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S c i e n t i f i c  C o m p u t i n g 
w i t h  G P U s

In this scenario, computational fluid dynamics simulations of turbulence are performed with 
64 GPUs and an optimized CFD algorithm using communication/computation overlapping. 
Detailed timings reveal that the GPUs’ internal calculations are so efficient that operations 
related to data exchange between compute nodes now cause a scaling bottleneck on all  
but the largest problems.

Computational Fluid  
Dynamics Simulations Using  
Many Graphics Processors

C omputational fluid dynamics (CFD) 
is a reasonable prototype for many of 
the algorithms used in computational 
science today. The solution of the 

Navier-Stokes equations for the evolution of fluid 
flow is reasonably complex numerically and in-
volves solving a nonlinear, coupled system of hy-
perbolic and elliptic partial differential equations 
(PDEs). At the algorithm level, CFD is funda-
mentally quite similar to computational electro-
magnetics (Maxwell’s equations), computational 
physics (Schrödinger’s equation), computational 
biology (protein folding), computational solid me-
chanics (using finite-element methods), and many 
other applications in science and engineering. 
The Navier-Stokes equation for incompressible  
flow is

 
 

For turbulence simulation, the large range 
of spatial scales means these equations need 
to be discretized on very large meshes involv-
ing an order of many billions of unknowns. 
Therefore, both memory and time constraints 
force the solution to be computed in parallel 
on many processors. This article is concerned 
with the problems inherent in massively paral-
lel GPU calculations, because the speed of GPU 
processors moves GPU supercomputers into a 
new performance regime. In this article, our 
focus is on GPUs as the processing hardware, 
and we present an algorithm to optimize both 
the local GPU performance and inter-GPU 
performance. For some background informa-
tion on this topic, see the sidebar, “Related 
Work in Computational Fluid Dynamics with  
GPUs.”

implementation
In our implementation, the single-instruction, 
multiple-data (SIMD) core count (which is nor-
mally 240 cores on a single GPU) is increased to 
15,360 (GPU cores) by using many GPUs together. 
The GPUs communicate via their CPU hosts and 
a message passing interface (MPI). Next we de-
scribe the GPU supercomputer hardware used for 
these simulations.
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hardware
Our work was primarily computed on the Lincoln 
supercomputer housed at the US National Cen-
ter for Supercomputing Applications (NCSA). 
This machine has 96 Tesla S1070s (384 GPUs 
total). Each GPU has 4 Gbytes of memory and 
a theoretical bandwidth of 102 Gbytes per sec-
ond. Also, each GPU has a PCI-Express 4× con-
nection (2 Gbytes per second) to its CPU host. 
We also performed tests on Orion, which is 
an in-house GPU machine containing a GTX 
480, a Tesla C2070, and two GTX 295 cards.  

We’re interested here in comparing the GPU re-
sults to the CPU cores on Lincoln (a quad-core 
Intel 64 Harpertown).

Our low-level CFD algorithm’s structure is dic-
tated by two key features of the GPU hardware. 
First, the GPU’s read/write memory is one order 
of magnitude faster when the memory is read lin-
early. Second, each GPU multiprocessor has fast 
on-chip memory (shared memory), which serves 
essentially as an addressable program-supervised 
cache. CFD requires considerable random memory  
accesses (even when using structured meshes). 

Related WoRk in  
Computational Fluid  
dynamiCs With Gpus

GPUs typically have 32 single-instruction, multiple-data 
(SIMD) cores on a multiprocessor, and many multi-

processors on a GPU chip (16 on the Fermi). In our work, 
the core count is further increased to 15,360 GPU cores by 
using many GPUs together, with the GPUs communicat-
ing via their CPU hosts and the message passing interface 
(MPI) protocol. GPUs have the advantage of high memory 
bandwidths (178 Gbytes for the M2090). This makes them 
attractive for memory-bound algorithms. Examples of 
such algorithms include bioinformatics,1 graph theory,2 
and partial differential equation (PDE) solutions.3 GPUs 
have the disadvantage of consuming more power than 
CPUs, and being more difficult to program to achieve high 
efficiency.

Early examples of CFD calculations on GPUs used 
OpenGL processing and were very different because the 
GPU hardware itself has changed radically over the last 
five years. Erich Elsen and his colleagues4 and Andrew 
Corrigan and his colleagues5 discuss more recent imple-
mentations that involve the CUDA programming para-
digm. Paulius Micikevicius6 applied a 3D finite-difference 
computation using CUDA on four GPUs and achieved 
linear speedup for up to four GPUs. Diego Rossinelli and 
his colleagues7 described a 2D simulation of a bluff body 
using a vortex particle method on the GPU that achieved 
a speedup of 25. Inanc Senocak and his colleagues8 dis-
cretized the Navier-Stokes equations on a uniform Carte-
sian staggered grid with a second-order central difference 
scheme. They achieved an 11-times speedup compared to 
an eight-core CPU (using OpenMP) for a single GPU and  
a 130-times speedup for 128 GPUs (versus an eight- 
core CPU). Wei Ran and his colleagues9 implemented 
a 1D space-time conservation-element and solution- 
element (CESE) method and applied this to shock-
tube problems. They achieved a maximum of 71-times 

speedup with a 9800 GT compared to the single core of 
the Intel E7300 CPU.

Today, several single GPU codes for computing fluid flow 
are based on Jos Stam’s stable scheme.10 These codes are 
excellent for visual purposes but aren’t sufficiently accurate 
for physical simulations.
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Roughly 90 percent of these slow random memory 
accesses can be eliminated by

•	 reading large chunks of data into the shared- 
memory space linearly, which is fast for all accesses;

•	 operating on the data in the shared memory; 
and

•	writing the processed data back to the main 
GPU memory (global memory) linearly.

This optimization is the key to speeding up the 
GPU 45 times more than a CPU.

software
Our solution method uses a three-step, low- 
storage Runge-Kutta scheme for time advance-
ment that’s second-order accurate (in space).1 
This scheme is stable for eigenvalues on the 
imaginary axis less than 2, which implies CFL < 2 
for advective stability (where CFL is the Courant-
Friedrichs-Lewy number). Our simulations al-
ways use a maximum CFL < 1. The diffusive 
terms are advanced with the trapezoidal method 
for each Runge-Kutta substep, and the pressure 
is solved using a classical fully discrete fractional 
step method,2 although an exact fractional step 
method is also possible.3 The solution of the el-
liptic pressure Poisson equation dominates the 
solution time (roughly 90 percent), so we present 
further details of this portion of the code in the 
next section. We also present timing results later 
that focus on this part of the algorithm.

For spatial discretization, we use a second- 
order Cartesian staggered mesh scheme. This not 
only conserves mass and momentum to machine  
precision, but because it’s a type of discrete cal-
culus, this scheme also conserves vorticity (or 
circulation) and kinetic energy in the absence of 
viscosity.4 As a result, there’s no artificial viscos-
ity or diffusion in this method except for that 
induced by the time-stepping scheme.5 In ad-
dition, the staggered mesh discretization is free 
from pressure modes and the need for pressure 
stabilization terms. This scheme’s physical fidel-
ity makes it highly appropriate for direct numeri-
cal simulations of turbulence in geometries with 
walls (we provide a summary of references else-
where6). A Cartesian mesh method is also appro-
priate for most large simulations of turbulence. 
The goal of fluid simulations on supercomputers 
that use many GPUs is typically to study turbu-
lence, not complex geometries. Nevertheless, the 
code is currently being converted to use an un-
structured mesh, and in future work we’ll discuss 
this aspect of the implementation.

We performed our CFD simulations on 5123 
meshes (with roughly half a billion unknowns) 
with fully periodic boundary conditions on 
the exterior of the computational domain, and 
wall-boundary conditions on interior embedded  
objects. We provide further simulation details 
elsewhere.7

partitioning
All PDE solution methods ultimately involve 
placing numerous unknowns (that approximate 
the solution) into a 3D domain and evolving those 
unknowns in time. Parallel-solution algorithms 
typically partition these unknowns spatially 
among the available processing units in groups 
called subdomains.

To calculate a coupled solution, subdomains must 
invariably communicate data with their neighbors. 
In these simulations, the amount of subdomain 
communication is minimized by choosing subdo-
mains with minimal surface area. Only data on the 
boundary, or surface, of the subdomain is commu-
nicated, and communication occurs only with the 
six local neighboring subdomains. For example, 
for a 5123 simulation running on 64 GPUs, each 
subdomain is 1283 and each GPU communicates 
6 × 1282 = 0.1 million data items (or approximately 
5 percent of its data). For optimal scaling, the MPI 
must be “hidden” by overlapping communication 
with useful computations.

For an efficient GPU solution, the subdomains 
(one each per GPU) must also be further parti-
tioned into chunks (what Nvidia calls blocks). On 
the GPU, each multiprocessor will handle one 
or more chunks of data. In our implementation, 
each chunk is 16 mesh points in x (or a multiple 
of 16), any dimension in the y direction (though 
we typically chose a multiple of 16 here), and the 
full subdomain extent in the z direction. For ef-
ficient processing, it’s best to have at least two 
chunks per multiprocessor. The GPU multipro-
cessors can hide memory latencies by having two 
chunks active at the same time. The size of 16 in 
the x direction is dictated by the fact that the GPU 
multiprocessors each have 32 SIMD cores that 
read data much more quickly (“coalesced memory 
access” in Nvidia terminology) if they can do it 
in groups of 16. We can construct subdomains 
and chunks for unstructured meshes using mesh- 
partitioning software such as Metis (see http://
glaros.dtc.umn.edu/gkhome/views/metis).

All CFD algorithms are strongly memory 
bound. The memory speeds are therefore critical 
to the code’s efficiency and scaling. The key is-
sue with multi-GPU computing is that there are 
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a minimum of three widely differing memory 
speeds. On a GPU, a chunk of data typically is 
read into and operated on using fast shared mem-
ory (which is effectively a cache). The amount of 
shared memory is fixed by the hardware and is 8 
(Tesla S1070) or 24 Kbytes per chunk when run-
ning two chunks per multiprocessor on the Fermi 
GPUs. A chunk’s boundary data is accessed via 
an order-of-magnitude slower random-memory 
reads to the GPU’s main memory. Subdomain 
boundary data must also be transferred, and is 
accessed via MPI calls that are yet another order 
of magnitude slower. Although our CFD imple-
mentation aggressively minimizes the number of 
slower memory accesses, these boundary com-
munications still impact the code performance on 
everything but the largest problem sizes.

optimizations
Memory allocation and deallocation are expensive 
on the GPU (and the CPU), because they require 
calls to the operating system. To avoid this, the 
code sets up its own temporary arrays at start up. 
Any subroutine can hold and drop these quickly. 
They’re only deallocated when the code completes.

Grid information such as Δx, Δy, Δz are stored 
in a special GPU memory space called constant 
memory. Constant memory is cached, and it’s 
therefore fast for repeatedly called items, such as 
geometry parameters.

Data transfers between the CPU and GPU are 
relatively slow and expensive (5 to 10 Gbytes/s). 
Almost all data for the CFD calculation therefore 
resides on the GPU and stays on the GPU. We 
only copy data to the CPU when it’s needed (for 
MPI, or to write data to files).

We wrote the code so that low-level operations 
come in either a CPU or GPU version. The user 
makes a choice at compile time, and then the com-
piler optimizes the code for that given hardware.

Algorithm Details
We achieved considerable efficiency through our 
optimized algorithm. Here we detail how it was 
implemented.

gpu implementation
The code solves the pressure Poisson equation 
using a polynomial preconditioned conjugate 
gradient (PPCG) iterative method. The PPCG 
method is an efficient iterative method and is 
guaranteed to converge for a symmetric, positive-
definite matrix. The method is composed of one 
large sparse-matrix multiply (w = Mp), one large 
sparse-preconditioner-matrix multiply (z = Pr), 

two scalar (dot) products (α = z × r and γ = p · w), 
and three alpha X plus Y (AXPY) operations  
(r = r − αw, x = x + αp, p = z + βp). The three 
AXPY parts are easily mapped to the GPU ar-
chitecture. However, the most computationally 
intensive part of the solution procedure is the sparse- 
matrix multiplies that compute the Cartesian- 
mesh discrete Laplacian (M) and its approximate 
inverse (P). In the current implementation, the 
preconditioner has the same sparsity pattern as 
the Laplacian matrix, and it’s therefore imple-
mented in exactly the same way as the Laplacian. 
To compute the Laplacian matrix for a particular 
cell, all neighboring cells and the central cell are 
needed (seven cells in 3D). The pseudocode for 
the operator M is

w[i, j, k] =  p[i, j, k] × diag[i, j, k] + (p[i + 1, j, k] 
+ p[i − 1, j, k]) × Δx2[i] + (p[i + 1, j, k] 
+ p[i, j − 1, k]) × Δy2[ j] + (p[i, j, k + 1] 
+ p[i, j, k − 1]) × Δz2[k].

When performed naively, the seven-point ma-
trix stencil reads each data item seven times from 
the main GPU memory. Only the first three values 
are linear, stride-one memory accesses and there-
fore fast; the others are large-stride memory ac-
cesses and essentially random memory operations. 
We made the code more efficient using a modi-
fied version of Paulius Micikevicius’ implementa-
tion.8 This involves reading the data once into the 
shared memory on each GPU multiprocessor, and 
then accessing it from this fast-memory location 
seven times. To do this, each multiprocessor keeps 
three XY planes of data (from the data chunk) in its 
memory. The middle XY plane contains five of the 
stencil points (in the X and Y directions) saved in 
shared memory (in the ps temporary variable that 
we discuss more in a bit), while the upper and lower 
XY planes contain the sixth and seventh stencil 
values (just above and below the middle XY plane) 
saved in registers. After the discrete Laplacian is 
computed for the middle plane, the middle (shared 
memory) and upper (register memory) planes are 
copied to the lower (register memory) and middle 
(shared memory) planes, respectively. The upper 
plane then reads in the new data from the main 
(global) GPU memory to the register memory. In 
pseudocode, ps is now a planar array in fast-shared 
memory, and pupper and plower are in registers:

w[i, j, k] =  ps[i, j] × diag[i, j, k] + (ps[i + 1, j] 
+ ps[i − 1, j]) × Δx2[i] + (ps[i, j + 1] 
+ ps[i, j − 1]) × Δy2[ j] + (pupper + plower) 
× Δz2[k].
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After this is computed for every i, j value in the 
chunk, the planes are shifted up and new data 
is read-in (for pupper) only. This scheme requires 
reading only one input value for every output value  
that’s computed (rather than seven). It can be 
adapted to unstructured meshes fairly easily using 
explicit neighbor pointers instead of [i, j, k] loca-
tion indexing.

However, to compute a 16 × 16 × NZ chunk of 
data (where NZ is the chunk size in the z-direction),  
an 18 × 18 data plane of input is required 
(minus the four corners). This is read in as a 16 × 18 
block (with stride-one fast access), and two 1 × 16 
strips for the two sides. These last two strips 
have a stride equal to the subdomain’s size in the  
x-direction, and therefore are much slower to 
read. It therefore takes roughly the same amount 
of time to read the two 1 × 16 strips as it does the 
rest of the data (18 × 16). This is the first example 
where the internal GPU data is processed so effi-
ciently that the unusual operations (two boundary 
strips in this case) take just as much time.

The other option would be to read 16 × 16 
blocks efficiently (with no side strips) but only 
compute a 14 × 14 region of the stencil. Because 
the SIMD cores process 16 items at a time, this 
means that the code would have an instruction  
divergence—that is, some cores would perform an 
operation, while other cores do something else. 
On these SIMD cores, this results in slower ex-
ecution (by about a factor of two). In addition, this 
approach means the multiprocessors are reading 
blocks of 16 that overlap at the edges. This makes 
the 16 × 16 read slower. Therefore, the advantage 
of reading no boundary strips is actually lost.

The second major optimization in the PPCG 
algorithm is to perform the two dot products 
at the same time as the matrix multiply and  
preconditioner-matrix multiply (one dot product 
along with each matrix). Both arrays for the dot 
product are already in fast-shared memory when 
performing the matrix multiply, so this saves 
reading the two arrays for each dot product (four 
array reads total). The dot products are therefore 
essentially free of any time impact on the code, 
except that their final result must be summed 
among all of the GPUs. This requires an MPI 
all-to-all communication that can’t be hidden by 
any useful computations (but the amount of data  
communicated is small—one word per GPU). It’s 
possible to restructure the PPCG algorithm so that 
it overlaps dot-product summations with computa-
tion; however, this also leads to a PPCG algorithm 
with more storage and more memory read/writes. 
In any case, we wouldn’t expect the modified 

PPCG algorithms’ speed improvement to be  
significant.

Finally, with 5123 meshes, naive summation (for 
turbulence averages) can lead to round-off errors 
on the order of 109 times the machine precision 
(for single precision this would mean a first-order 
error). Although we use double precision in all 
computations, we still perform the summation 
in stages to reduce the round-off error. The 3D 
array is first collapsed into a 2D array using the 
GPU by summing along the Z direction. Fur-
ther reduction is then performed in the Y direc-
tion, then the X direction on the CPU, and then 
by summing the results from all the GPUs us-
ing MPI all-to-all communication (four stages in  
total). This procedure only loses roughly two 
decimal places of accuracy during the summation, 
and allows the computation’s expensive portion 
(the first reduction to XY planes) to be performed 
on the fast GPUs.

multi-gpu implementation
The approach to parallelism when using many 
GPUs together is quite different from the type of 
parallelism used within each GPU. The key as-
pect of the inter-GPU algorithm is the relatively 
long communication times (using MPI) between 
GPU subdomains. These long times are caused 
by GPU-to-CPU copy times and CPU-to-CPU 
MPI communication times. For a transfer, all data 
must be copied from the GPU to the CPU over 
the PCI Express bus. Only then can the CPU core 
use MPI (or CPU threads) to communicate the 
data. The MPI (or thread) communication then 
occurs at CPU memory speeds (which are slower 
than GPU main-memory speeds). The Lincoln 
supercomputer has an InfiniBand single-data rate 
(SDR) serial link. Orion (our in-house machine) 
uses MPI on shared memory, which is as fast as 
MPI can theoretically function (and is about  
8 percent slower than using threads directly).  
After the MPI calls, the data must be copied back 
to the GPU.

To hide the copy time and the slow MPI commu-
nication times, data is prefetched and overlapped 
with GPU computations as much as possible. A 
subroutine’s basic structure (see Figure 1) is there-
fore as follows:

•	 Step A. On the GPU, load the six boundary 
planes of the subdomain data (which resides 
in the GPU’s main memory) into six smaller 
(stride-one) arrays. This requires the GPU 
and usually can’t be overlapped well with GPU 
computations.
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•	 Step B. On the GPU, start the internal calcu-
lation. This step is the subroutine’s primary 
action.

•	Step C. Copy the small boundary arrays 
from step A to the CPU. This can overlap with 
step B.

•	 Step D. When step C is finished, send/receive 
the data planes using MPI. The CPU handles 
all MPI operations and is otherwise idle, so this 
can also overlap with step B.

•	 Step E. Copy the received data from the CPU 
back to the GPU. Again, this still can overlap 
with step B.

•	 Step F. When both steps B and E are finished, 
apply the boundary data to the calculation.

On the latest GPU architecture (Fermi), it’s 
possible to run up to 16 kernels at the same time. 
So in theory, we can execute steps A and B at the 
same time if there are available GPU resources. 

In practice, the code rarely goes faster when do-
ing this. If the internal calculation (step B) takes 
long enough, it can hide the communication oc-
curring in steps C, D, and E. Step F is the por-
tion of the subdomain boundary calculation that 
can’t be hidden. Typically, the final boundary op-
eration (step F) involves some random memory 
writes, and it can therefore never be optimized as 
well as the internal bulk calculations (step B). For 
smaller subdomain sizes (323 per subdomain and 
less), steps A and F can take longer than step B 
(the actual bulk calculation).

Results
Now that we’ve outlined the implementation de-
tails, let’s consider the results.

scaling
Figures 2 and 3 show the speedup (versus the same 
number of CPU cores) and millions of cell updates 

Figure 1. Typical flowchart for subdomain processing. Red indicates boundary operations (running on 
stream 2), green indicates the primary bulk operation (running on stream 1), and purple indicates message 
passing interface (MPI) send/receive instructions (running on the CPU).

Step A:
Extract the
boundaries

Step C:
Copy; 
GPU → CPU

Step E:
Copy;
CPU → GPU

Step F:
Fix the
boundaries

Step B: Execute the interior

Step D:
Send/receive the
data planes with
MPI

Figure 2. Strong scaling results. (a) Speedup and (b) performance per processor for strong scaling of the 1283, 2563, and 5123 
computational fluid dynamics (CFD) problem on Lincoln using GPUs and CPUs. MCUPS stands for millions of cell updates per 
second.
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per second per GPU or CPU core (MCUPS per 
processor) for strong and weak scaling results, 
respectively. MCUPS represents how many mil-
lions of finite-volume cells can be updated (one 
per PPCG iteration) during a second of wall-clock 
time. In the strong scaling situation, the problem 
size is constant, so as the number of processors 
increases, the problem size per processor grows 
increasingly smaller. For strong scaling, the high-
est speedup (45 times) occurred for 16 GPUs 
compared to 16 cores (on four CPUs). In the weak 
scaling situation, the problem size per processor is 
constant, so as the number of processors increases, 
the communication times can grow larger. In the-
ory, the MCUPS per processor is directly related 
to the hardware efficiency, and should look like 
a horizontal line (a constant). As Figure 3 shows, 
from 2 GPUs to 64 GPUs the performance loss 
is less than 50 percent. (One GPU and one core 
can each access more memory bandwidth and 
therefore perform better than when the memory 
system is loaded to its typical state). Also, using 
64 GPUs on the Lincoln supercomputer means 
using 32 server nodes and therefore four times 
more network traffic than when computing with 
64 CPU cores (which requires using only eight 
server nodes).

poisson solution
Now let’s analyze the code’s performance on one 
GPU on Orion. Timings indicate that 87 percent 
of the code-execution time is spent in the PPCG 
solver (which solves for the pressure and implicit 
diffusion terms), and 50 percent of the overall 

time is spent in the sparse-matrix multiply sub-
routines alone. Figure 4 gives a breakdown of the 
time spent on the PPCG and Laplace algorithms. 
The summation item in Figure 4b includes copy-
ing the dot product results from GPU to CPU, 
plus the last steps of summation on the CPU. 
As you can see, executing the interior (step B in 
Figure 1) is the most time-consuming part of the 
Laplace solver. Copying time plus using the MPI 
for the largest cases is still four times smaller than 
interior time. So on Orion, subdomain problem 
sizes of 1283 per GPU and larger are sufficient 
to hide the MPI and copying time. On Lincoln, 
this isn’t actually true, because the copy time 
is four times slower (the dashed black line in  
Figure 4b)—so it always is as large as the use-
ful computation time. Current GPUs don’t have 
enough memory to handle problem sizes greater 
than 2883 grid points per GPU.

Because every node must send data on its 
boundaries to other nodes, it must copy six 
boundary surfaces to the CPU. Thus, steps A, C, 
D, and E scale the same as N2. But step B (solving 
the interior points) grows at the same rate as N3. 
As we mentioned, Lincoln has four times slower 
bandwidth between the CPU and GPU. Figure 4 
shows the extrapolated time for copying between 
the CPU and GPU on Lincoln without MPI time. 
As you can see, even 2563 copying times barely 
overlap with domain computation.

In addition, we used the Nvidia Parallel Nsight 
tool to analyze the Laplace matrix multiply routine 
when applied on a Tesla C2070 GPU on Orion.  
Figure 5 shows the timeline for the Laplace  

Figure 3. Weak scaling results. (a) Speedup and (b) performance per processor for weak scaling of the 1283 and 2563 CFD 
problem on the Lincoln supercomputer using GPUs and CPUs.
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Figure 4. Code performance. Time for the (a) polynomial preconditioned conjugate gradient (PPCG) and (b) Laplace 
subroutines for different problem sizes. AXPY stands for alpha X plus Y; MPI stands for message passing interface; and  
N is the problem size (x-axis).
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Figure 5. Laplace matrix multiple routine performance on a Tesla C2070 GPU on Orion. Timeline for a Laplace kernel for  
(a) 643, (b) 1283, and (c) 2563 problem sizes on one GPU. This figure highlights the fact that for small problem sizes (such 
as that in Figure 5a) the GPU is so fast at computations (Figure 5b) that the time associated with communication operations 
(Figures 5c through 5e) can’t be hidden.
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matrix multiply from this software for problem 
sizes of 643, 1283, and 2563.

Figure 5a shows the 643 problem size, which 
doesn’t completely hide communication times. 
Although the actual MPI time overlaps with com-
putation (just barely), the copy back to the GPU 
doesn’t overlap well. In addition, it takes a long 
time for the boundary fix (step F) to load to the 
GPU and start executing (the bright green is  
idle GPU time). This case is strongly affected by 
the GPU synchronization delays. Synchroniza-
tion takes on the order of 200 μs to execute, which 
is the same order of magnitude as the copy com-
mands themselves. In addition, it appears to pre-
vent loading of the Fix kernel code to the GPU, 
which can take yet another 200 μs if it’s not per-
formed preemptively.

The latter two simulations show better com-
munication overlapping. On Orion, the 1283 case 
even has some leeway for expanded MPI com-
munication times. However, on Lincoln, the two 
copy times are four times larger and exceed the 
computation time. Lincoln’s successor, called 
Forge, is expected to perform the same as Orion 
with full PCI Express bandwidth to the CPU 
memory. For the 1283 case, the boundary com-
puting time (steps A and F) is 23 percent of the 
bulk time (reducing the code’s effective perfor-
mance by roughly the same amount). In an ideal 
calculation, this boundary processing would be as 
fast as the bulk, and therefore take negligible time 
(4.7 percent of the bulk).

The 2563 case shows relatively small communi-
cation times compared to the computations. On 
Lincoln, however, the communication is 75 per-
cent of the computation, and the overlap barely 
occurs. The boundary-processing time is now 
down to roughly 8 percent of the bulk compu-
tation time. This large problem size involves  
67 million unknowns and requires 2.7 Gbytes 
of memory for double-precision calculations. The 
Tesla S1070 has 4 Gbytes of memory, so this is 
roughly the largest problem size possible. Less-
expensive retail GPUs typically have only 1.5 
Gbytes of memory and a maximum problem size 
that’s about half this simulation size.

W e discovered that synchro-
nization can profoundly ef-
fect GPU performance. This  
is particularly true for smaller 

subdomain sizes, such as 643 per GPU. With 
only one fourth of 106 operations, the GPU 
executes code faster than it can synchronize.  

The cudaThreadSynchronize command some-
times takes 200 ms and can stop the CPU from 
loading the next executable kernel to the GPU. 
The cudaStreamSynchronize command is 
similar, and makes the CPU and GPU stall if 
the specified stream is still running. However, if 
the stream has already finished, cudaStream
Synchronize doesn’t take as much time. This 
code uses implicit synchronization (no explicit 
commands) as much as possible.

The PCI Express bandwidth is a bottleneck in 
the multi-GPU performance. Even though the 
amount of data being sent is small (on the order 
of 5 percent of the total data being processed by 
the GPU), the slow speeds make this unusual task 
a performance bottleneck. From 2007 to 2011, the 
GPU main-memory bandwidth almost doubled, 
but the PCI Express speed available on the GPUs 
hasn’t changed.

These bottlenecks leave the GPU with a fairly 
narrow operating range in terms of the number of 
unknowns per subdomain that the GPU should 
process. With less than one million mesh points, 
CFD calculations don’t have enough internal work 
to hide communication times. And with more 
than four million mesh points, standard GPUs 
run out of memory, while Tesla GPUs can go up to 
four times larger (16 million mesh points). Chunk 
sizes are also fairly constrained. The number of 
chunks should be a multiple (two or greater) of 
the number of multiprocessors. Chunk sizes can 
vary from 162 × NZ to 322 × NZ, but are probably 
best sized at 322 × NZ to optimize shared (cache) 
memory use.

Although these observations aren’t surprising, 
they do highlight an emerging problem in scien-
tific computing: common operations are now so 
fast that they no longer control code performance 
and unusual operations (related to either chunk or 
subdomain boundaries) are now so out of balance 
with these fast operations that they control the 
performance on everything but the largest prob-
lem sizes. We’ve highlighted this problem here 
with GPU hardware, but it will soon be a primary 
issue with CPU hardware as well. In essence, a 
form of Amdahl’s law applies here, which states 
that small amounts of poorly performing opera-
tions can still have a large overall effect on the 
code’s total performance. It’s therefore insuffi-
cient to design hardware that only speeds up com-
mon operations. 
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