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Abstract

A general methodology for the solution of partidfiedential equations is described in which thecditization

of the calculus is exact and all approximation e€@s an interpolation problem on the material titotise
equations. The fact that the calculus is exaagthese methods the ability to capture the physi€DE
systems well. The construction of both node afidased methods of first and second order areitdesicfor

the problem of unsteady heat conduction - thoughntiethod is applicable to any PDE system. The
performance of these new methods are comparedassiclsolution methods on unstructured 2D and 3D
meshes for a variety of simple and complex tegtiscas
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1. INTRODUCTION

This paper is dedicated to Pieter Wesseling. dtdbis hallmark at many levels. Philosophicidtlis a paper
about the intimate connection between physics aathematics. Prof. Wesseling, an Aerospace Engineer
turned Mathematician has always produced paperatbalways keenly aware of the connection. Tadigic

it is a paper about staggered mesh methods - amamf areas in which Pieter and his coworkers aidip

(see the references in [1,2]). And in particulae, paper addresses fundamental questions aboublegpply
staggered mesh methods to compressible flow prableam area Pieter is particularly interestedi6]{3

Staggered mesh methods have traditionally beefedgdplincompressible flows. The lack of pressuosles
is particularly attractive in that application. érl is therefore considerable literature addregbieadssue of
how to discretize the momentum equations with sired [7], curvilinear [8,9], and unstructured sfaged

mesh methods [10-14]. However, in the contextoofigressible flow there arises the additional isdugow

to discretize the density and energy equations.

The discrete differential operators in incomprdssiitaggered mesh methods have very unique aadtattr
mathematical properties that allow the discreteaigos to physically mimic their continuous coupets.
This not only leads to a lack of pressure modes kimetic energy and vorticity conservation statatae
[15,16], maximum principles and many other attxactproperties [17]. If we wish the compressible
discretization to also have these sorts of attragihysical properties (like entropy increase)n thesumably
the scalar equations (density and energy) musbealsiiscretized appropriately.

Until recently, it was not clear to the authors tdrderia should be used to judge if a scalarsppant equation
was discretized ‘appropriately’. We believe thiemma is addressed by the Discrete Calculus approa
presented in this paper. In order to carefullyl@rpthe Discrete Calculus approach, this paperadigtonly
focuses on the unsteady diffusion equation (noathwection-diffusion equation). The diffusion tecontains
sufficient complexity to present the fundamentaaisl of the Discrete Calculus approach. Due toespac
limitations, the issues concerning advection masiddressed in a subsequent paper.

The premise of this paper is that numerical mettibds capture the physics of the equations welkhav
associated exact Discrete Calculus. The factRBé&'s can always be discretized exactly is dematestrin
the Section 2. To make the presentation clearcandrete the paper focuses on the diffusion (at)he
eguation. However, we emphasize from the outsdtttie basic ideas presented are generally apiglitab
almost any PDE system. The paper is really aadatttion to the Discrete Calculus method. Thetfaitthe
diffusion equation is simple and has analogs inynfeaids of application should make the paper, hadce
this method, available to a broad audience.

Two different node-centered Discrete Calculus nughare derived in detail (Section 3). The papen th
shows how these ideas can be applied to cell-disecktizations and how they differ from traditibfiaite
volume and discrete Galerkin methods (Section &ection 5 then compares these four Discrete Qalcul
methods to some classic finite volume methoddediffusion equation on a variety of test problems

2. Exact Discretization

Discretization takes a continuous PDE equation astfentially an infinite number of equations ankhomwns

(at least one for every point in space) and rediites finite system of algebraic equations ankhowns. It

is frequently assumed that the act of discretizngDE must involve approximation or the introductad
some sort of error. This is not the case [18olvinga PDE system numerically does indeed require
approximation, but it is possible to separate tloegss of discretization and approximation and vthenis
done discretization can be performed exactly. @eenise of this paper is that exact discretizasdnmghly
advantageous and leads to methods that have vergsting mathematical and physical properties.



Exact discretizations ultimately require approximabecause the discretization is not closed. &'hes more
discrete unknowns than algebraic equations. Gloefithe system requires the coupling of some ef th
discrete unknowns. This coupling process is @mrpolation problem where all the numerical appr@tion
and errors are introduced. It is often charazddrby a transfer of information from one mesh thiff@rent
(dual) mesh, and it invariably involves a matec@hstitutive relation.

The profound benefits of separating the discrétimgprocess (where the continuous PDE system isemad
finite) from the approximation process (where tinéd system becomes solvable) will become vergrcies

we proceed. Nevertheless, we describe the keg atestiractly here to preview what will be seemégaper.

It will be seen that the closure (and therefora@amation) of the exact finite equation systemaha/occurs

in the material constitutive relations embeddethénPDE. These constitutive relations are agtyndi/sical
approximations of bulk material behavior. Theg aot exact to begin with. This approach therefitaees

all numerical errors/approximation in the alreatlygically approximate material relations. The gy of a
PDE (such as conservation, and wave propagatieey epend on the details of the material. ThB@ach

will therefore always capture the physics of theERBactly by placing all numerical approximationeorors

in the material properties.

To make the presentation of the Discrete Calculathad concrete we will use a simple equation that i
common to many fields of engineering and scienibee-heat equation.

D = 0kKOT (1)
In heat transfer, the temperatufeis the fundamental unknown, and the material paemmare,k the
conductivity, andoC the heat capacity. However, this equation, ghsNariants, finds application in many
other fields with different physical interpretatsofor the variables.

It is convenient to consider the heat equation m expanded form that clearly separates the
physics/mathematics from the material constitudipproximations.

440 =0 Conservation of energy (29)
g=0T Definition of gradient (2b)
q = —kg Fourier's Law (20)
i =pCT Perfectly Caloric Material (2d)

This formulation introduces two new physical valéahi the specific internal energy, argfl the heat flux.

The last two (algebraic) equations are physicatamations for the material. All numerical appirogtions
will also be restricted to these last two equatiofise first two equations, containing the physied calculus,
will be discretized exactly. The advantage stubtizing the physics and calculus exactly isttatresulting
numerical methods and discrete solutions canntdteiany physical or mathematical principles.

3. Node Based Exact Discretizations

One classic way to discretize equation (2a) exastlysing the idea of many small non-overlappingtrad

volumes that completely cover the domain. Howgtber classic finite volume (FV) procedure of assog

a control volume with each mesh cell has somecditfes — we return to it later in Section 4. isleasier to
consider a set of control volumes in which eaciefimolume surrounds each node (vertex) of the mebhe
volumes surrounding each node are referred toaswesh cells.

3.1 Exact Discrete Equations
For heat transfer, integrating over each dualgredls the exact discrete equation,

%Lidv +ijqmdA:O (3a)
f



There is one equation for each dual cell. Therelis unknowns in this equation drgF I idV the total
C

energy in the dual cell, arf@; = J‘f g [hdA the heat flux between dual cells or on the dorhaimdary. The

notation convention is to label variables with thetation on the primary mesh or the dual meshaddition,

the dual mesh locations are distinguished by haaitiigle. So far the method looks like a classidaibased
finite volume method or discontinuous Galerkin noeth The key difference therefore lies in the diszation

of Egn. (2b).

In addition to discretizing (2a) exactly, it ist@al that equation (2b) also be discretized eyamtimost of the
advantages of exact discretization are lost. Ex@rretization of equation (2b) can be achievgd b
integrating along the line connecting the two nodgsis gives the exact discrete equation

[oml=T,-T, (3b)
on each edge, wherg, is the value of the temperature at the node posiind the discrete unknown

Je =j gld is the average gradient along each edge. Agtaaly path connecting the two points is

possible but the edge is the obvious initial choice

We now have one equation at each node of the nieph3a), and one primary unknown at each ndge,
In linear algebraic terms the exact discretizaionritten,

G +DQ; =-Q° (4)
wherleC are the prescribed boundary condition fluxes erdtial cells associated with nodes that lie on the

Neumann boundaries of the problem domain ahdis the discrete divergence operator. On Dirichlet
boundaries the temperature is known and the assdceiav of equation (4a) can be used to deterrhiméix
on the Dirichlet boundary (if desired). Along witlis equation we also have,

g, =GT, (4b)
where G is the discrete gradient operator. There are nmdmry condition issues associated with this
equation since every edge of the mesh is alwaysdsalby two nodes, but it should be noted thatvéwntor
of discrete nodal temperature valudls,, also contains boundary values (even if they fe Dirichlet

Median dual mesh Circumcenter (Vorowial mesh

Figure 1. Primary mesh (thin lines) and two commonly usedlduneshes (thickines) for a triangule
primary mesh in two-dimensions. These dual meslsss exist in threeimensions. The Median dt
applies to arbitrary polygonal cells, the Voroneial mesh is only defined on simplices (triangled
tetrahedra), Cartesian meshes, and locally orthealgunashes (such as cylindrical and spherical).



boundaries and are known quantities).

At this point no assumptions about the primary nadhe dual mesh have been made. The primary caesh
have curved edges and faces, and the dual meshecdefined many different ways. Two of the more
obvious choices for the dual mesh (the Voronoi dnal Median dual shown in 2D in Figure 1) are dised

in more detail later. Since any dual mesh waths,choice of the dual mesh is one area of flakitibr

Discrete Calculus methods. The other very sigaifi area of flexibility in the method is how oetatesQ-

to g, andl, to T, in order to close the system (Section 3.3).

3.2 Discrete Operators

The matricesD andG do not have subscripts associated with them bedhay are discrete operators that
transfer information from one mesh location to hent The discrete divergendd, takes information from
the dual faces and produces a result that residésealual cells. The discrete gradig@t, on the other hand,

takes information from the nodes and producestdt res the mesh edges. These Discrete Calcukiatmps
are sparse matrices consisting of nonzero entitasi .

For the simple 2D mesh shown i
Figure 2 the corresponding operato
are,
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Figure2. 2D Mesh to illustrate DC operators

Note that the gradient operat® is a 5x4 matrix converting node values (4 nodeg) edge values (5

edges). Similarly, the divergence opera@ris a 4x5 matrix that converts dual face quantitits dual
cell quantities. Many readers will notice that thisra symmetry between the discrete gradient medygénce

operators,G = —-D". This relation holds for many low-order Discretald@lus methods. This type of
symmetry also occurs in Galerkin Finite Elementhods. It was originally thought by the authordbéan
important property of Discrete Calculus methoddnterestingly, recent work on higher order Discrete
Calculus methods [19] indicates this type of synmyristnot actually necessary.

Cell based versions of these operators have beensded previously [20-24]. In those works, theraiprs
were first hypothesized and then later shown tehateresting and attractive mathematical propertiehe
current derivation makes it clear from the outbett these similar but node-based discrete operaiiirs
behave mathematically well. More importantly, Biscrete Calculus approach presents a generalfrarke
showing how to generate other well behaved dis@ptzators. For example, higher order versionthef
node-based discretization (Eqns. 4a and 4b) cderdeed using the Discrete Calculus approach [19].



The operatorsﬁ and G are discrete versions of the continuous divergandegradient operators. They were
derived using versions of the Gauss-Green theoretma approximation was used in their derivatidme
result is that these discrete operators mimic nedsthe mathematical properties of the corresponding
continuous operators. For example, the only iswitb [1@=0 on an infinite or periodic domain i is

constant. Similarly, the only solution to the dite problemGg, = 0on a periodic domain is that the vector

of unknownsg,, is constant. Phrased a different way, thespake of the gradient is a constant function and

the null space of a properly derived discrete grtdbperator is a constant vector. This is timeldmental
reason that staggered mesh methods can not dgnlapus pressure modes. In the context of hexadfer,
this implies that zero heat flux results in a canstemperature solution. There are many numemethods
where this is not the case. These methods ussratiffforms of damping to remove the resulting ispsr

modes. These spurious modes are non-trivial solsiio Gg, = 0 that result when the discrete gradiéat
is not derived using a Discrete Calculus approach.

Similarly, L x O@= 0, the gradient operator is always in the null spEd@e curl operator. In the Discrete

Calculus approach the sparse discrete operf@towhich is the (oriented) sum of edge values to dace
(circulation on the face), has this same prop€fy =0 [13].

The nested null spaces described above are debariliel by the de Rham complex [25] which appedars
the mathematical field Algebraic Topology. Algebrmpology is widely used to describe face/edgenents
[26-29] which are the Finite Element variant of Bscrete Calculus approach. While highly expressi
algebraic topology is not widely accessible torsitéts/engineers and is difficult to apply to noekr equation
systems like the Navier-Stokes equations. We filverdeave it to the reader to explore this mathimala
explanation more fully on their own if they areeird@sted. For physicists and engineers the pragedi
explanation of the method may be sufficient.

3.3 Discrete Equation Closure
The system comprised of algebraic Eqns. (4a) abdigddiscrete and exact, but closure and solufdahis

exact system requires relating the heat flux ondtha facesQ; = I f~q [hdA to the temperature gradient

along the edgeg, :J- gldl, and the temperature at the nodesto the total energy in the dual cells
e

surrounding each nodig = JiidV . Mathematically the desired relations are writte
C

Qi = Mun 1,9 (4c)
If: =M (pCVe)Tn (4d)
where M, and M ., are transfer matrices that connect quantitietherprimary and dual meshes.

These matrices contain information about the natproperties and specific mesh geometries. Mtk
Eqgns (4c) and (4d) correspond directly to the nwteonstitutive relations (2c) and (2d).  Thesaterial
relations can not be implemented exactly becauseuttknowns are averages over different geometric

structures.  Ultimately, it will be clear tha!l ,,,, and M., are essentially interpolation operators

transferring data from one mesh to another onelévwaiso applying the material properties). Cornmigin
Eqgns. (4a) through (4d) gives a single equatiotesy$or the discrete temperature at the nodesv@aiguit to
Egn. 1),

AM oy To = DM(W L,GT,- Q° (5)



In general, the Discrete Calculus approach doeseggire that the two meshes (primary and duali tzeny
relation to each other. In the general case thexmisl ., , need not even be square or invertible. However,
for any mesh there are an infinite number of ‘dpsessociated’ dual meshes where there is a ommeo

correspondence (in number) between the primary redgles and the dual mesh faces, the primary mesh
nodes and dual mesh cells, and vice-versa. [esetitlosely associated’ dual meshes the transiénices

M and M., are square. Certain dual meshes (like the Vorduai mesh) even result in diagonal

transfer matrices. When the primary mesh is Delguthe matriceM ,,,,, and M, for the Voronoi

(kAL

dual can in addition be shown to be positive difini The simplest numerical methods have diagonal
sparse (usually local) transfer matrices (or spassgses).

In the algebraic topology construction the transfatrices are referred to as discrete Hodge staatgs that
transfer data between the discrete de Rham conagisociated with the primary mesh and the discrete d
Rham complex associated with the dual mesh.

3.3.1 Voronoi Dual Interpolation

Any mesh which consists entirely of cells with aque circumcenter has a closely associated Vordunai
mesh that can be constructed from those circummenteAll triangular (in 2D) and tetrahedral (in BD
unstructured meshes have this property, as doSzarteneshes, and cylindrical and spherical mestmek,
many prismatic meshes.  Arbitrary quadrilateradl &iexahedral meshes are the most important class of
meshes which do not have unique circumcenterd/or@noi dual mesh.

The Voronoi dual mesh is of interest becauseaveywhere locally orthogonal to the primary mesbo for
example, all the tetrahedra which share a commge €édo matter how many of them there are) have
circumcenters that lie in a plane and that planartisogonal to the common edge. This has thacite
property that the dual face normal and edge taiggint in exactly the same direction. This me#hat

Q; = L ghdAand g, = Lg [l are referring to the same component of the vec@./ A is therefore

a second order approximation for that flux compométhe center of the dual face, ankig, / L, is a second

order approximation for the flux at the midpointtioé edge. Because the midpoint of the edge andethter
of the dual face lie close to each other (withinesh spacing) the approximation

Q =k g (6c)

is a first order approximation. The mati™ is then diagonal witﬂ(ﬁ—i as its entries. If the mesh is

(kAY /L)
regular (such as equilateral triangles) the edgeeceand dual face center are identical and secoder
accuracy is obtained by this approximation. Incfice, second order accuracy is also often obseiaed
relatively smooth meshes. When the conductiaiyes, it is assumed to be piecewise constantcim e&sh

cell then Eqgn (6¢) is more generay. = —% g. where(kA), = Z k. A and A_ is the portion of

edge cells

the dual face residing in each cell.

Appling the same ideas to (4d) gives the first peggroximation,

le = (PCVT, (6d)
so the matrixM ., is also diagonal withoCV; as its entries. When the mesh is uniform theroihof
the dual cell coincides with the node position sl approximation also becomes second order gecura

The placement of unknowns is very similar in thisl@ based method to that of a linear finite elemmarthod.
However, the resulting method is not the same30nclassic linear finite elements on tetrahedeahdt have



a useful discrete maximum principle [23-24]. Taguirement on the mesh is that all tetrahedra pkamgles
must be less than 90 degrees, and in practicestiisrement is impossible to satisfy. In contrést, method
just discussed has a maximum principle on any wristred mesh that is Delaunay. This follows frdma t
symmetry of the gradient and divergence operatadstiae positive definiteness of the interpolatioatnir

M(kA, y for Delaunay meshes.  This is a concrete exarfplethis particular problem, of how Discrete
Calculus discretization can capture the physic$femaatics of the system well.

The Voronoi dual interpolation is of historic irgst because it is the interpolation used in Cartesiaggered
mesh methods [7]. It is also essentially the ntleahis used in many meshless or particle mettgils [The
lack of a Voronoi dual for arbitrary quadrilatem@hd hexahedral meshes explains why it is a noiadtriv
exercise to extend staggered mesh methods to tifjmee of meshes. However, Wesseling [8] deschbes
this can be accomplished via a mapping of the prolib a Cartesian mesh.

Nicolaides [10] and Porshing [33,34] were the fistrecognize the Voronoi dual as one of the ldgica
generalizations of the Cartesian staggered meghod®eto unstructured meshes. But it should bedrtbi
while every triangular or tetrahedral mesh has #oN@i dual, that dual mesh is only well formedhét
primary mesh is Delaunay. Non-Delaunay meshedugmVoronoi dual meshes where the Voronoi celis ca
be twisted over on themselves (see Figure ~

resulting in logically negative volumes and lengt

that can make the transfer matrices singular

indefinite. It is easy to find mesh generatog tl

make Delaunay meshes, and algorithms that

convert almost Delaunay meshes into stric

Delaunay meshes are very fast. In practice,

disadvantage of the Voronoi dual is not tl

Delaunay requirement but the fact that for stron

distorted 2D meshes or even moderately distor

3D meshes the Voronoi dual can be qu

inaccurate [16]. An alternative and more accur

interpolation is the Median dual interpolation. Figure 3. Example of an inverted Voronoi cell.

3.3.2 Median Dual Interpolation
The median dual mesh is formed from the primarymeedl, face, and edge centroids. It is definedafty
primary mesh and never results in logically negatislumes, areas, or lengths. However, the daakféon

which theQ; = J'f g [hdA) are defined are no longer planar. In 2D eacll fice now consists of two line

segments (see Figure 4) and in 3D it consists ofdubtriangles from every tetrahedra touching ¢ulate
(only one of which is shown in Figure 4 for reasohslarity), each subtriangle being formed frdme edge

Figure 4. Dual faces (shon in dotted lines) in 2D and 3
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midpoint, the face centroid and the cell centroi@ihe orientation of the edge and the normals @fvédrious
subtriangles forming the dual face are no londated. A more intricate interpolation is now requi

One possibility is to use the gradients along #ieetlges,g, , to determine the gradient within each cell. This
can then be scaled by the conductivity and useéiorm the integration for the flux on the dualda. The
idea is essentially: (1) assume the gradignhas a locally polynomial form within each ceR) @etermine
the coefficients in that polynomial from the knoboundary dateg,, (3) determine the heat flux polynomial

in each cell fromg(x) = —kg(x) and then (4) integrate the heat flux polynomiadrdhe dual face to obtain
the flux Q; .

On triangles and tetrahedra we assume the tempeiatlinear and therefore the gradient is cons{aee
Subramanian [19] for how to do higher order int&afion). There appears to be more data than unkadsv

g, for 2 unknowns on triangles andd values for 3 unknowns on tetrahedra) but the @hita is redundant,

and these problems have unique solutions. Deatérgithe constant gradient can be done with a 2a2ixn
inversion in each cell in 2D or a 3x3 matrix invensin 3D.

For triangles and tetrahedra, the inversion cagebermined analytically [13] resulting in a diréamtmula for
calculating the gradient in each cell,
gc :V_lc z gen fe (7)

edges

wheren . is the normal (and area) associated with the fagal for that edge, and the summation is over all

edges of a cell. This explicit formula is usefot §everal reasons. First it speeds up the cotigrutaBut
perhaps more importantly it shows that the exptiolynomial reconstruction step can actually benielated.
This formula can be applied to arbitrary cells (just triangles and tetrahedra) without having eéfirgé the
exact functional form (which may or may not be &pomial) that it corresponds to. For examples ieasy to
see that the formula also works on 2D and 3D Qarteseshes though interpolation and integratiothoee
meshes is much more complicated (temperature retestdumed to be bilinear or trilinear).

To obtain the flux on the dual faces we assumettieatonductivity (and therefore the heat fluxgdasstant in
each cell. The integration for the flux can therplerformed exactly and,

Qf = E_Kgclrmfe (8)

All together the transfer process involves usirggdtige gradient components to calculate the grtagidin
each cell and then the gradient in each cell terdehe the flux through the dual face. In matexs we

have My, , = N"KN where the rectangular matri¥ has as entries the vectats, and the matrix< is
diagonal and positive definite with entrie%. The transfer matrix is therefore positive dédini The

geometric inputs to this transfer scheme are tta fhee areas and the cell volumes. In contrashdo
Voronoi transfer matrix, the edge lengths no loregger directly.

The median dual mesh reconstruction is first oedeurate for the gradient of the temperature aeckibre
second order accurate for the temperature fieldcan capture piecewise linear temperature sokitwith
jumps in the gradient at the cell faces (usually tiujumps in the material properties) exactlyn tangles
and tetrahedral this procedure results in the sdimeate diffusion matrix as the linear finite elenmt method.

The transfer matrixM ., for the unsteady term can be obtained in a simi@nner to the diffusion term.
Assuming a linear temperature profile in each glamr tetrahedra and a constant heat capaefy, in each



cell means the internal energy varies linearlintegrating over the dual mesh volume surroundaaheode
involves integrating over the portion of each celitained in that dual volume. The result is

ND2+(ND- 1) ND3-(ND-1)2
Z":pC (ND+1)( NDZ(ND+1) + ND? ( ND+1) T) (9a)
cells
for tetrahedral, triangles, and 1D line segmeihtsthis formula ND is the dimensionality of theoplem (2
for 2D, 3 for 3D etc.) I, is the average of the cell nodal temperaturesfedummation is over all cells that

overlap the dual cell. The resulting mass maﬂkﬂiwcw has the same sparcity pattern as the linear FE one

but the values are different.  This mass matix also be represented as a lumped mass plus aciaapl
term.

=T,(pCV), + DALY pCY T, (9b)
where(oCV), = > pCrig and(oCV), = > pCrgg-
node cells edge cells

This form of the mass matrix makes it clear thatrtiatrix is symmetric and invertible.

4. Cell Based Exact Discretizations

The Discrete Calculus formalism is an approachargrticular method. It does not require thathomins be
placed any particular location in the mesh, amatdter to demonstrate that we consider a cell bamtdod in
this section.

4.1 Exact Discrete Equations
Integrating over each mesh cell gives an equatiani$ identical to most finite volume and discr@tderkin
methods.

%Lidv +ijqmdA:O (10a)
f

This equation looks almost identical to Eqn (3&) the key distinction is the lack of tildes on tbeations
meaning this equation applies on the primary medls ¢not the dual cells like Eqn. 3a). The ditere

unknowns in this equation aré, =I idV the total energy in the cell, arf@, = _[f g hdA the heat flux
C
between cells or on the domain boundary. Simikarlggn (3b) we also have the exact discrete emjuati
[oml=T,-T, (10b)

along some line connecting the cell centers. Metewe do not use the notatiohy for the temperature at the

cell centers. The cell subscript implies a cefiraged quantity and Eqn (10b) refers to pointeshit the cell
centers (which are the nodes of the dual mesh).

In matrix terms these equations are expressed,

4 +DQ, =0 (11a)

9. =GT,+ T° (11b)
whereTfBc is the vector of prescribed Dirichlet boundary dtod values on the boundaries of the problem
domain.

There is a great deal of duality between the cellode based methods, but one place this syminddrist is
at the domain boundaries. In this work, the ralbshe primary mesh and the dual mesh are notedntir
interchangeable. We assume the primary mesh srooted so that the boundary faces of the primagh
are aligned with the domain boundaries, and intéacas are aligned with material discontinuitiefith are

10



effectively internal boundaries). The result isitthvith the cell based method, the Neumann boundary
condition (@Q, on the boundary) is easy to satisfy and the Diichbundary condition requires extra effort in

the gradient equation. In contrast, the node basstiod was trivial for Dirichlet boundary condit®(T, )
and the energy equation required modification feafdann boundary conditions.

The closure approximations
Q; = _M(kAf/Lé)gé (11c)
I.=M T (11d)

c (pCV) ' 1
are where the cell based Discrete Calculus apprdiffelns from classic finite volume and discreteléBian
methods. Note that these transfer matriekg, , , andM ., , are different from those found in the node

based method (the subscripts have different tddeggaments).

4.2 Voronoi Dual I nterpolation

If the Voronoi dual exists and is used then thallarthogonality property exists. In particulanetline
between two cell circumcenters is always perpetali¢a the face between those two cells, so weusarthe
first order approximation

Q =-ki g (12c)

This approximation becomes second order accurdite iflual edge midpoint and the face centroid @énc
(uniform meshes).

The variable conductivity case can be derived lsyragg that the normal flux on each side of the fiac

equal Q;/A = kz%:—kﬁt: ). Then solving for the face velocity and reariagggives

Q = —ﬁ g. Where L, is the portion of the dual edge in cell In other words, the length weighted

harmonic average of the conductivity should be (sed alsd’).

For the other transfer matrix we have
.= pCV,T, (12d)
which is first order accurate unless the cell amcanter and centroid coincide. Note that evennif a

unstructured mesh is Delaunay the cell circumcerdarlie outside the cell, and this usually leadtatge
errors in that region of the mesh. The median chesh does not have this problem.

4.3 Median Dual Interpolation
The use of the median dual can increase the aggulmaicas in the node centered versions, it alseases the
complexity of the method. When the median duabid, the dual edge consists of two straights@mments

that connect the cell centroids to the face cathtroiThe datag, therefore is very difficult to reconstruct to
determine the cell gradients. However it is pdedib reverse the process and determine the gtadignin

terms of the fluxes. Applying  Gauss' theorem tof (xq;); dVtells us that
I(qi +xO0)dvV = Ix(q (h)dA. If we assume that the flux is constant on faaed the divergence is

constant in a polygonal cell (a first order appneadion for the heat flux), then

c](::V_lc z r'fc f (13)

cell faces
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wherer . =X, — X, is the vector from the cell centroid to the faeatoid and the circumflex (hat) on the

flux indicates it is the flux out of the cell in gstion.

c

It is important to note that the flux is not assdrntebe piecewise constant in each cell — this dveidlate the
energy equation in the unsteady case. On triarajlelstetrahedra the interpolation function is ditua

q(x) =d. +v5(0L0g),. However, Eqn (13) applies to arbitrary polygand removes the need to calculate

the coefficients of some polynomial (which changepending on the cell shape). Like the node based
median dual interpolation this allows the methotktoain independent of particular cell shapesh@general
philosophical train as finite volume methods).

Using first order integration along the dual edg®r(g the end points) then gives,
O ={rqlds/ K -1, [aq/ K} (14)

Using higher order integration is possible but wessary. It would result in an unsymmetric transfatrix
that is still first order (because Egn. 13 is dilfirst order approximation). In matrix terms tiansfer

between meshes can be writte, = —-R' K ,,, RQ, where the matrixR contains the vectors,, and the
diagonal matrixK, , has- as its entries. Note thgM, ,Lé)‘1 =R"K,,R is symmetric and positive

definite and sparse. The transfer matrid is therefore a full matrix and writing a singleuatjon

KA / Ly
system like Eqgn (5) for the cell unknowns is natqtical. Instead the symmetric coupled system,

1M -D n+l 1 ("
At " pCV . Tﬁ(t ) —| & M pCVCTn(t ) ( 15)
G (Mg r1,) Q; T

must be solved. The mass mathk ., remains diagonal and is the same as the Voronbtradumafer matrix

(Egn. 12d). However, since the temperature is fmsated at the cell centroids, the accuracy of this
approximation is now second order. First ordeomstruction of the gradient vigV KA ,Lé)_1 is sufficient to

retain second order accuracy for the temperatela fi

Because the system given by Egn (15) requiresiingtaneous solution of both the temperature asctat
fluxes we refer to it as the Mixed Method. Asdarthe authors are aware it is completely new gigtsents
an example of how the Discrete Calculus approachlead to novel numerical methods that by their
construction capture the physics of the system well

The appearance of a transfer matrix in which therse is sparse contrasts with the node-based medé
mesh method. As with the boundary conditions,mansgtry between the two methods has been brokea. Th
reason for the difference here is that while the ob the primary and dual meshes was switchetiantwo
different methods, the reconstruction region (¥ellas not changed. The reconstruction must oacuretls
(the primary mesh) in both cases because matedpkgies are assumed to be associated with theapyri
mesh (cells). It is certainly possible to chargeregions over which material properties are defifsay to
the dual cells), then the symmetry remains intadtthe resulting methods are identical to whatdtesady
been described with the words dual and primal s@ideverywhere.

On simplices (triangles and tetrahedra), and Gartgseshes, the assumptions used to derive Eqrofi8tént
g on the cell faces and constant divergence) amlgxauivalent to assuming the lowest order fdements
were used in the reconstruction of the heat flukor steady heat conduction without sources, theeti
method will therefore produce exactly the samelresuface FE methods applied to the coupled PBEBY
(2a-d). Remember, the node based median dual weslequivalent in this same limit to standarddine

12



finite elements applied to Eqn (1). However withst@ady terms, source terms, or higher order
implementations, these Discrete Calculus methdtis fliom the low order FE methods.

The mixed method becomes numerically difficult tdve in the limit ask — 0. This might be partly
ameliorated by non-dimensionalization of the unknew, andQ, , but is ultimately a reflection of the fact

that in this limit the inverse of the transfer matwhich is used in this method) becomes singulaiThis
method might therefore be ill-suited for a diffusiEss transfer process (such as the mass equatide i
Navier-Stokes equations).

5. Performance Results

The four low-order Discrete Calculus methods derivethis paper might be considered more compléx (a
least conceptually) than classical methods foriisglthe heat equation. It is therefore of consiter interest

to see if this added complexity and the exactrimeat of the calculus has any actual tangible bisniefithe
solutions generated. This section will therefooepare the proposed methods with some classi finit
volume approaches on a number of test cases. ak&e diready shown that the methods are theorgticall
similar to some finite element methods so it is metessary to directly compare with those finitamant
methods.

A direct comparison of accuracy is difficult wheongparing node based and cell based methods. On 3D
tetrahedral meshes there are roughly 5 to 6 mdietban nodes. Cell methods therefore have dfisigmi
resolution advantage. On the other hand, nodedbasthods are far less computationally intensiss. a
compromise our ultimate metric of method perforneaincthis work will be level of accuracy obtainest the
computational cost.

This section first presents commonly used cell-dbafsgite volume methods, which are then used for
comparison against the Discrete Calculus methodsnexical tests illustrating the spatial and tempora
accuracy as well as the cost to obtain a desimaracy are then presented. Finally, heat traimsf@icomplex
geometry (a crank shaft) is considered and the atatipnal cost of the Discrete Calculus methods are
compared against the traditional finite volume radthin order to confirm the results establishedthzy
previous tests in a realistic problem configuration

5.1 Cell Based Finite Volume Methods
Given the restrictions of space and time we wilniet our attention to cell based finite volumethaels.

These methods also use the conservation equ%ﬁi’éﬁﬁ—) +DQ; =0, whereT, is typically located at the
cell centroid. The key in these methods is tateethe face fluxQ; , to the cell temperaturd,,. We wiill
consider three alternatives for this relationship.

5.1.1 Basic
The basic interpolation is,
Q =-+=GT, (16)

[u]
]
ki ko

This is very similar in form to the cell based Viood dual interpolation. However, the temperatigrao
longer located at circumcenters so this is notyr@a approximation for the normal gradient. A®sult this
formulation (while widely used) is zeroth order @é@te (nonconvergent) unless all cell centroids and

circumcenters are identical (such as Cartesian @seshuniform unstructured meshes). The distdncés
the perpendicular distance between the cell cep(grs—x_ ), /A, |.

13



5.1.2 Large Stencil
The solution to the lack of convergence of thedawthod is typically to determine the gradientach cell
and use a weighted average of the cell gradiemistezmine the normal heat flux,

Q; =—(WkUT,+ wklJT,)m, 17)

The problem is then to determine the gradientstaedveights. We determine the gradients using €5aus
theorem,

OT,=¢[(OT)dv=¢ Y Tn =4 > (T- P, (182)
cell faces cell faces
Assuming an interpolation for the face vallgs= W, T., + W T, gives,
OT. =% >, (WTy+ Wh-(W+ W Pn, =¢ >, “w, G] (18b)
cell faces cell faces

from this we can see that the diffusion matrix ysnmetric if W, =w, and W, = w,. For higher order
methods symmetry is not required, but for low ordethods such as this it seems to be a good idea.

Choosing volume weightsw, =V, /(V;+V,), results in a method where the face flux satistesiss’

theorem on the domain containing both cells toughirat face, and the face value is linearly intieeol
between the two cell values using the perpendicligéances (which is equivalent to assuming naatiari in
the cell temperatures tangential to the face).

Ultimately this calculation of the Laplacian terrses not only the cell neighbors, but the neighbbthose
neighbors in the stencil, and this is how we chdlsename. Calculating diffusion with this methedairly
expensive due to all the extra averaging involtedyét face temperatures and gradients). It alsdstto be
less accurate because of all the smoothing thatr®@t those averaging operators. Finally, thesgmee of
averaging means that spurious modes are presdmseTare discrete solutions which satisfy the Ilcapla
equation but are not linear functions. For exampiea Cartesian mesh, this method does not daep th
‘checkerboard’ mode.

5.1.3 Corrected

A compromise that is frequently used is to cortleetbasic method so that a normal flux is actuadlgulated.
When the mesh is uniform the accuracy and smaltitef the basic method is recovered. When thshmie
strongly distorted the correction keeps the mettwt/ergent. In the corrected method the flux isutated

from,
dif;

Q =-q, I, —~(kGT, -q @) o7 (19)
where d =X, — X, is the vector between the two cell positions, and=—(w,kOT,,+ Wk T, is

calculated using the large stencil approach destiifseviously. Whed is aligned with the normal the first
and last terms cancel and the basic method is esetyv

This approach does not produce a symmetric diffusiatrix. Often methods treat the basic part ef th
method implicitly (because it is symmetric) and togrection part explicitly. The stability of suehsplit
method may be compromised on highly distorted nwesheis approach has roughly the same cost as the
large stencil method, but often better accuracytdwmly a small influence from the larger stengikh the
basic stencil dominating.

14



5.2 Tests of Spatial Accuracy

The first test compares the accuracy of the theditional Finite Volume (FV) methods presentedha

previous section, with the intent of choosing tlestlof these methods for comparison against therdds
Calculus methods. The second test confirms thaDiberete Calculus methods are exact for lineactfans

even when the material properties are discontinaotesss the domain. The third test proves the seoater
convergence of the Discrete Calculus methods. Hagldantage of using the Voronoi dual mesh istithtied

in a fourth test problem.

For all the comparisons, the discreteelror norm is adopted for verifying the order oheergence of the

method,
N ) 1/2
I-2 = |:%Z (Tn - TnexaCt) } (20)

n=1

xact

where N refers to the number of unknowils, refers to the numerical solution afgf™® refers to the

analytical solution. In the cell-based methdgsis T, the cell temperature value.

5.2.1 Comparison of FV Methods

The steady state heat diffusion equation T
(O L4 = 0) on a unit square domain as shown in S e
Fig. 5 is used as a test case with the following
boundary conditions,
x=0 T=0 >o8r
x=1 T=1
-0 o= (21)
y=0 ay 0 S
y=1 §=0 e_——
¥ X

The mesh size (defined alx = (Vol/ NQl/ND Figure5. Typical mesh used for convergence studies.

where Vol is the entire domain volume, NC is th&ltemumber of cells in the domain and ND is the
dimensionality of the problem) is plotted againsteete L, error norm in Fig. 6 for the three FV methods
presented in section 5.1.

0.5 il

-©-0- Basic FV
0.1 -£-3- Large Stencil FV
-+— Corrected FV

0.01

. == 05
L >

0.001

Pt

| Order Line
0.0001

1E-5 L I [ N R B B or —— ; . . ) . A A A )
0.002 0.01 0.1 g g i

dx X

Figure 6. Spatial accuracy of classical FV methods. Figure7. Isolines of solution.
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It is observed from Fig. 6 that all the FV methdelsds to be first order accurate, and the mostraiecof
these (the Corrected FV method) will be subseguarged for comparing against the Discrete Calculus
methods. All the Discrete Calculus methods desdribehis paper were verified to achieve the exastwer

to machine precision for this problem. Typical $iolu contours are presented in Fig. 7.

5.2.2 Discontinuous Conductivity at an Angle

This problem is taken from Shashkov [35] and Matelal. [36]. Although the theory for discontiruso
coefficients only implies that the normal componehteat flux should be continuous, many numerical
methods also assume that tangential flux comporeetsontinuous at a discontinuity. Such methods
will have difficulties when solving for conductidghat occurs at an angle to the discontinuity.

The mesh (shown in Fig. 8) is divided into two dréfnt materials with different diffusivities alomige
interface x=0.5. Note that the discontinuity in theaterial is captured by the mesh. The diffusion
coefficients are defined as,

0<x<0.5
k=1 (22)
k, 0.5<x<1
Dirichlet boundary conditions are enforced such tha exact steady state solution is
a+bx+ cy 0<x<0.5
|a-biz+ b x+ cy 05<x<1 3)

This problem has a discontinuity in the tangeritiad at the material interface. The normal compuraf
the flux (k) is the same across the entire domain. Howevertahgential flux component ksc on the
left side andk,c on the right side of the interface. The numeregleriments employ a=b=c=1,=4 and
k,=1. The boundary conditions are applied to the daumes as shown below.

x=0 T=1+y
x=1 T=%+y
y=0,0<x<05 T=nx (24)

y=1,0<x<05 T= 22X
y=0,0.5sx<1 T= 4x- 0.
y:l,O.SS X<1l T=4x+ 0.!

The calculated temperature isolines for this pnoblee shown in Fig. 9. The solutions obtained by a
the Discrete Calculus methods agree with the ea@®iver to machine precision.

F 0.95—
r o.si
r o.7§—
r o.ei
=051 >-0.5§
| 0.4?
| o.ai
| 0.22
| 0.12
oF of | I ST NN S S S S NS N N1
025 0.5 0.75
X

1 L 1 L L 1 L L L 1 1 L O R S
0 0.5 1 0

|
1

X
Figure 8. Mesh with different diffusivities on Figure9. Isolines of temperature contours
either side of the interface (x=0.5). obtaibgdhe Discrete Calculus methods.
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5.2.3 Quadratic Problem

In the third test problem, the spatial accuracyth&f Discrete Calculus methods is compared with the
corrected FV method in a steady-state heat diffupimblem with a uniform source term S=4 and unit
conductivity. The same mesh employed in sub-secichl (Fig. 5) is used. Dirichlet boundary
conditions are imposed on the left and right bouiedaand homogeneous Neumann boundary conditions
are imposed on the top and bottom boundaries. éMaet solutionT(X) =2X —2Xx is a quadratic

function. The isolines are shown in Fig. 10 andgpatial accuracy is plotted in Fig. 11.

0.005

-6—¢- Node (Median Dual)
-s—v- Node (Voronoi Dual)
-8—8- Cell (Median Dual)
-©—6- Cell (Voronoi Dual)
*-X- Corrected FV

0.001

0.0001

1E-5

1E-6

ok

PR 2E-7 T N N I [
v LR { 0.002 0.01 0.1

X dx
Figure 10. Isolines of temperature Figure 11. Spatial accuracy of Discrete Calculus methods
contours for a non-linear problem

It is seen from Fig. 11 that all the Discrete Chisumethods exhibit close to second order convesgen
(because the mesh is very close to uniform).tt ise noted that the Cell (Median Dual) method gureed in
Fig. 11 is the Mixed method described in Sectié While both the median dual methods are moreratzu
than the classical FV methods, the mixed Voronai doethod tends to be less accurate than the Fioahet
on coarse meshes. As pointed out in sections argl14.2, the Voronoi dual mesh methods tend teée |
accurate if the circumcenter and the centroid efa#lls do not coincide. The fact that the Voramethods
show second order convergence in Fig. 11 is at#ibto the good quality mesh that was employedher
test. However, when the mesh quality decreases, feva Delaunay mesh, the circumcenter of the czeil
sometimes lie outside of the cell causing largersrin the solution. In order to illustrate thishbeior, the
subsequent test compares the Median and Voronbirsiihods on a stretched mesh.

5.2.4 Median Dual vs Voronoi Dual Methods on atBSlved Mesh

In this test, a series of stretched meshes (asrshowig. 12) is used to compare the accuracy ef th

Median and Voronoi Discrete Calculus methods enmiplpyhe linear problem of section 5.2.1. While the

median-dual Discrete Calculus methods are stiltet@machine precision on these meshes, the Vorono
dual methods show significant errors as depictedigy 13 (Note that this figure does not show the
Medial Dual curves as they are exact).
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Figure12. Stretched mesh to compare Figure 13. Accuracy of Voronoi Dual Methods
median dual & Voronoi dual methods stretched meshes
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It is seen from Fig. 13 that the errors are noy datge even for a linear problem, but the err@sns to
increase as the mesh becomes finer. This is dilre tiact that as the mesh gets finer, there are meerted
Voronoi cells with a resulting increase in the alleerror. It is for this reason that the addethptexity and
cost of the Median dual methods may be advantageaasnplex geometries.

5.3 Testsof Temporal Accuracy

While any time advancement scheme can be usedivétDiscrete Calculus methods, treating the diffusi
term in a fully implicit manner would lead to asfiorder temporal accuracy. In order to obtaincarse order
temporal accuracy, it is preferable to employ thpdzoidal rule. As an example, Eq. 15 for the Mlik&ethod
may be rewritten as,

FMM -aD }(Tﬁ(t“ﬂ)HﬁM,,CVCTﬁ(t“)+(1—a) DQf(t”)]

-1 n+l BC 25
G (Mg, ) L Q (™) Ty .

wherea is the “implicitness” of the diffusion term. Witli=1, the time advancement scheme becomes fully
implicit and witha=0.5, the scheme turns into a trapezoidal rulechvisi employed for this test.

In this test, an unsteady diffusion equation isresblon the mesh considered in section 5.2.1. Tiialin
conditions and boundary conditions are specificilisvs-

x=0 T(t)=0
x=1 T()=0 (26)
BCs y:O Lﬂ(/t):o
— oT (t) —
y=1 %2=0

In Egn. 26, prefers to the x-component of the face normal veat@ach face and k refers to the diffusivity
(chosen as unity for this problem). The initial dirp

is chosen as 0.001 and the simulation is run wp 1 01 L oo Node gtedian Dual)
final time of t=0.002. The analytical solution tust T2 Gl edian Dua)
) > oo -6—6- Cell (Voronoi Dual)
problem is T(X, t):Wexp{—(X— O.E) /4(}. '
The simulation is run with various values of thedi " oo
step (dt) and the L2 norm of the error is compuatiec
the same final time, t=0.002. The result is ptbite o000
Fig. 14, which confirms the second order tempo mel 111 R
accuracy of all of the four Discrete Calcult e '

methods. The computed solution is compared w Figure 14. Temporal accuracy of DC meth.
the exact answer at t=0.002 in Fig. 15.

! ! ! L 1 L ! ! !
0.8 0.9 1 o 0.5 1

X X
Figure 15. Solution to the unsteady diffusion problem at G€2.
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5.4 Computational Cost for a Desired Accuracy

Although the Discrete Calculus methods were shawhet more accurate than the traditional lower order
methods in the previous tests, it might be moreoitamt to compare the cost-effectiveness of therbBis
Calculus methods against the classical methodscd;iéime computational cost (in terms of the CPe}iis
plotted against the L2 error norm in Fig. 16 far groblem considered in section 5.2.3, which readippares
the cost incurred for a desired accuracy level.

0.2

0.1

+—+ Basic FV
== Large Stencil FV
4 Corrected FV

0.01

Cost per

+—+ Node (Median Dual)
& Mixed (Median Dual)
-+ Corrected FV

0.001 0.001

Computational Cost per Iteration

0.0002 UL e S L LU L 00002 L L 111 L Lo
5E7  1E6 = 0.0001 0.001 SE-5 0.0001 0.001 0.01
L2 L2

Figure 16. Computational cost incurred for Figure 17. Costincurred by FV methods
a desired accuracy level

Fig. 16 compares the median dual Discrete Calaulethods with the Corrected FV method. It is obsgrve
that for any given accuracy level the Discrete @ak methods are always more cost-effective than th
traditional methods. Also, it is clearly seen ttia cost for the Corrected FV method tends to aszanore
rapidly than the Discrete Calculus methods as #w®el fior accuracy increases. In Fig. 16, the otherRV
methods are not used for comparison in order targéclarity. However, Fig. 17 compares the coshef
three FV methods verifying that the Corrected F\thoe is the most cost-effective method of the tlirge
methods considered.

55Heat Transfer in a Crank Shaft
All the Discrete Calculus methods presented aréicafye on any general 3D unstructured mesh, aithale
previous tests were run on 2D geometries. In dadélustrate this, a more realistic problem is sidered in
this section, which involves solving Egn. (2) onamplex 3D geometry. A typical mesh consideredtier
analysis is shown in Fig. 18. The coarsest meskidered has 864 nodes and 2339 cells and the fire=st
contains 73875 nodes and 360512 cells. Fixed teywer(Dirichlet) boundary conditions are appliedtte
inlet and outlet faces (crankshaft ends) and thessare insulated. Typical temperature contourprasented
in Figure 19.

N

Figure 18. Crank Shaft Mesh Figure 19. Temperature contours along the crankshatft.
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The heat flux through the inlet and outlet facehki¢v were verified to be equal) are measured agties
mesh size for the median-dual Discrete Calculushoakst and extrapolated to obtain the “exact” heat fl
This exact heat flux is then employed to computesifnor in the finite volume and Discrete Calcuhethods
(Fig. 20). The mesh size (dx) is computed asube coot of the average cell volume.

+—+ Node

~— Corrected FV

Heat F
3
T
=
2
Computational Cost per Iterati
°
UL AL LU B A R

2 L I 0.001 L T 1
05 1 5 05 1 10 20

dx %Erro

Figure 20. Accuracy of Discrete Calculus Figure 21. Cost for a desired accuracy for the
and finite volume methods. Crank shaft testecas

The computational time taken per solver iteratmthien plotted against the percentage error, wiiids
the cost required to obtain a certain accuracyl lgvigure 21), which is in agreement with the réeswlf
the previous section. It is interesting to ndia the cell based and node Discrete Calculus rdsthve
very similar accuracy/cost performance despitefdlaethat the cell based method uses over fifteerem
unknowns than the node based method for the sarsle. me

6. Discussion

The Discrete Calculus methods, as developed inwtbi&, have the philosophical flavor of finite vote
methods. In particular, the algorithms are indépenof cell shape and can be applied to arbifralygonal
meshes. There is no need to explicitly specify lihsis functions or interpolation functions beirggdi
Finally, like finite volume methods there is a Ibeaergy conservation statement for each cell at dell.
However, there is a close relationship to Finiteni#nt methods. For the median dual mesh, bothdtial
and cell based methods are closely related toircditidie element discretizations. The route tghar order
(Subramanian [19]) also is similar to finite elemerethods, since more unknowns, not a larger $téaci
used. In this paper we have presented the fiakeme looking versions of the method, but it skiolé
noted that Galerkin Finite Element methods can hésconstructed using the Discrete Calculus approac
by exactly discretizing the weak form of the eqoiasi (see Mattiussi [18]).

The Discrete Calculus approach is an attempt tceldeva methodology for developing numerical
methods that capture physics well. The key is xXacty discretize the physics and calculus before
making any approximations. This means all therdiscdifferential operators are still exact and mim
the mathematical properties of the continuous wfigal operators. All approximation is then made i
the algebraic constitutive material equations wipdmgsical approximation has already been performed.

Tests of these Discrete Calculus methods demoedinattheoretically predicted order of accuraceg, th
ability to accurately capture solutions with shdrpcontinuities in the material properties, andettdy
accuracy/cost than classic low-order diffusion rodth
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