material. In the dual mesh method, Eqs. (2a)
and (2d) will be made finite using exact mathematics. All numerical approximation will then occur in Eqs. (2b)
and (2c) – where physical approximation is also being made. The benefit of this approach is that the discrete
divergence and gradient operators that result from making Eqs. (2a) and (2d) finite, are exact, and therefore
behave in every way like their continuous counterparts. Similar ideas have been reported in the literature
[23,24], but the key distinction in this approach is that the current formalism allows exact discrete operators
to be derived a priori whereas previous approaches could only confirm such properties existed for a particular
method after the method was already derived.

2.2. Lowest-order dual mesh method

We present first the lowest-order method. This will increase the familiarity with the dual-mesh approach
before discussing the higher-order case.

2.2.1. Discretization

In the low-order approach Eq. (2a) is integrated over non-overlapping volumes that cover the domain
(just like a finite volume method), and Eq. (2d) is integrated over line segments. In particular, the lines
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connecting the neighboring control volume centers are used. This gives the following finite system of exact
equations.
o

ot

Z
cell

idV ¼ �
X

cell faces

Z
face

q � ndA ð3aÞ
for every cell, and
Z n2

n1

g � dl ¼ T n2 � T n1 ð3bÞ
for every line segment. In the low-order node (or vertex) based method the volumes surround each vertex of
the mesh and the line segments are the edges connecting the mesh vertices.

The system only becomes closed once we relate
R

cell
idV to Tn and

R
face

q � ndA to
R n2

n1
g � dl. Note how the nec-

essary numerical approximations mimic the necessary constitutive equations (Eqs. (2b) and (2c)). Also note
that all numerical approximation is essentially an interpolation problem. No approximation of differential
operators occurs. Fig. 1 illustrates the placement of the computational variables for the lower-order method.

2.2.2. Dual mesh specification

The choice of the dual mesh is one of the many options left to the method designer of dual-mesh methods. In
alternative words, how exactly are the volumes surrounding each vertex to be defined? For triangular or tetra-
hedral meshes the Voronoi dual mesh can be an attractive choice since it is everywhere locally orthogonal to the
primary mesh. However, this requires the primary mesh to be a Delaunay triangulation. In addition, the cell
centers (circumcenters) using the Voronoi dual are not always within the cell which can cause large numerical
errors. In this work, we present numerical results using the median dual mesh which connects cell centroids and
face centroids to form the bounding volume around each vertex. However, the method is by no means restricted
to this particular choice of the dual volume. It is formulated for any arbitrary polygonal dual mesh.

The choice of whether to use the primary or dual mesh cells is not arbitrary. We will assume that the pri-
mary mesh conforms to material boundaries. That is, each primary cell contains a single type of material. The
same is not true of dual cells (the volumes surrounding a node). In this work the allocation of material, not
which mesh is generated by a mesh generator, is what defines the primary mesh. While traditional control vol-
ume methods place the unknowns in the primary cells, this work will focus on methods in which the dual cells
are used for the control volumes and the temperature unknown resides at the mesh nodes. The variableR n2

n1
g � dl is then defined along primary mesh edges and

R
face

q � ndA is defined on the dual mesh faces. Other
arrangements, such as a more classic cell based approach are also possible, but are slightly more complex and
are not discussed herein.

2.2.3. Interpolation via polynomial reconstruction

Note that there is a one-to-one relationship between primary mesh edges and dual mesh faces. In general,
we can therefore write the interpolation approximation as
Fig. 1. Placement of variables for the lower order method.
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Z
face

q � ndA ¼ �Mk

Z n2

n1

g � dl ð4Þ
where Mk is a square matrix with the same units as the conductivity k. For the Voronoi dual mesh, this
matrix (sometimes referred to as a discrete Hodge star operator) has the attractive property of being diag-
onal. For a general dual mesh, the matrix is not diagonal but it is sparse (with a small stencil) and positive
definite.

In this work, the matrix Mk is never explicitly derived or built. Instead, an explicit procedure for obtaining
the dual face heat flux,

R
face

q � ndA from the line average temperature gradient,
R n2

n1
g � dl is presented. The place-

ment of the unknowns at the mesh nodes (rather than the more traditional cell centers) is akin to the unknowns
in a low-order finite element method. The choice stems from the underlying continuity that temperature pos-
sesses across material boundaries. Placing the temperature on the nodes (which potentially lie on material inter-
faces) enforces this continuity on the numerical solution. It is possible to develop mimetic methods in which the
unknowns are at the cell centers (publications are currently being prepared) but this approach is not discussed
here.

Since the low-order method assumes temperature is given at the mesh nodes, it is natural to assume that the
temperature varies linearly within the primary cells (if they are triangles or tetrahedra) or bilinearly (if they are
quadrilaterals or hexahedra). As a result the temperature gradient, g, and heat flux q should be constant within
a triangle or tetrahedron (assuming a single material in each cell). Quadrilaterals and hexahedra have slightly
more complex but still known functional behavior. This assumption about the functional form of the solution
is where all numerical error enters the dual-mesh method.

Once the polynomial form of g is assumed, it is possible to determine the coefficients in the polynomial from
the available data. The number of unknown polynomial coefficients is always chosen to equal the number of
unique data values, so that this process is always well defined. On each triangle, there are three pieces of infor-
mation about g (one on each of the three edges). However, one is redundant (since

PR n2

n1
g � dl ¼ 0Þ, leaving

two independent pieces of information to determine the constant vector g in each cell. On a tetrahedron, there
are six pieces of information (one for each edge), and three redundancies (four faces with one being redun-
dant), leaving three independent pieces of information to determine the constant vector g in each cell. This
results in a 3 · 3 matrix. Once g is determined, calculating the heat flux in each cell is simple, q = �kg, since
we assume a single material exists in each cell. Integrating the constant heat flux over the dual mesh faces to
determine

R
face q � ndA is also relatively simple.

The determination of the polynomial coefficients of g based on certain data values requires a matrix inver-
sion in each cell. In three-dimension, the inversion is a 3 · 3 matrix for a tetrahedra (as detailed in the previous
paragraph). Similarly, a 7 · 7 inversion is necessary for hexahedra. However, for the next order up, this results
in a 9 · 9 inversion for tetrahedra and 19 · 19 inversion for hexahedra [25]. Both the storage and inversion
become very expensive. Another drawback of doing polynomial reconstruction is that a different formulation
is necessary for each type of cell (triangle, tetrahedra, hexahedra, prism, etc). This approach can not be applied
to arbitrary shaped polygons.

2.2.4. Direct interpolation
In this work, we describe a more direct way to perform the necessary interpolations between the different

mesh quantities. This is equivalent to showing that the matrices described above (for the polynomial coeffi-
cients) can be inverted explicitly. This approach has the added benefit of being applicable to any polygonal
cell type. The inversion of g starts with the exact relation
Z

n� vdA ¼ �
X
edges

Z
xv � dl ð5Þ
for any vector v. If we assume that g is constant along edges (which is the case for the standard linear or bilin-
ear polynomial interpolations), then
n�
Z

gdA ¼ �
X
edges

xCG
e

Z
g � dl ð6Þ
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The right hand side is an explicit function of the given data and the geometry (midpoint position of the edge).
In two dimensions, we also assume that g is a constant plus some terms that are zero when averaged over the
cell. In the case of a triangle these extra terms are exactly zero. In 2D we can therefore write
z� gCG
c ¼ � 1

Ac

X
cell edges

xCG
e

Z
g � dl ð7Þ
where z is the vector pointing out of the 2D plane of interest and the summation assumes the edge orientations
are counterclockwise (right hand rule).

If the polynomial function is expanded about the center of gravity, the value of the gradient at the cell cen-
ter of gravity, gCG

c , is equal to the lowest order (constant) coefficients. Eq. (7) is essentially an explicit inversion
formula. More importantly, this formula can be applied to arbitrary 2D polygonal cells. The only assumptions
are that g is constant along the mesh edges and that the average value of g is equal to the center of gravity
value,

R
gdA ¼ gCG

c Ac. This formula recovers the standard triangle and quadrilateral interpolations.
If the integration of

R
face

q � ndA is not required to be exact then it can be written as
Z
face

q � ndA � �
X

edge cells

n̂f Âf � kgCG
c ð8Þ
where n̂f and Âf are the outward normal and area of the dual mesh faces. This integration assumes that the
gradient is constant in each cell. It is therefore not exact for quadrilaterals or hexahedra but also does not
introduce any errors that are larger than the original interpolation assumptions. It is therefore consistent with
the interpolation error.

In two dimensions and using the median dual mesh it can be shown that the normal to the dual faces is
directly related to the edge positions, n̂f Âf ¼ z� xCG

e . In this case, the operation given by Eq. (8) is the trans-
pose of the operation given by Eq. (7). The transformation matrix, Mk, is therefore symmetric (and positive
definite) and given by Mk ¼ XT k

Ac
X. Note that for the case of a Voronoi dual mesh the transformation matrix

is diagonal and even simpler, Mk ¼ kÂf

Le
.

In three dimensions we consider first the tetrahedral case. Using the identity,
Z
rT dV ¼ � 1

ND� 1

X
faces

Z
x� n�rT dA ð9Þ
where ND is the number of dimensions. Then using Eq. (6) and the fact that g is constant in tetrahedra gives,
gCG
c V c ¼

1

ND� 1

X
faces

xCG
f �

X
edges

xCG
e

Z
g � dl ¼

X
cell edges

n̂f Âf

Z
g � dl ð10Þ
This equation is the 3D equivalent of Eq. (7). Eq. (10) is the more general formulation and can also be applied
in 2D. With some algebra, it can be shown that this formula also applies for Cartesian mesh hexahedral cells
(even though g is no longer constant). We will simply assume that some polynomial functions must exist such
that it also holds for arbitrary polygons. As in the 2D case the resulting transformation matrix is symmetric
(and positive definite).

The advantage of this approach is the significant savings in cost and storage that are achieved by perform-
ing the inversion explicitly, as well as the ability to easily generalize the formulas to arbitrary polygons.
2.2.5. Unsteady term

The transformation from temperature to internal energy (Eq. (2c)), that must be made in the unsteady term
is similar though somewhat simpler. Again, an assumption about how the temperature varies within each cell
must be made. It is not clear at this time, if this assumption must be consistent with the previous assumptions
about the heat flux. If the temperature is assumed to be linear within triangles or tetrahedra, then the internal
energy is also linear but discontinuous between cells (because the material properties can change between
cells). The integral

R
cell idV can then be calculated in each dual mesh cell using appropriate order Gauss quad-

rature. It appears that exact Gauss quadrature is again not necessary. In the low-order case, only a formula
sufficient to integrate linear functions is sufficient even though the 3D hexahedra have up to cubic terms. This
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level of accuracy is still consistent with the interpolation error. The result of the integration is that the time
derivative term will have a mass matrix involving nearest neighbors associated with it. This mass matrix is
not the same as the finite element mass matrix, but is similar and has the same sparsity structure. The presence
of a mass matrix is fundamentally appropriate for an unsteady diffusion equation since it forces the solution to
be fully coupled (even if the diffusion term is computed explicitly). Physical solutions of the diffusion equation
have the same coupled (parabolic) behavior. Unsteady solutions will not be tested in this paper (since the focus
is on the higher-order spatial discretizations) but it is important to see that the basic method is by no means
restricted to steady state.

2.3. Higher-order dual mesh method

Higher-order dual mesh methods can be constructed by increasing the number of unknowns and equations.
Typically, the lower-order unknowns and equations are retained in the higher-order method. This is very use-
ful. It allows the implementation of multiscale models, error extrapolation, and the possibility of local p-
refinement of solutions (where the order of approximation is changed rather than the mesh size).

2.3.1. Discretization

For the node-based mimetic dual mesh scheme the fundamental unknowns at the next higher order are the
nodal values of the temperature Tn (as in the low-order case) and the edge integral

R
T d‘ (Fig. 2).

In the discussion that follows the letters f, c, and e refer to the face centroid, cell centroid and edge centroid
(midpoint of the edge) respectively. Fig. 3 shows the situation in 2D and 3D. Note that in 2D, edges and faces
can be identical structures. In any dimension, we always assume edges connect the nodes and faces bound the
cells. The normal to the dual face, n̂f , always points out of the dual cell away from node N. Only a small por-
tion of the dual mesh is shown in 3D to keep the figure legible.

In this section, we consider the modification of the energy equation (Eq. (3a)) to include arbitrary source
terms.
o

ot

Z
cell

idV ¼ �
X

cell faces

Z
face

q � ndAþ
Z

cell

S dV ð11Þ
As in the low-order method, this equation is applied on the dual cells surrounding each node. This provides
one evolution equation for each node unknown.
f 

c 

nf

N 

nf

c 

e 

f 

Fig. 3. Unified notational scheme for 2D and 3D meshes.

Fig. 2. Position of the node and edge unknowns for the third order dual-mesh method.
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2.3.2. Edge evolution equation in 2D

For the higher-order method, the edge unknowns also require an evolution equation. Following the exam-
ple of the low-order method we propose applying Eq. (11) on each dual face as well. This is essentially an infi-
nitely thin cell which we compute by taking a finite thin cell surrounding the dual faces and then taking the
limit as the cell width goes to zero. Fig. 4 shows a diagram of the situation in two dimensions. The important
observation is that the perpendicular distance across the thin dual face cell is different in different cells and
depends on the angle that the dual face makes with the edge.

For ease of presentation, the edge control volume is divided into three subvolumes (V 01, V 02 and V 03) as
shown in Fig. 4. Then, the diffusion term of Eq. (11) can be written as
Z

edge vol

r � qdV ¼
Z

edge cell1

r � qdV 01 þ
Z

edge cell2

r � qdV 02 þ
Z

edge face

r � qdV 03 ð12aÞ
With the assumption that the divergence of the heat flux is constant within each cell, the integral of $ Æ q over
the sub-volume V 01 is given by
Z

edge cell1

r � qdV 01 ¼ ½r � q�j
c1A01 dx01 ¼ ½r � q�j

c1A01 ĵr1 � n̂f jdx ¼ ½r � q�jc1jj~r1 � n̂f jdx ð12bÞ
In Eq. (12b)~r1 ¼~xf �~xc1 and n̂f is the unit normal to the primary face (or edge, in 2D). A similar expression
can be written for the edge cell 2. At the edge face (sub-volume V 03) the flux may not be continuous across
primary mesh faces, so the divergence there may be a delta function. In order to account for this, the integral
of $ Æ q over the edge face is given by Gauss’ theorem,
Z

edge face

r � qdV 03 ¼ qc2
f � n̂f dx� qc1

f � n̂f dx ð12cÞ
This term will tend to drive the solution to a state where the flux is continuous in this weak sense. In Eq. (12c),
qc1

f and qc2
f are the reconstructions of the heat flux vectors evaluated at the primary face at cells c1 and c2.

When Eq. (12) are substituted into Eq. (11), in the limit of dx! 0, the edge evolution equation in two dimen-
sions becomes,
X

edge cells

ðj~r � n̂f j
oi
ot
Þ ¼

X
edge cells

½j~r � n̂f jðS �r � qÞ� þ ðqc2
f � n̂f � qc1

f � n̂fÞ ð13Þ
2.3.3. Edge evolution equation in 3D

Fig. 5 presents the edge control volume in three dimensions. Only a part of the edge control volume is pre-
sented for clarity.
1̂r

2̂r

ˆ fn

A’1

A’2

Edge cell 1 (V’1) 

Edge cell 2 (V’2) 

C1

C2

Node 2 

Node 1 

Edge face (V’3) 

dx’2

dx’1

dx f

Fig. 4. Two-dimensional representation of the edge control volume.
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ˆ fn

f 

e dx 

dx’ 

n1

n2

Edge Cell (V’) 

Edge Face (V’’) 

Fig. 5. Three-dimensional representation of the edge control volume.
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Analogous expressions to Eqs. (12b) and (12c) are presented for the 3D case,
Z
edge cell

r � q dV 0 ¼ ½r � q�jcV 01 ¼ ½r � q�j
c dx

2
~r � ð~rfe � t̂eÞj ð14aÞZ

edge face

r � qdV 00 ¼ ðqc2
f � n̂f � qc1

f � n̂fÞj~rfe � t̂ejdx ð14bÞ
In Eq. (14),~rfe ¼~xf �~xe, t̂e ¼ ð~xn2 �~xn1Þ=j~xn2 �~xn1j,~r ¼~xf �~xc and n̂f is the unit normal to the primary face.
When Eqs. (14) are substituted into Eq. (11), in the limit of dx! 0, the edge evolution equation in three
dimensions becomes,
X

edge cells

1

2
~r � ð~rfe � t̂eÞ

����
���� oi
ot

� �
¼

X
edge cells

1

2
~r � ð~rfe � t̂eÞ

����
����ðS �r � qÞ

� �
þ

X
edge faces

ðqc1
f � n̂f � qc2

f � n̂fÞj~rfe � t̂ej

ð15aÞ

For a Voronoi dual mesh the cross-products and dot products are trivial. However, in this work we derive the
general form of the equations.

The additional Eq. (15a) requires additional unknowns compared to the low-order method. In particular,
the right hand side now requires the divergence of the heat flux in each cell, and the heat flux normal to pri-
mary faces. In the low-order method, the heat flux was constant (in simplices) and therefore the divergence
would be zero in cells. But now, the divergence exists and will be interpolated.

Before discussing the interpolation procedure, we must discuss the additional exact integral expressions cor-
responding to Eq. (3b) in the low-order method. With the additional unknown

R
T d‘, we can also write the

exact expressions,
Z n2

n1

xg � dl ¼ ðxn2T n2 � xn1T n1Þ � te

Z n2

n1

T dl ð15bÞZ
face

n� gdA ¼
X
edges

te

Z
T dl ð15cÞ
These state that the moment of the gradient along a primary edge (or the second derivative of the temperature
along the edge) and the average gradient in the plane of a primary face can both be obtained exactly from the
primary unknowns. It is this data (along with the low order

R
g � dl from Eq. (3b)) that is used to reconstruct

the heat flux vector in each cell. Note that not all the information provided by these expressions is indepen-
dent. Redundancies are given by the exact expressions,
X

edges

Z
g � dl ¼ 0 ð16aÞ

X
edges

Z
xg � dl ¼ �

Z
n� gdA ð16bÞ

X
faces

Z
n� gdA ¼ 0 ð16cÞ
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2.3.4. Interpolation

On tetrahedra we assume quadradic temperature variation in cells and a linear temperature gradient and
linear heat flux. Direct solution for the polynomial coefficients would require an expensive matrix inversion.
However, an explicit inversion process is again possible and makes the method highly efficient. Assuming g
varies linearly along each edge,

R
g � dl and

R
xg � dl can be used to determine g Æ t at the end of each edge.

Where the three edges meet at the corner of a 3D polyhedra (or two edges meet at the corner of a 2D polygon)
this is sufficient information to reconstruct the entire vector at that location,
t1x t1y t1z

t2x t2y t2z

t3x t3y t3z

2
64

3
75

gnx

gny

gnz

8><
>:

9>=
>; ¼

g � te1

g � te2

g � te3

8><
>:

9>=
>; ð17Þ
where 1, 2, and 3 refers to the three edges, gn refers to the gradient at the node and te refers to the tangent to
edge vector at the three edges.

Once g at the cell corners is obtained, it is possible to average two corners to get the g value at the cell edges,
and even possible to average edges to get face values, and faces to get cell values. The averaging assumes
linearity in g and so this particular explicit inversion may only be applicable to simplices. The face values
are sufficient to compute the heat flux divergence in each cell (using Gauss divergence theorem). Finally, these
discrete values of the heat flux are sufficient to compute the integrals (using simple quadrature rules) that are
found in the evolution equations (Eqs. (3a) and (15a)).

Specifying Dirichlet boundary conditions is straightforward. Values are specified at the boundary nodes
and the boundary edges for the Dirichlet boundary condition. Neumann boundary conditions may be spec-
ified by specifying q Æ n on the boundary faces in the evolution equations (Eqs. (3a) and (15a)).
3. Numerical tests of accuracy and cost

Two example problems from Shashkov [26] are considered to illustrate that the method is exact for linear
functions and when material properties are discontinuous. The third numerical test proves that the method is
exact for quadratic functions. In order to test the accuracy of the method, the order of convergence is plotted
in a fourth test problem which considers a cubic function. The computational cost, in terms of CPU time,
required to obtain a desired accuracy is plotted as a function of the error norm. Finally, diffusion through
a complex geometry (a crank shaft) is considered and the computational cost of the higher-order method is
compared against the lower-order method in order to confirm the results established by the previous tests
in a realistic problem configuration.

In this work the discrete L2 error norm is sometimes adopted for verifying the order of convergence of the
method where,
L2 ¼
1

NN

XNN

n¼1

ðT n � T exact
n Þ2

" #1=2

ð18Þ
In the above expressions, NN refers to the total number of nodes in the domain, Tn refers to the numerical
solution and T exact

n refers to the analytical solution at the nodes. This error norm is discrete in nature and com-
pares the error only at the nodal points where the solution is obtained. However, since our method contains
unknowns at nodes as well as edges and the edge unknowns are really an integral averaged quantity, a con-
tinuous error norm is also adopted (similar to finite element error norms), which measures the integral error
over the whole domain. The continuous error norm is denoted as L2C
L2C ¼
1

V

Z
V
ðT � T exactÞ2 dV

� �1=2

ð19Þ
where V refers to the volume of the entire domain. However, in order to evaluate Eq. (19), a quadrature rule
needs to be employed that is more accurate than the numerical method, so that the error introduced by the
numerical integration is insignificant. A third-order quadrature rule for tetrahedra is employed.
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Z
V
ðT � T exactÞ2 dV ¼

X
cells

1

40

X
nodes

ðT n � T exact
n Þ2 þ 9

40

X
faces

ðT f � T exact
f Þ2

" #
V cell ð20Þ

T f ¼
2

3

X
edges

1

Le

Z
T dl

� �
� 1

3

X
nodes

T n ð21Þ
In Eq. (20), the square of the errors at the nodes and faces within each cell are summed and weighted by the
volume of the cell, and the result summed for all the cells in the domain. The face value is obtained in Eq. (21)
by summing over all the nodes and edges that belong to the face in question. Eqs. (19)–(21) together define the
continuous error norm L2C. Both the discrete error norm L2 (Eq. (18)) and L2C will be employed to present the
results in the following sections.

3.1. Discontinuous conductivity

The first test problem involves steady diffusion in a square domain with a discontinuous diffusion coeffi-
cient, k
k ¼
k1 0 < x < 0:5

k2 0:5 < x < 1

�
ð22Þ
The mesh employed is shown in Fig. 6. The mesh is divided into two different materials with different diffu-
sivities along the interface x = 0.5. Note that the discontinuity in the material is captured by the mesh.

For this problem Dirichlet boundary conditions are applied on the left and right boundaries and homoge-
neous Neumann boundary conditions (symmetry) are applied at the top and bottom boundaries.
x ¼ 0 T ¼ 8:0

18:5

x ¼ 1 T ¼ 10:5

18:5

y ¼ 0
oT
oy
¼ 0

y ¼ 1
oT
oy
¼ 0

ð23Þ
There are no source terms and hence this problem has a piecewise linear solution, with a continuous temper-
ature and heat flux at the interface x = 0.5. The exact steady state solution of this problem is
Fig. 6. Mesh with different diffusivities on either side of the interface (at x = 0.5).



Fig. 7. Isolines of solution for the discontinuous coefficient problem.
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T ¼
k2xþ2k1k2

0:5ðk1þk2Þþ4k1k2
0 < x < 0:5

k1xþ2k1k2þ0:5ðk2�k1Þ
0:5ðk1þk2Þþ4k1k2

0:5 < x < 1

(
ð24Þ
The numerical experiments use k1 = 1 and k2 = 4. The isolines of the solution are presented in Fig. 7.
As expected, the isolines are perfect straight lines and the method achieves the exact answer to machine

precision.

3.2. Discontinuous conductivity at an angle

The second problem is taken from Shashkov [26] and Morel et al. [27]. Although the theory for discontin-
uous coefficients only implies that the normal component of heat flux should be continuous, many numerical
methods also assume that tangential flux components are continuous at a discontinuity. Such methods will
have difficulties when solving for conduction that occurs at an angle to the discontinuity.

The same mesh (Fig. 6) as in the previous example is considered and the diffusion coefficients are defined as
before. Dirichlet boundary conditions are enforced such that the exact steady state solution is
T ¼
aþ bxþ cy 0 6 x 6 0:5

a� b k1�k2

2k2
þ b k1

k2
xþ cy 0:5 < x 6 1

(
ð25Þ
This problem has a discontinuity in the tangential flux at the material interface. The normal component of the
flux (bk1) is the same across the entire domain. However, the tangential flux component is k1c on the left side
and k2c on the right side of the interface. The numerical experiments employ a = b = c = 1. The Dirichlet
boundary conditions are applied to the boundaries as shown below.
x ¼ 0 T ¼ 1þ y

x ¼ 1 T ¼ 7

2
þ y

y ¼ 0; 0 < x < 0:5 T ¼ 1þ x

y ¼ 1; 0 < x < 0:5 T ¼ 2þ x

y ¼ 0; 0:5 6 x < 1 T ¼ 4x� 0:5

y ¼ 1; 0:5 6 x < 1 T ¼ 4xþ 0:5

ð26Þ
The calculated temperature isolines for this problem are shown in Fig. 8. The solution agrees with the exact
answer to machine precision.



Fig. 8. Isolines of temperature for the discontinuous tangential flux problem.
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3.3. Quadratic solution

In the third test problem a uniform source term S = �4 is imposed with unit conductivity. Homogeneous
Dirichlet boundary conditions are imposed on the left and right boundaries, and homogeneous Neumann
boundary conditions are imposed on the top and bottom boundaries (and the front and back boundaries
in 3D). The exact solution T(x) = 2x2 � 2x is a quadratic. The mesh is shown for a 2D case and a 3D case
in Fig. 9. For the 3D case, only a slice of the mesh is shown so that it can be clearly visualized. The higher
order dual-mesh solution for the 2D and the 3D problems are shown in Fig. 10. The isolines are perfect
straight lines and the results again match the analytical solution to machine precision.

3.4. Test of convergence

A cubic solution is now considered in order to demonstrate the order of convergence of the numerical
method. The source term is now linear, S = 4 � 24x. When homogeneous Dirichlet boundary conditions
are applied on the left and right and homogeneous Neumann boundary conditions are applied at the top
Fig. 9. 2D mesh and 3D mesh slice for testing of the uniform source problem.



Fig. 10. The higher order dual-mesh solution for the uniform source problem.
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and bottom, the exact solution is T(x) = 4x3 � 2x2 + x + 1. The integral source terms appearing in Eqs. (11)
and (12a) are computed exactly (which is simple since the source is linear).

The mesh is shown in Fig. 11. The results for the L2 and L2C errors at various mesh resolutions are pre-
sented for both the lower order and the higher-order methods in Fig. 12. The mesh resolution is characterized
by dx = (Vol/NC)1/3, where Vol is the entire domain volume and NC is the number of primary cell volumes
(tetrahedra). Fig. 12 suggests the higher-order method is third-order accurate and also that more than an order
of magnitude of improvement in accuracy is achieved when compared to the lower-order method even for a
very coarse mesh.

Fig. 12 also compares the discrete (L2) and the continuous (L2c) error norms for the lower-order and higher-
order methods. It is seen that while the discrete L2 error is substantially lower than the continuous L2c error
for the lower-order method, they are of comparable magnitude for the higher-order method. This suggests
that, for the lower-order method, the error is less at the nodes (where the unknowns are stored) and tends
Fig. 11. 3D unit mesh employed for the convergence study of dual-mesh methods.



Fig. 12. Convergence of the dual-mesh methods for the linear source problem.
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to be higher at all other parts of the domain. However, for the higher-order method, the presence of the edge
unknown makes the solution more accurate within the domain, and the discrete error norm is an excellent
proxy for the harder to compute continuous norm.

3.5. Computational cost

More important than the order of accuracy is the computational cost required to obtain a certain level of
accuracy. This is studied by plotting the error against the CPU time taken per explicit time step (Fig. 13). The
problem considered is the same as in the previous section. Fig. 13 again plots both the discrete (L2) and con-
tinuous (L2c) error norms. It can be seen that the higher-order method always proves to be more cost effective
than the lower-order method for any desired accuracy level.

3.6. Diffusion through a crank shaft

In this section, a more realistic problem is considered, which involves solving Eq. (2) on a complex geom-
etry. A typical mesh considered for the analysis is shown in Fig. 14. The coarsest mesh considered has 864
nodes and 2339 cells and the finest mesh contains 73875 nodes and 360512 cells. Fixed temperature (Dirichlet)
Fig. 13. Computational cost for a desired accuracy for the linear source problem.



Fig. 14. Crank shaft mesh.
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boundary conditions are applied to the inlet and outlet faces (crankshaft ends) and the sides are insulated.
Typical temperature contours are presented in Fig. 15.

The heat flux through the inlet and outlet faces, which was verified to be equal, are measured and plotted
against the mesh size for the lower-order and the higher-order methods (Fig. 16). The mesh size dx is
computed as the cube root of the average cell volume.

The two curves in Fig. 16 are extrapolated in order to determine the exact heat flux, which is then employed
to compute the percentage error in the lower-order and higher-order methods. The computational time taken
per solver iteration is then plotted against this percentage error, which gives the cost required to obtain a cer-
tain accuracy level (Fig. 17). It is inferred from Fig. 17 that the higher-order method is an order of magnitude
less expensive for any desired accuracy level, which is in agreement with the results of the previous section.
Fig. 15. Temperature contours along the crank shaft.



Fig. 16. Convergence of the second order and third order dual-mesh methods for the crank shaft test case.

Fig. 17. Cost for a desired accuracy for the crank shaft test case.
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4. Discussion

A general method for developing mimetic methods is presented. The key is to exactly discretize the equa-
tions before making any approximations. This means all the discrete differential operators are still exact and
mimic the mathematical properties of the continuous differential operators. All approximation is then made in
the algebraic constitutive material equation (Fourier’s Law in the example problem) where physical approx-
imation has already been performed.

Having developed this straightforward method for generating mimetic discretizations it is shown that
this paradigm can be used to develop higher-order mimetic methods. The third-order case is discussed
in detail within the paper but there are no restrictions to obtaining arbitrarily high order with this
approach. The proposed approach to obtaining higher order uses more unknowns per mesh cell (like a
finite element method) but the resulting discretization is like a finite volume (or discontinuous Galerkin)
method in its ability to maintain a local conservation statement. Tests of the method demonstrate its order
of accuracy and its ability to accurately capture solutions with sharp discontinuities in the material
properties.
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