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Abstract 
 
A general methodology for the solution of partial differential equations is described in which the discretization 
of the calculus is exact and all approximation occurs as an interpolation problem on the material constitutive 
equations.  The fact that the calculus is exact gives these methods the ability to capture the physics of PDE 
systems well.  The construction of both node and cell based methods of first and second order are described for 
the problem of unsteady heat conduction - though the method is applicable to any PDE system.   The 
performance of these new methods are compared to classic solution methods on unstructured 2D and 3D 
meshes for a variety of simple and complex test cases.  
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1. INTRODUCTION 
This paper is dedicated to Pieter Wesseling.  It bears his hallmark at many levels.  Philosophically, it is a paper 
about the intimate connection between physics and mathematics.  Prof. Wesseling, an Aerospace Engineer 
turned Mathematician has always produced papers that are always keenly aware of the connection.  Topically, 
it is a paper about staggered mesh methods - one of many areas in which Pieter and his coworkers are prolific 
(see the references in [1,2]).  And in particular, the paper addresses fundamental questions about how to apply 
staggered mesh methods to compressible flow problems – an area Pieter is particularly interested in [3-6].   

Staggered mesh methods have traditionally been applied to incompressible flows.  The lack of pressure modes 
is particularly attractive in that application.  There is therefore considerable literature addressing the issue of 
how to discretize the momentum equations with structured [7], curvilinear [8,9], and unstructured staggered 
mesh methods [10-14].  However, in the context of compressible flow there arises the additional issue of how 
to discretize the density and energy equations.   

The discrete differential operators in incompressible staggered mesh methods have very unique and attractive 
mathematical properties that allow the discrete equations to physically mimic their continuous counterparts.  
This not only leads to a lack of pressure modes, but kinetic energy and vorticity conservation statements 
[15,16], maximum principles and many other attractive properties [17].  If we wish the compressible 
discretization to also have these sorts of attractive physical properties (like entropy increase), then presumably 
the scalar equations (density and energy) must also be discretized appropriately. 

Until recently, it was not clear to the authors what criteria should be used to judge if a scalar transport equation 
was discretized ‘appropriately’.  We believe this dilemma is addressed by the Discrete Calculus approach 
presented in this paper.  In order to carefully explain the Discrete Calculus approach, this paper actually only 
focuses on the unsteady diffusion equation (not the advection-diffusion equation).  The diffusion term contains 
sufficient complexity to present the fundamental ideas of the Discrete Calculus approach.  Due to space 
limitations, the issues concerning advection must be addressed in a subsequent paper.   

The premise of this paper is that numerical methods that capture the physics of the equations well have an 
associated exact Discrete Calculus.  The fact that PDE’s can always be discretized exactly is demonstrated in 
the Section 2.   To make the presentation clear and concrete the paper focuses on the diffusion (or heat) 
equation.  However, we emphasize from the outset that the basic ideas presented are generally applicable to 
almost any PDE system.  The paper is really an introduction to the Discrete Calculus method.  The fact that the 
diffusion equation is simple and has analogs in many fields of application should make the paper, and hence 
this method, available to a broad audience.    

Two different node-centered Discrete Calculus methods are derived in detail (Section 3).  The paper then 
shows how these ideas can be applied to cell-based discretizations and how they differ from traditional finite 
volume and discrete Galerkin methods (Section 4).   Section 5 then compares these four Discrete Calculus 
methods to some classic finite volume methods for the diffusion equation on a variety of test problems.   

2. Exact Discretization 
Discretization takes a continuous PDE equation with essentially an infinite number of equations and unknowns 
(at least one for every point in space) and reduces it to a finite system of algebraic equations and unknowns.   It 
is frequently assumed that the act of discretizing a PDE must involve approximation or the introduction of 
some sort of error.  This is not the case [18].  Solving a PDE system numerically does indeed require 
approximation, but it is possible to separate the process of discretization and approximation and when this is 
done discretization can be performed exactly.  One premise of this paper is that exact discretization is highly 
advantageous and leads to methods that have very interesting mathematical and physical properties.   
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Exact discretizations ultimately require approximation because the discretization is not closed.  There are more 
discrete unknowns than algebraic equations.  Closure of the system requires the coupling of some of the 
discrete unknowns.   This coupling process is an interpolation problem where all the numerical approximation 
and errors are introduced.   It is often characterized by a transfer of information from one mesh to a different 
(dual) mesh, and it invariably involves a material constitutive relation.  

The profound benefits of separating the discretization process (where the continuous PDE system is made 
finite) from the approximation process (where the finite system becomes solvable) will become very clear as 
we proceed.  Nevertheless, we describe the key ideas abstractly here to preview what will be seen in the paper.   
It will be seen that the closure (and therefore approximation) of the exact finite equation system always occurs 
in the material constitutive relations embedded in the PDE.   These constitutive relations are actually physical 
approximations of bulk material behavior.   They are not exact to begin with.  This approach therefore places 
all numerical errors/approximation in the already physically approximate material relations.   The physics of a 
PDE (such as conservation, and wave propagation) never depend on the details of the material.   This approach 
will therefore always capture the physics of the PDE exactly by placing all numerical approximation or errors 
in the material properties.   

To make the presentation of the Discrete Calculus method concrete we will use a simple equation that is 
common to many fields of engineering and science – the heat equation.   

 ( )d CT
dt k Tρ = ∇ ⋅ ∇         (1) 

In heat transfer, the temperature T is the fundamental unknown, and the material parameters are, k  the 
conductivity, and Cρ the heat capacity.   However, this equation, or slight variants, finds application in many 
other fields with different physical interpretations for the variables.     
 
It is convenient to consider the heat equation in an expanded form that clearly separates the 
physics/mathematics from the material constitutive approximations. 
 0di

dt + ∇ ⋅ =q    Conservation of energy    (2a) 

 T= ∇g    Definition of gradient    (2b) 

 k= −q g    Fourier’s Law     (2c) 

 i CTρ=    Perfectly Caloric Material   (2d) 
This formulation introduces two new physical variables, i  the specific internal energy, and q  the heat flux.   
The last two (algebraic) equations are physical approximations for the material.  All numerical approximations 
will also be restricted to these last two equations.  The first two equations, containing the physics and calculus, 
will be discretized exactly.    The advantage of discretizing the physics and calculus exactly is that the resulting 
numerical methods and discrete solutions cannot violate any physical or mathematical principles.   
 
3. Node Based Exact Discretizations 
One classic way to discretize equation (2a) exactly is using the idea of many small non-overlapping control 
volumes that completely cover the domain.   However, the classic finite volume (FV) procedure of associating 
a control volume with each mesh cell has some difficulties – we return to it later in Section 4.   It is easier to 
consider a set of control volumes in which each finite volume surrounds each node (vertex) of the mesh.   The 
volumes surrounding each node are referred to as dual-mesh cells.   
 
3.1 Exact Discrete Equations  
For heat transfer, integrating over each dual cell gives the exact discrete equation, 

0d
dt c f

f

idV dA+ ⋅ =∑∫ ∫ q n
ɶɶ

ɶ

       (3a) 
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There is one equation for each dual cell.   The discrete unknowns in this equation are,c c
I idV= ∫ɶ

ɶ

 the total 

energy in the dual cell, and 
f f

Q dA= ⋅∫ q nɶ
ɶ

 the heat flux between dual cells or on the domain boundary.  The 

notation convention is to label variables with their location on the primary mesh or the dual mesh.  In addition, 
the dual mesh locations are distinguished by having a tilde.  So far the method looks like a classic node-based 
finite volume method or discontinuous Galerkin method.  The key difference therefore lies in the discretization 
of Eqn. (2b).   
 
In addition to discretizing (2a) exactly, it is critical that equation (2b) also be discretized exactly or most of the 
advantages of exact discretization are lost.   Exact discretization of equation (2b) can be achieved by 
integrating along the line connecting the two nodes.  This gives the exact discrete equation 

2 1n ne
d T T⋅ = −∫ g l         (3b) 

on each edge, where nT  is the value of the temperature at the node position and the discrete unknown 

e e
g d= ⋅∫ g l  is the average gradient along each edge.   Actually any path connecting the two points is 

possible but the edge is the obvious initial choice. 
 
We now have one equation at each node of the mesh (Eqn 3a), and one primary unknown at each node, nT .   

In linear algebraic terms the exact discretization is written, 

 cdI BC
ndt f

DQ Q+ = −ɶ

ɶ
ɶ         (4a) 

where BC
nQ  are the prescribed boundary condition fluxes on the dual cells associated with nodes that lie on the 

Neumann boundaries of the problem domain and Dɶ  is the discrete divergence operator.  On Dirichlet 
boundaries the temperature is known and the associated row of equation (4a) can be used to determine the flux 
on the Dirichlet boundary (if desired).  Along with this equation we also have, 

e ng GT=          (4b) 

where G  is the discrete gradient operator. There are no boundary condition issues associated with this 
equation since every edge of the mesh is always bounded by two nodes, but it should be noted that the vector 
of discrete nodal temperature values, nT , also contains boundary values (even if they lie on Dirichlet 

  

  

 

          

 

 
 
   Median dual mesh          Circumcenter (Voronoi) dual mesh 
 
Figure 1. Primary mesh (thin lines) and two commonly used dual meshes (thick lines) for a triangular 
primary mesh in two-dimensions.   These dual meshes also exist in three-dimensions.  The Median dual 
applies to arbitrary polygonal cells, the Voronoi dual mesh is only defined on simplices (triangles and 
tetrahedra), Cartesian meshes, and locally orthogonal meshes (such as cylindrical and spherical).   
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boundaries and are known quantities). 
 
At this point no assumptions about the primary mesh or the dual mesh have been made.  The primary mesh can 
have curved edges and faces, and the dual mesh can be defined many different ways.  Two of the more 
obvious choices for the dual mesh (the Voronoi dual and Median dual shown in 2D in Figure 1) are discussed 
in more detail later.   Since any dual mesh works, the choice of the dual mesh is one area of flexibility for 
Discrete Calculus methods.   The other very significant area of flexibility in the method is how one relates 

f
Q ɶ  

to eg  and cI
ɶ
 to nT  in order to close the system (Section 3.3). 

 
3.2 Discrete Operators 
The matrices Dɶ  and G  do not have subscripts associated with them because they are discrete operators that 

transfer information from one mesh location to another.   The discrete divergence, Dɶ  takes information from 
the dual faces and produces a result that resides on the dual cells.  The discrete gradient, G , on the other hand, 
takes information from the nodes and produces a result on the mesh edges.   These Discrete Calculus operators 
are sparse matrices consisting of nonzero entries with 1± .     

 
For the simple 2D mesh shown in 
Figure 2 the corresponding operators 
are, 
                                    

1 1 0 0

0 1 1 0

1 0 1 0

0 1 0 1

1 0 0 1

− 
 − 
 = −
 − 
 − 

G                             

1 0 1 0 1

1 1 0 1 0

0 1 1 0 0

0 0 0 1 1

 
 − =
 − −
 − − 

Dɶ                                  

 
Note that the gradient operator G  is a 5x4 matrix converting node values (4 nodes) into edge values (5 

edges). Similarly, the divergence operator Dɶ  is a 4x5 matrix that converts dual face quantities into dual 
cell quantities. Many readers will notice that there is a symmetry between the discrete gradient and divergence 

operators, TG D= − ɶ . This relation holds for many low-order Discrete Calculus methods.  This type of 
symmetry also occurs in Galerkin Finite Element methods.  It was originally thought by the authors to be an 
important property of Discrete Calculus methods.   Interestingly, recent work on higher order Discrete 
Calculus methods [19] indicates this type of symmetry is not actually necessary. 
 
Cell based versions of these operators have been discussed previously [20-24].  In those works, the operators 
were first hypothesized and then later shown to have interesting and attractive mathematical properties.  The 
current derivation makes it clear from the outset that these similar but node-based discrete operators will 
behave mathematically well.  More importantly, the Discrete Calculus approach presents a general framework 
showing how to generate other well behaved discrete operators.  For example, higher order versions of the 
node-based discretization (Eqns. 4a and 4b) can be derived using the Discrete Calculus approach [19].    

 

T1 

T2 

f1 

f2 

f3 

f4 

f5 

T3 
T4 

 
 

Figure 2.  2D Mesh to illustrate DC operators 
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The operators Dɶ  and G  are discrete versions of the continuous divergence and gradient operators. They were 
derived using versions of the Gauss-Green theorem and no approximation was used in their derivation.  The 
result is that these discrete operators mimic most of the mathematical properties of the corresponding 
continuous operators.   For example, the only solution to 0φ∇ =  on an infinite or periodic domain is φ  is 

constant.  Similarly, the only solution to the discrete problem 0nGϕ = on a periodic domain is that the vector 

of unknowns nϕ  is constant.    Phrased a different way, the null space of the gradient is a constant function and 

the null space of a properly derived discrete gradient operator is a constant vector.   This is the fundamental 
reason that staggered mesh methods can not display spurious pressure modes.   In the context of heat transfer, 
this implies that zero heat flux results in a constant temperature solution.  There are many numerical methods 
where this is not the case.  These methods use different forms of damping to remove the resulting spurious 
modes.  These spurious modes are non-trivial solutions to 0nϕ =G  that result when the discrete gradient G  

is not derived using a Discrete Calculus approach.   
 
Similarly, 0∇ × ∇ =φ , the gradient operator is always in the null space of the curl operator.  In the Discrete 

Calculus approach the sparse discrete operator C  which is the (oriented) sum of edge values to faces 
(circulation on the face), has this same property 0CG =  [13].     
 
The nested null spaces described above are described in full by the de Rham complex [25] which appears in 
the mathematical field Algebraic Topology.  Algebraic topology is widely used to describe face/edge elements 
[26-29] which are the Finite Element variant of the Discrete Calculus approach.  While highly expressive, 
algebraic topology is not widely accessible to scientists/engineers and is difficult to apply to nonlinear equation 
systems like the Navier-Stokes equations.  We therefore leave it to the reader to explore this mathematical 
explanation more fully on their own if they are interested.   For physicists and engineers the preceding 
explanation of the method may be sufficient.    
 
3.3 Discrete Equation Closure 
The system comprised of algebraic Eqns. (4a) and (4b) is discrete and exact, but closure and solution of this 

exact system requires relating the heat flux on the dual faces 
f f

Q dA= ⋅∫ q nɶ
ɶ

 to the temperature gradient 

along the edges e e
g d= ⋅∫ g l , and the temperature at the nodes nT  to the total energy in the dual cells 

surrounding each nodec c
I idV= ∫ɶ

ɶ

.   Mathematically the desired relations are written, 

( / )efkA L ef
Q M g= −

ɶ
ɶ              (4c) 

( )cc CV nI M Tρ=
ɶ

ɶ
         (4d) 

where ( / )kA LM  and  ( )CVM ρ   are transfer matrices that connect quantities on the primary and dual meshes.  

These matrices contain information about the material properties and specific mesh geometries.    Note that 
Eqns (4c) and (4d) correspond directly to the material constitutive relations (2c) and (2d).    These material 
relations can not be implemented exactly because the unknowns are averages over different geometric 
structures.  Ultimately, it will be clear that ( / )kA LM  and  ( )CVM ρ are essentially interpolation operators 

transferring data from one mesh to another one (while also applying the material properties).   Combining 
Eqns. (4a) through (4d) gives a single equation system for the discrete temperature at the nodes (equivalent to 
Eqn. 1), 

( ) ( / )c ef

BCd
CV n kA L n ndt M T DM GT Qρ = −

ɶɶ

ɶ       (5) 
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In general, the Discrete Calculus approach does not require that the two meshes (primary and dual) have any 
relation to each other.  In the general case the matrix ( / )kA LM  need not even be square or invertible.  However, 

for any mesh there are an infinite number of ‘closely associated’ dual meshes where there is a one to one 
correspondence (in number) between the primary mesh edges and the dual mesh faces, the primary mesh 
nodes and dual mesh cells, and vice-versa.   For these ‘closely associated’ dual meshes the transfer matrices 

( / )kA LM  and  ( )CVM ρ  are square.  Certain dual meshes (like the Voronoi dual mesh) even result in diagonal 

transfer matrices.  When the primary mesh is Delaunay, the matrices ( / )kA LM  and  ( )CVM ρ  for the Voronoi 

dual can in addition be shown to be positive definite.   The simplest numerical methods have diagonal or 
sparse (usually local) transfer matrices (or sparse inverses).   
 
In the algebraic topology construction the transfer matrices are referred to as discrete Hodge star operators that 
transfer data between the discrete de Rham complex associated with the primary mesh and the discrete de 
Rham complex associated with the dual mesh.   
 
3.3.1 Voronoi Dual Interpolation  
Any mesh which consists entirely of cells with a unique circumcenter has a closely associated Voronoi dual 
mesh that can be constructed from those circumcenters.   All triangular (in 2D) and tetrahedral (in 3D) 
unstructured meshes have this property, as do Cartesian meshes, and cylindrical and spherical meshes, and 
many prismatic meshes.   Arbitrary quadrilateral and hexahedral meshes are the most important class of 
meshes which do not have unique circumcenters or a Voronoi dual mesh.     
 
The Voronoi dual mesh is of interest because it is everywhere locally orthogonal to the primary mesh.   So for 
example, all the tetrahedra which share a common edge (no matter how many of them there are) have 
circumcenters that lie in a plane and that plane is orthogonal to the common edge.   This has the attractive 
property that the dual face normal and edge tangential point in exactly the same direction.   This means that 

f f
Q dA= ⋅∫ q nɶ

ɶ
 and  e e

g d= ⋅∫ g l  are referring to the same component of the vector.   /
f f

Q Aɶ ɶ  is therefore 

a second order approximation for that flux component at the center of the dual face, and /e ekg L−  is a second 

order approximation for the flux at the midpoint of the edge.  Because the midpoint of the edge and the center 
of the dual face lie close to each other (within a mesh spacing) the approximation 

 f

e

A

eLf
Q k g= − ɶ

ɶ          (6c) 

is a first order approximation.  The matrix ( / )efkA LM
ɶ

 is then diagonal with f

e

A

Lk ɶ

 as its entries.   If the mesh is 

regular (such as equilateral triangles) the edge center and dual face center are identical and second order 
accuracy is obtained by this approximation.  In practice, second order accuracy is also often observed for 
relatively smooth meshes.   When the conductivity varies, it is assumed to be piecewise constant in each mesh 

cell then Eqn (6c) is more generally 
( ) f

e

kA

eLf
Q g= − ɶ

ɶ  where ( ) cf fc
edge cells

kA k A= ∑ɶ ɶ  and  
fc

Aɶ  is the portion of 

the dual face residing in each cell. 
 
Appling the same ideas to (4d) gives the first order approximation,  

( )c c nI CV Tρ=
ɶ ɶ

         (6d) 

so the matrix ( )cCVM ρ ɶ

 is also diagonal with cCVρ
ɶ
 as its entries.  When the mesh is uniform the centroid of 

the dual cell coincides with the node position and this approximation also becomes second order accurate.   
 
The placement of unknowns is very similar in this node based method to that of a linear finite element method.  
However, the resulting method is not the same.  In 3D, classic linear finite elements on tetrahedral do not have 
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a useful discrete maximum principle [23-24].  The requirement on the mesh is that all tetrahedra planar angles 
must be less than 90 degrees, and in practice this requirement is impossible to satisfy.  In contrast, the method 
just discussed has a maximum principle on any unstructured mesh that is Delaunay.  This follows from the 
symmetry of the gradient and divergence operators and the positive definiteness of the interpolation matrix 

( / )kA LM  for Delaunay meshes.    This is a concrete example, for this particular problem, of how Discrete 

Calculus discretization can capture the physics/mathematics of the system well.    
 
The Voronoi dual interpolation is of historic interest because it is the interpolation used in Cartesian staggered 
mesh methods [7].  It is also essentially the mesh that is used in many meshless or particle methods [32].  The 
lack of a Voronoi dual for arbitrary quadrilateral and hexahedral meshes explains why it is a non-trivial 
exercise to extend staggered mesh methods to those types of meshes.  However, Wesseling [8] describes how 
this can be accomplished via a mapping of the problem to a Cartesian mesh.     
 
Nicolaides [10] and Porshing [33,34] were the first to recognize the Voronoi dual as one of the logical 
generalizations of the Cartesian staggered mesh methods to unstructured meshes.  But it should be noted that 
while every triangular or tetrahedral mesh has a Voronoi dual, that dual mesh is only well formed if the 
primary mesh is Delaunay.   Non-Delaunay meshes produce Voronoi dual meshes where the Voronoi cells can 
be twisted over on themselves (see Figure 3) 
resulting in logically negative volumes and lengths 
that can make the transfer matrices singular or 
indefinite.   It is easy to find mesh generators that 
make Delaunay meshes, and algorithms that can 
convert almost Delaunay meshes into strictly 
Delaunay meshes are very fast.   In practice, the 
disadvantage of the Voronoi dual is not the 
Delaunay requirement but the fact that for strongly 
distorted 2D meshes or even moderately distorted 
3D meshes the Voronoi dual can be quite 
inaccurate [16]. An alternative and more accurate 
interpolation is the Median dual interpolation. 
 
3.3.2 Median Dual Interpolation  
The median dual mesh is formed from the primary mesh cell, face, and edge centroids.  It is defined for any 
primary mesh and never results in logically negative volumes, areas, or lengths.  However, the dual faces (on 

which the 
f f

Q dA= ⋅∫ q nɶ
ɶ

) are defined are no longer planar.   In 2D each dual face now consists of two line 

segments (see Figure 4) and in 3D it consists of two subtriangles from every tetrahedra touching that edge 
(only one of which is shown in Figure 4 for reasons of clarity),  each subtriangle being formed from the edge 

 

 
Figure 3.  Example of an inverted Voronoi cell. 

 

 

f 
c 

c c 

e 
f 

 
 

Figure 4.  Dual faces (shown in dotted lines) in 2D and 3D. 
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midpoint, the face centroid and the cell centroid.   The orientation of the edge and the normals of the various 
subtriangles forming the dual face are no longer related.  A more intricate interpolation is now required.   
 
One possibility is to use the gradients along the cell edges, eg , to determine the gradient within each cell.  This 

can then be scaled by the conductivity and used to perform the integration for the flux on the dual faces.   The 
idea is essentially:  (1) assume the gradient, g, has a locally polynomial form within each cell, (2) determine 
the coefficients in that polynomial from the known boundary data eg , (3) determine the heat flux polynomial 

in each cell from ( ) ( )k= −q x g x  and then (4) integrate the heat flux  polynomial over the dual face to obtain 

the flux 
f

Q ɶ .   

 
On triangles and tetrahedra we assume the temperature is linear and therefore the gradient is constant. (see 
Subramanian [19] for how to do higher order interpolation).  There appears to be more data than unknowns (3 

eg  for 2 unknowns on triangles and 6 eg  values for 3 unknowns on tetrahedra) but the extra data is redundant, 

and these problems have unique solutions.   Determining the constant gradient can be done with a 2x2 matrix 
inversion in each cell in 2D or a 3x3 matrix inversion in 3D.    
 
For triangles and tetrahedra, the inversion can be determined analytically [13] resulting in a direct formula for 
calculating the gradient in each cell, 

 1
cc eV fe

edges

g= ∑g n ɶ          (7)  

where 
fe

n ɶ  is the normal (and area) associated with the dual face for that edge, and the summation is over all 

edges of a cell.  This explicit formula is useful for several reasons.  First it speeds up the computation.  But 
perhaps more importantly it shows that the explicit polynomial reconstruction step can actually be eliminated.  
This formula can be applied to arbitrary cells (not just triangles and tetrahedra) without having to define the 
exact functional form (which may or may not be a polynomial) that it corresponds to. For example, it is easy to 
see that the formula also works on 2D and 3D Cartesian meshes though interpolation and integration on those 
meshes is much more complicated (temperature must be assumed to be bilinear or trilinear).   
 
To obtain the flux on the dual faces we assume that the conductivity (and therefore the heat flux) is constant in 
each cell.  The integration for the flux can then be performed exactly and, 

  c cf fe
cells

Q k= − ⋅∑ g nɶ ɶ          (8) 

All together the transfer process involves using the edge gradient components to calculate the gradient within 
each cell and then the gradient in each cell to determine the flux through the dual face.  In matrix terms we 

have  ( / )
T

kA LM N KN=   where the rectangular matrix N  has as entries the vectors 
fe

n ɶ  and the matrix K  is 

diagonal and positive definite with entries c

c

k
V .  The transfer matrix is therefore positive definite.  The 

geometric inputs to this transfer scheme are the dual face areas and the cell volumes.  In contrast to the 
Voronoi transfer matrix, the edge lengths no longer enter directly.     
 
The median dual mesh reconstruction is first order accurate for the gradient of the temperature and therefore 
second order accurate for the temperature field.  It can capture piecewise linear temperature solutions with 
jumps in the gradient at the cell faces (usually due to jumps in the material properties) exactly.   On triangles 
and tetrahedral this procedure results in the same ultimate diffusion matrix as the linear finite element method. 
 
The transfer matrix ( )CVM ρ for the unsteady term can be obtained in a similar manner to the diffusion term.  

Assuming a linear temperature profile in each triangle or tetrahedra and a constant heat capacity, Cρ , in each 
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cell means the internal energy varies linearly.    Integrating over the dual mesh volume surrounding each node 
involves integrating over the portion of each cell contained in that dual volume.   The result is 

 
2 2 3 2

2 2

( 1) ( 1)
( 1) ( 1) ( 1)

( )cV ND ND ND ND
c n cND ND ND ND ND

cells

I C T Tρ + − − −
+ + +

= +∑ɶ
      (9a) 

for tetrahedral,  triangles, and 1D line segments.  In this formula ND is the dimensionality of the problem (2 
for 2D, 3 for 3D etc.), cT  is the average of the cell nodal temperatures and the summation is over all cells that 

overlap the dual cell.  The resulting mass matrix, ( )CVM ρ  has the same sparcity pattern as the linear FE one, 

but the values are different.    This mass matrix can also be represented as a lumped mass plus a Laplacian 
term.   

3 2

2 2

( 1)

( 1)
( ) { }( )ND ND

c n n e nND ND
I T CV D CV GTρ ρ− −

+
= +
ɶ

ɶ       (9b) 

where ( 1)( ) cV
n ND

node cells

CV Cρ ρ += ∑  and ( 1)( ) cV
e ND

edge cells

CV Cρ ρ += ∑ . 

This form of the mass matrix makes it clear that the matrix is symmetric and invertible.   
 
4. Cell Based Exact Discretizations 
The Discrete Calculus formalism is an approach, not a particular method.  It does not require that unknowns be 
placed any particular location in the mesh, and in order to demonstrate that we consider a cell based method in 
this section. 
 
4.1 Exact Discrete Equations  
Integrating over each mesh cell gives an equation that is identical to most finite volume and discrete Galerkin 
methods.   

0d
dt c f

f

idV dA+ ⋅ =∑∫ ∫ q n        (10a) 

This equation looks almost identical to Eqn (3a) but the key distinction is the lack of tildes on the locations 
meaning this equation applies on the primary mesh cells (not the dual cells like Eqn. 3a).  The discrete 

unknowns in this equation are, c c
I idV= ∫  the total energy in the cell, and f f

Q dA= ⋅∫ q n  the heat flux 

between cells or on the domain boundary.  Similarly to Eqn (3b) we also have the exact discrete equation 

2 1n ne
d T T⋅ = −∫ g l

ɶ ɶ
ɶ

        (10b) 

along some line connecting the cell centers.  Note that we do not use the notation  cT  for the temperature at the 

cell centers.  The cell subscript implies a cell averaged quantity and  Eqn (10b) refers to point values at the cell 
centers (which are the nodes of the dual mesh). 
 
In matrix terms these equations are expressed, 

 0cdI
fdt DQ+ =          (11a) 

BC
e n fg GT T= +
ɶ ɶ

ɶ         (11b) 

where BC
fT is the vector of prescribed Dirichlet boundary condition values on the boundaries of the problem 

domain.   
 
There is a great deal of duality between the cell and node based methods, but one place this symmetry is lost is 
at the domain boundaries.  In this work, the roles of the primary mesh and the dual mesh are not entirely 
interchangeable.  We assume the primary mesh is constructed so that the boundary faces of the primary mesh 
are aligned with the domain boundaries, and internal faces are aligned with material discontinuities (which are 



 11 

effectively internal boundaries).  The result is that with the cell based method, the Neumann boundary 
condition ( fQ on the boundary) is easy to satisfy and the Dirichlet boundary condition requires extra effort in 

the gradient equation.  In contrast, the node based method was trivial for Dirichlet boundary conditions ( nT ) 

and the energy equation required modification for Neumann boundary conditions.   
 
The closure approximations 

( / )f ef kA L eQ M g= −
ɶ
ɶ
             (11c) 

( )cc CV nI M Tρ=
ɶ
         (11d) 

are where the cell based Discrete Calculus approach differs from classic finite volume and discrete Galerkin 
methods.   Note that these transfer matrices ( / )f ekA LM

ɶ

 and ( )cCVM ρ  are different from those found in the node 

based method (the subscripts have different tilde assignments).   
 
4.2 Voronoi Dual Interpolation  
If the Voronoi dual exists and is used then the local orthogonality property exists.  In particular, the line 
between two cell circumcenters is always perpendicular to the face between those two cells, so we can use the 
first order approximation 

  f

e

A

f eLQ k g= −
ɶ
ɶ
         (12c) 

This approximation becomes second order accurate if the dual edge midpoint and the face centroid coincide 
(uniform meshes).  
 
The variable conductivity case can be derived by assuming that the normal flux on each side of the face is 

equal ( 2 1

2 12 1/ n f n f

e e

T T T T

f f L LQ A k k
− −= = −ɶ ɶ

ɶ ɶ

).  Then solving for the face velocity and rearranging gives 

1 2
1 2

( )

f
L Le e
k k

A

f eQ g
+

= −
ɶ ɶ ɶ

 where eiL
ɶ

 is the portion of the dual edge in cell i.   In other words, the length weighted 

harmonic average of the conductivity should be used (see also 37).    
 
For the other transfer matrix we have 

  c c nI CV Tρ=
ɶ
          (12d) 

which is first order accurate unless the cell circumcenter and centroid coincide.  Note that even if an 
unstructured mesh is Delaunay the cell circumcenter can lie outside the cell, and this usually leads to large 
errors in that region of the mesh. The median dual mesh does not have this problem.     
 
4.3  Median Dual Interpolation  
The use of the median dual can increase the accuracy, but as in the node centered versions, it also increases the 
complexity of the method.   When the median dual is used, the dual edge consists of two straight line segments 
that connect the cell centroids to the face centroid.    The data eg

ɶ
 therefore is very difficult to reconstruct to 

determine the cell gradients.  However it is possible to reverse the process and determine the gradients eg
ɶ
 in 

terms of the fluxes.  Applying Gauss’ theorem to ,( )i j jx q dV∫ tells us that 

( ) ( )i dV dA+ ∇ ⋅ = ⋅∫ ∫q x q x q n .  If we assume that the flux is constant on faces and the divergence is 

constant in a polygonal cell (a first order approximation for the heat flux), then  
1 ˆ
cc fc fV

cell faces

Q= ∑q r          (13) 
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where fc f c= −r x x  is the vector from the cell centroid to the face centroid and the circumflex (hat) on the 

flux indicates it is the flux out of the cell in question.   
 
It is important to note that the flux is not assumed to be piecewise constant in each cell – this would violate the 
energy equation in the unsteady case.  On triangles and tetrahedra the interpolation function is actually 

( ) ( )c cND= + ∇ ⋅xq x q q .   However, Eqn (13) applies to arbitrary polygons and removes the need to calculate 

the coefficients of some polynomial (which changes depending on the cell shape).  Like the node based 
median dual interpolation this allows the method to remain independent of particular cell shapes (in the general 
philosophical train as finite volume methods). 
 
Using first order integration along the dual edge (using the end points) then gives,  

1 1 2 2{ ( / ) ( / )}e fc c fc cg k k= − ⋅ − ⋅r q r q
ɶ

       (14) 

Using higher order integration is possible but unnecessary.  It would result in an unsymmetric transfer matrix 
that is still first order (because Eqn. 13 is still a first order approximation).  In matrix terms the transfer 

between meshes can be written, 1/
T

e Vk fg R K RQ= −
ɶ

 where the matrix Rcontains the vectors fcr  and the 

diagonal matrix 1/VkK  has 1
ckV  as its entries.  Note that 1

/ 1/( )
f e

T
kA L VkM R K R− =

ɶ

 is symmetric and positive 

definite and sparse.   The transfer matrix  /f ekA LM
ɶ

 is therefore a full matrix and writing a single equation 

system like Eqn (5) for the cell unknowns is not practical.  Instead the symmetric coupled system, 
1 1 1

1
/

( )( )

( )
c c

f e

nn
CVt CV ntn

BC
kA L f f

M D M T tT t

G M Q T

ρ ρ
+

∆ ∆
−

−    
=              ɶ

ɶɶ

    (15) 

must be solved.  The mass matrix 
cCVM ρ remains diagonal and is the same as the Voronoi dual transfer matrix 

(Eqn. 12d).  However, since the temperature is now located at the cell centroids, the accuracy of this 

approximation is now second order.  First order reconstruction of the gradient via 1
/( )

f ekA LM −
ɶ

 is sufficient to 

retain second order accuracy for the temperature field. 
 
Because the system given by Eqn (15) requires the simultaneous solution of both the temperature and the heat 
fluxes we refer to it as the Mixed Method.  As far as the authors are aware it is completely new and represents 
an example of how the Discrete Calculus approach can lead to novel numerical methods that by their 
construction capture the physics of the system well.  
 
The appearance of a transfer matrix in which the inverse is sparse contrasts with the node-based median dual 
mesh method.  As with the boundary conditions, a symmetry between the two methods has been broken.  The 
reason for the difference here is that while the role of the primary and dual meshes was switched in the two 
different methods, the reconstruction region (cells) was not changed.  The reconstruction must occur on cells 
(the primary mesh) in both cases because material properties are assumed to be associated with the primary 
mesh (cells).  It is certainly possible to change the regions over which material properties are defined (say to 
the dual cells), then the symmetry remains intact and the resulting methods are identical to what has already 
been described with the words dual and primal switched everywhere. 
 
On simplices (triangles and tetrahedra), and Cartesian meshes, the assumptions used to derive Eqn 13 (constant 
q on the cell faces and constant divergence) are exactly equivalent to assuming the lowest order face elements 
were used in the reconstruction of the heat flux.   For steady heat conduction without sources, the Mixed 
method will therefore produce exactly the same result as face FE methods applied to the coupled PDE system 
(2a-d).   Remember, the node based median dual mesh was equivalent in this same limit to standard linear 
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finite elements applied to Eqn (1). However with unsteady terms, source terms, or higher order 
implementations, these Discrete Calculus methods differ from the low order FE methods.   
 
The mixed method becomes numerically difficult to solve in the limit as 0k → .  This might be partly 
ameliorated by non-dimensionalization of the unknowns nT

ɶ
 and fQ ,  but is ultimately a reflection of the fact 

that in this limit the inverse of the transfer matrix (which is used in this method) becomes singular.    This 
method might therefore be ill-suited for a diffusionless transfer process (such as the mass equation in the 
Navier-Stokes equations). 
 
5. Performance Results 
The four low-order Discrete Calculus methods derived in this paper might be considered more complex (at 
least conceptually) than classical methods for solving the heat equation.  It is therefore of considerable interest 
to see if this added complexity and the exact treatment of the calculus has any actual tangible benefits in the 
solutions generated.  This section will therefore compare the proposed methods with some classic finite 
volume approaches on a number of test cases.   We have already shown that the methods are theoretically 
similar to some finite element methods so it is not necessary to directly compare with those finite element 
methods.  
 
A direct comparison of accuracy is difficult when comparing node based and cell based methods.  On 3D 
tetrahedral meshes there are roughly 5 to 6 more cells than nodes.  Cell methods therefore have a significant 
resolution advantage.  On the other hand, node based methods are far less computationally intensive.  As a 
compromise our ultimate metric of method performance in this work will be level of accuracy obtained per the 
computational cost. 
 
This section first presents commonly used cell-based finite volume methods, which are then used for 
comparison against the Discrete Calculus methods. Numerical tests illustrating the spatial and temporal 
accuracy as well as the cost to obtain a desired accuracy are then presented.  Finally, heat transfer in a complex 
geometry (a crank shaft) is considered and the computational cost of the Discrete Calculus methods are 
compared against the traditional finite volume methods in order to confirm the results established by the 
previous tests in a realistic problem configuration. 
 
5.1 Cell Based Finite Volume Methods  
Given the restrictions of space and time we will restrict our attention to cell based finite volume methods.   

These methods also use the conservation equation ( ) 0nd CVT
fdt DQρ + =ɶ , where nT

ɶ
 is typically located at the 

cell centroid.   The key in these methods is to relate the face flux fQ , to the cell temperature, nT
ɶ
.   We will 

consider three alternatives for this relationship. 
 
5.1.1 Basic   
The basic interpolation is, 

 
1 2
1 2

f

L L

k k

A

f nQ GT⊥ ⊥
+

= −
ɶ
         (16) 

This is very similar in form to the cell based Voronoi dual interpolation.   However, the temperature is no 
longer located at circumcenters so this is not really an approximation for the normal gradient.  As a result this 
formulation (while widely used) is zeroth order accurate (nonconvergent) unless all cell centroids and 

circumcenters are identical (such as Cartesian meshes or uniform unstructured meshes).   The distance L⊥  is 

the perpendicular distance between the cell centers | ( ) / |f c f fA− ⋅x x n .   
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5.1.2 Large Stencil  
The solution to the lack of convergence of the basic method is typically to determine the gradient in each cell 
and use a weighted average of the cell gradients to determine the normal heat flux, 

1 1 1 2 2 2( )f c c fQ w k T w k T= − ∇ + ∇ ⋅ n          (17) 

The problem is then to determine the gradients and the weights.  We determine the gradients using Gauss’ 
theorem, 

1 1 1( ) ( )
c c cc f f f n fV V V

cell faces cell faces

T T dV T T T∇ ≈ ∇ = = −∑ ∑∫ n n
ɶ

    (18a) 

Assuming an interpolation for the face values 2 1 1 2ˆ ˆf n nT w T wT= +
ɶ ɶ

 gives, 

1 1
2 1 1 2 1 2 1 1ˆ ˆ ˆ ˆ ˆ( ( ) )

c cc n n n f f nV V
cell faces cell faces

T w T wT w w T w GT∇ = + − + =∑ ∑n n
ɶ ɶ ɶ ɶ

     (18b) 

from this we can see that the diffusion matrix is symmetric if 2 1ŵ w=  and 1 2ŵ w= .  For higher order 

methods symmetry is not required, but for low order methods such as this it seems to be a good idea. 
 
Choosing volume weights, 1 1 1 2/( )w V V V= + , results in a method where the face flux satisfies Gauss’ 

theorem on the domain containing both cells touching that face, and the face value is linearly interpolated 
between the two cell values using the perpendicular distances (which is equivalent to assuming no variation in 
the cell temperatures tangential to the face). 
 
Ultimately this calculation of the Laplacian term uses not only the cell neighbors, but the neighbors of those 
neighbors in the stencil, and this is how we choose the name.   Calculating diffusion with this method is fairly 
expensive due to all the extra averaging involved (to get face temperatures and gradients).  It also tends to be 
less accurate because of all the smoothing that occurs in those averaging operators.  Finally, the presence of 
averaging means that spurious modes are present.  These are discrete solutions which satisfy the Laplace 
equation but are not linear functions.  For example, on a Cartesian mesh, this method does not damp the 
‘checkerboard’ mode. 
 
5.1.3 Corrected  
A compromise that is frequently used is to correct the basic method so that a normal flux is actually calculated.  
When the mesh is uniform the accuracy and small stencil of the basic method is recovered.  When the mesh is 
strongly distorted the correction keeps the method convergent.  In the corrected method the flux is calculated 
from, 

( ) f

f f f n fQ kGT
⋅
⋅= − ⋅ − − ⋅ d n

d dq n q d
ɶ

         (19) 

where 2 1c c= −d x x  is the vector between the two cell positions, and 1 1 1 2 2 2( )f c cw k T w k T= − ∇ + ∇q  is 

calculated using the large stencil approach described previously.  When d is aligned with the normal the first 
and last terms cancel and the basic method is recovered. 
 
This approach does not produce a symmetric diffusion matrix.  Often methods treat the basic part of the 
method implicitly (because it is symmetric) and the correction part explicitly.  The stability of such a split 
method may be compromised on highly distorted meshes.  This approach has roughly the same cost as the 
large stencil method, but often better accuracy due to only a small influence from the larger stencil, with the 
basic stencil dominating.   
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5.2 Tests of Spatial Accuracy 
The first test compares the accuracy of the three traditional Finite Volume (FV) methods presented in the 
previous section, with the intent of choosing the best of these methods for comparison against the Discrete 
Calculus methods. The second test confirms that the Discrete Calculus methods are exact for linear functions 
even when the material properties are discontinuous across the domain. The third test proves the second order 
convergence of the Discrete Calculus methods. The disadvantage of using the Voronoi dual mesh is illustrated 
in a fourth test problem. 
 
For all the comparisons, the discrete L2 error norm is adopted for verifying the order of convergence of the 
method, 

( )
1/ 2

2
1

2
1

N
exact

n nN
n

L T T
=

 = − 
 
∑                       (20) 

where N refers to the number of unknowns, nT  refers to the numerical solution and exact
nT  refers to the 

analytical solution.  In the cell-based methods nT  is nT
ɶ
, the cell temperature value. 

 
5.2.1 Comparison of FV Methods 
The steady state heat diffusion equation 
( 0∇ ⋅ =q ) on a unit square domain as shown in 
Fig. 5 is used as a test case with the following 
boundary conditions, 

 

0 0

1 1

0 0

1 0

T
y

T
y

x T

x T

y

y

∂
∂

∂
∂

= =
= =
= =

= =

  (21) 

                                      
The mesh size (defined as 1/( / ) NDdx Vol NC=  
where Vol is the entire domain volume, NC is the total number of cells in the domain and ND is the 
dimensionality of the problem) is plotted against discrete L2 error norm in Fig. 6 for the three FV methods 
presented in section 5.1. 
 

                       
            Figure 6.  Spatial accuracy of classical FV methods.           Figure 7.  Isolines of solution. 

 
 

 
Figure 5.  Typical mesh used for convergence studies. 
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It is observed from Fig. 6 that all the FV methods tends to be first order accurate, and the most accurate of 
these (the Corrected FV method) will be subsequently used for comparing against the Discrete Calculus 
methods. All the Discrete Calculus methods described in this paper were verified to achieve the exact answer 
to machine precision for this problem. Typical solution contours are presented in Fig. 7. 
 
5.2.2 Discontinuous Conductivity at an Angle 
This problem is taken from Shashkov [35] and Morel et. al. [36].   Although the theory for discontinuous 
coefficients only implies that the normal component of heat flux should be continuous, many numerical 
methods also assume that tangential flux components are continuous at a discontinuity.  Such methods 
will have difficulties when solving for conduction that occurs at an angle to the discontinuity. 

 
The mesh (shown in Fig. 8) is divided into two different materials with different diffusivities along the 
interface x=0.5. Note that the discontinuity in the material is captured by the mesh. The diffusion 
coefficients are defined as, 

 1

2

0 0.5

0.5 1

k x
k

k x

< <
=  < <

         (22) 

Dirichlet boundary conditions are enforced such that the exact steady state solution is 

  1 2 1

2 22

0 0.5

0.5 1
k k k

k k

x

x

a bx cy
T

a b b x cy−

≤ ≤

< ≤

+ +=  − + +
                                 (23) 

This problem has a discontinuity in the tangential flux at the material interface.  The normal component of 
the flux (bk1) is the same across the entire domain. However, the tangential flux component is k1c on the 
left side and k2c on the right side of the interface. The numerical experiments employ a=b=c=1, k1=4 and 
k2=1. The boundary conditions are applied to the boundaries as shown below.  

           

7
2

0 1

1

0,0 0.5 1

1,0 0.5 2

0,0.5 1 4 0.5

1,0.5 1 4 0.5

x T y

x T y

y x T x

y x T x

y x T x

y x T x

= = +
= = +

= < < = +
= < < = +
= ≤ < = −
= ≤ < = +

                                               (24) 

The calculated temperature isolines for this problem are shown in Fig. 9.  The solutions obtained by all 
the Discrete Calculus methods agree with the exact answer to machine precision.  

        
   Figure 8.  Mesh with different diffusivities on       Figure 9.  Isolines of temperature contours  

either side of the interface (x=0.5).      obtained by the Discrete Calculus methods. 
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5.2.3 Quadratic Problem 
In the third test problem, the spatial accuracy of the Discrete Calculus methods is compared with the 
corrected FV method in a steady-state heat diffusion problem with a uniform source term S=4 and unit 
conductivity. The same mesh employed in sub-section 5.2.1 (Fig. 5) is used. Dirichlet boundary 
conditions are imposed on the left and right boundaries, and homogeneous Neumann boundary conditions 

are imposed on the top and bottom boundaries.  The exact solution 2( ) 2 2T x x x= −  is a quadratic 
function. The isolines are shown in Fig. 10 and the spatial accuracy is plotted in Fig. 11. 

                  
 Figure 10.  Isolines of temperature                Figure 11.  Spatial accuracy of Discrete Calculus methods 
    contours for a non-linear problem 

 
It is seen from Fig. 11 that all the Discrete Calculus methods exhibit close to second order convergence 
(because the mesh is very close to uniform). It is to be noted that the Cell (Median Dual) method presented in 
Fig. 11 is the Mixed method described in Section 4.3. While both the median dual methods are more accurate 
than the classical FV methods, the mixed Voronoi dual method tends to be less accurate than the FV method 
on coarse meshes. As pointed out in sections 3.3.1 and 4.2, the Voronoi dual mesh methods tend to be less 
accurate if the circumcenter and the centroid of the cells do not coincide. The fact that the Voronoi methods 
show second order convergence in Fig. 11 is attributed to the good quality mesh that was employed for the 
test. However, when the mesh quality decreases, even for a Delaunay mesh, the circumcenter of the cell can 
sometimes lie outside of the cell causing large errors in the solution. In order to illustrate this behavior, the 
subsequent test compares the Median and Voronoi dual methods on a stretched mesh. 
 
5.2.4 Median Dual vs Voronoi Dual Methods on a Stretched Mesh 
In this test, a series of stretched meshes (as shown in Fig. 12) is used to compare the accuracy of the 
Median and Voronoi Discrete Calculus methods employing the linear problem of section 5.2.1. While the 
median-dual Discrete Calculus methods are still exact to machine precision on these meshes, the Voronoi 
dual methods show significant errors as depicted by Fig. 13 (Note that this figure does not show the 
Medial Dual curves as they are exact).  

                          
Figure 12.  Stretched mesh to compare        Figure 13.  Accuracy of Voronoi Dual Methods         
       median dual & Voronoi dual methods        on stretched meshes 
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It is seen from Fig. 13 that the errors are not only large even for a linear problem, but the errors seem to 
increase as the mesh becomes finer. This is due to the fact that as the mesh gets finer, there are more inverted 
Voronoi cells with a resulting increase in the overall error.  It is for this reason that the added complexity and 
cost of the Median dual methods may be advantageous in complex geometries.  
 
5.3 Tests of Temporal Accuracy 
While any time advancement scheme can be used with the Discrete Calculus methods, treating the diffusion 
term in a fully implicit manner would lead to a first order temporal accuracy. In order to obtain a second order 
temporal accuracy, it is preferable to employ the trapezoidal rule. As an example, Eq. 15 for the Mixed Method 
may be rewritten as, 

 
( )1 1 1

1 1
/

( ) ( ) 1 ( )

( ) ( )
c c

f e

n n n
CVt n CV n ft

n BC
kA L f f

M D T t M T t DQ t

G M Q t T
ρ ρα α+

∆ ∆
− +

−     + −
=              ɶ

ɶ ɶ

   (25) 

 
where α is the “implicitness” of the diffusion term. With α=1, the time advancement scheme becomes fully 
implicit and with α=0.5, the scheme turns into a trapezoidal rule, which is employed for this test.  
 
In this test, an unsteady diffusion equation is solved on the mesh considered in section 5.2.1. The initial 
conditions and boundary conditions are specified as follows- 
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  (26) 

In Eqn. 26, nx refers to the x-component of the face normal vector at each face and k refers to the diffusivity 
(chosen as unity for this problem). The initial time t0 
is chosen as 0.001 and the simulation is run up to a 
final time of t=0.002. The analytical solution to this 

problem is ( ){ }21( , ) exp 0.5 / 4
t

T x t x kt= − − . 

The simulation is run with various values of the time 
step (dt) and the L2 norm of the error is computed at 
the same final time, t=0.002.  The result is plotted in 
Fig. 14, which confirms the second order temporal 
accuracy of all of the four Discrete Calculus 
methods. The computed solution is compared with 
the exact answer at t=0.002 in Fig. 15.  

       
Figure 14.  Temporal accuracy of DC methods. 

    
             Figure 15.  Solution to the unsteady diffusion problem at t=0.002. 
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5.4 Computational Cost for a Desired Accuracy 
Although the Discrete Calculus methods were shown to be more accurate than the traditional lower order 
methods in the previous tests, it might be more important to compare the cost-effectiveness of the Discrete 
Calculus methods against the classical methods. Hence, the computational cost (in terms of the CPU time) is 
plotted against the L2 error norm in Fig. 16 for the problem considered in section 5.2.3, which really compares 
the cost incurred for a desired accuracy level.  

           
Figure 16.  Computational cost incurred for                         Figure 17.  Cost incurred by FV methods 

a desired accuracy level 
 
Fig. 16 compares the median dual Discrete Calculus methods with the Corrected FV method. It is observed 
that for any given accuracy level the Discrete Calculus methods are always more cost-effective than the 
traditional methods. Also, it is clearly seen that the cost for the Corrected FV method tends to increase more 
rapidly than the Discrete Calculus methods as the need for accuracy increases. In Fig. 16, the other two FV 
methods are not used for comparison in order to enhance clarity. However, Fig. 17 compares the cost of the 
three FV methods verifying that the Corrected FV method is the most cost-effective method of the three FV 
methods considered. 

 
5.5 Heat Transfer in a Crank Shaft 
All the Discrete Calculus methods presented are applicable on any general 3D unstructured mesh, although the 
previous tests were run on 2D geometries. In order to illustrate this, a more realistic problem is considered in 
this section, which involves solving Eqn. (2) on a complex 3D geometry. A typical mesh considered for the 
analysis is shown in Fig. 18. The coarsest mesh considered has 864 nodes and 2339 cells and the finest mesh 
contains 73875 nodes and 360512 cells. Fixed temperature (Dirichlet) boundary conditions are applied to the 
inlet and outlet faces (crankshaft ends) and the sides are insulated. Typical temperature contours are presented 
in Figure 19.  

                       
             Figure 18. Crank Shaft Mesh                     Figure 19. Temperature contours along the crankshaft. 
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The heat flux through the inlet and outlet faces (which were verified to be equal) are measured against the 
mesh size for the median-dual Discrete Calculus methods and extrapolated to obtain the “exact” heat flux.  
This exact heat flux is then employed to compute the error in the finite volume and Discrete Calculus methods 
(Fig. 20).  The mesh size (dx) is computed as the cube root of the average cell volume.  
 

              
Figure 20. Accuracy of Discrete Calculus                       Figure 21. Cost for a desired accuracy for the 
       and finite volume methods.                                                 Crank shaft test case. 
 
The computational time taken per solver iteration is then plotted against the percentage error, which gives 
the cost required to obtain a certain accuracy level (Figure 21), which is in agreement with the results of 
the previous section.   It is interesting to note that the cell based and node Discrete Calculus methods give 
very similar accuracy/cost performance despite the fact that the cell based method uses over fifteen more 
unknowns than the node based method for the same mesh.     
 
6. Discussion 
The Discrete Calculus methods, as developed in this work, have the philosophical flavor of finite volume 
methods.  In particular, the algorithms are independent of cell shape and can be applied to arbitrary polygonal 
meshes.  There is no need to explicitly specify the basis functions or interpolation functions being used.  
Finally, like finite volume methods there is a local energy conservation statement for each cell or dual cell.  
However, there is a close relationship to Finite Element methods.  For the median dual mesh, both the nodal 
and cell based methods are closely related to certain finite element discretizations.  The route to higher order 
(Subramanian [19]) also is similar to finite element methods, since more unknowns, not a larger stencil, is 
used.   In this paper we have presented the finite volume looking versions of the method, but it should be 
noted that Galerkin Finite Element methods can also be constructed using the Discrete Calculus approach 
by exactly discretizing the weak form of the equations (see Mattiussi [18]).    
 
The Discrete Calculus approach is an attempt to develop a methodology for developing numerical 
methods that capture physics well.  The key is to exactly discretize the physics and calculus before 
making any approximations.  This means all the discrete differential operators are still exact and mimic 
the mathematical properties of the continuous differential operators. All approximation is then made in 
the algebraic constitutive material equations where physical approximation has already been performed.    
 
Tests of these Discrete Calculus methods demonstrate the theoretically predicted order of accuracy, the 
ability to accurately capture solutions with sharp discontinuities in the material properties, and a better 
accuracy/cost than classic low-order diffusion methods.    
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