
2 This arTicle has been peer-reviewed. Computing in SCienCe & engineering

S c i e n t i f i c C o m p u t i n g
w i t h G P U s

In this scenario, computational fluid dynamics simulations of turbulence are performed with
64 GPUs and an optimized CFD algorithm using communication/computation overlapping.
Detailed timings reveal that the GPUs’ internal calculations are so efficient that operations
related to data exchange between compute nodes now cause a scaling bottleneck on all
but the largest problems.

Computational Fluid
Dynamics Simulations Using
Many Graphics Processors

C omputational fluid dynamics (CFD)
is a reasonable prototype for many of
the algorithms used in computational
science today. The solution of the

Navier-Stokes equations for the evolution of fluid
flow is reasonably complex numerically and in-
volves solving a nonlinear, coupled system of hy-
perbolic and elliptic partial differential equations
(PDEs). At the algorithm level, CFD is funda-
mentally quite similar to computational electro-
magnetics (Maxwell’s equations), computational
physics (Schrödinger’s equation), computational
biology (protein folding), computational solid me-
chanics (using finite-element methods), and many
other applications in science and engineering.
The Navier-Stokes equation for incompressible
flow is

For turbulence simulation, the large range
of spatial scales means these equations need
to be discretized on very large meshes involv-
ing an order of many billions of unknowns.
Therefore, both memory and time constraints
force the solution to be computed in parallel
on many processors. This article is concerned
with the problems inherent in massively paral-
lel GPU calculations, because the speed of GPU
processors moves GPU supercomputers into a
new performance regime. In this article, our
focus is on GPUs as the processing hardware,
and we present an algorithm to optimize both
the local GPU performance and inter-GPU
performance. For some background informa-
tion on this topic, see the sidebar, “Related
Work in Computational Fluid Dynamics with
GPUs.”

implementation
In our implementation, the single-instruction,
multiple-data (SIMD) core count (which is nor-
mally 240 cores on a single GPU) is increased to
15,360 (GPU cores) by using many GPUs together.
The GPUs communicate via their CPU hosts and
a message passing interface (MPI). Next we de-
scribe the GPU supercomputer hardware used for
these simulations.

Ali Khajeh-Saeed and J. Blair Perot
University of Massachusetts, Amherst

1521-9615/12/$31.00 © 2012 ieee

CopubliShed by the ieee CS and the aip

CISE-14-3-Khajeh.indd 2 3/26/12 4:59 PM

may/June 2012 3

hardware
Our work was primarily computed on the Lincoln
supercomputer housed at the US National Cen-
ter for Supercomputing Applications (NCSA).
This machine has 96 Tesla S1070s (384 GPUs
total). Each GPU has 4 Gbytes of memory and
a theoretical bandwidth of 102 Gbytes per sec-
ond. Also, each GPU has a PCI-Express 4× con-
nection (2 Gbytes per second) to its CPU host.
We also performed tests on Orion, which is
an in-house GPU machine containing a GTX
480, a Tesla C2070, and two GTX 295 cards.

We’re interested here in comparing the GPU re-
sults to the CPU cores on Lincoln (a quad-core
Intel 64 Harpertown).

Our low-level CFD algorithm’s structure is dic-
tated by two key features of the GPU hardware.
First, the GPU’s read/write memory is one order
of magnitude faster when the memory is read lin-
early. Second, each GPU multiprocessor has fast
on-chip memory (shared memory), which serves
essentially as an addressable program-supervised
cache. CFD requires considerable random memory
accesses (even when using structured meshes).

Related WoRk in
Computational Fluid
dynamiCs With Gpus

GPUs typically have 32 single-instruction, multiple-data
(SIMD) cores on a multiprocessor, and many multi-

processors on a GPU chip (16 on the Fermi). In our work,
the core count is further increased to 15,360 GPU cores by
using many GPUs together, with the GPUs communicat-
ing via their CPU hosts and the message passing interface
(MPI) protocol. GPUs have the advantage of high memory
bandwidths (178 Gbytes for the M2090). This makes them
attractive for memory-bound algorithms. Examples of
such algorithms include bioinformatics,1 graph theory,2
and partial differential equation (PDE) solutions.3 GPUs
have the disadvantage of consuming more power than
CPUs, and being more difficult to program to achieve high
efficiency.

Early examples of CFD calculations on GPUs used
OpenGL processing and were very different because the
GPU hardware itself has changed radically over the last
five years. Erich Elsen and his colleagues4 and Andrew
Corrigan and his colleagues5 discuss more recent imple-
mentations that involve the CUDA programming para-
digm. Paulius Micikevicius6 applied a 3D finite-difference
computation using CUDA on four GPUs and achieved
linear speedup for up to four GPUs. Diego Rossinelli and
his colleagues7 described a 2D simulation of a bluff body
using a vortex particle method on the GPU that achieved
a speedup of 25. Inanc Senocak and his colleagues8 dis-
cretized the Navier-Stokes equations on a uniform Carte-
sian staggered grid with a second-order central difference
scheme. They achieved an 11-times speedup compared to
an eight-core CPU (using OpenMP) for a single GPU and
a 130-times speedup for 128 GPUs (versus an eight-
core CPU). Wei Ran and his colleagues9 implemented
a 1D space-time conservation-element and solution-
element (CESE) method and applied this to shock-
tube problems. They achieved a maximum of 71-times

speedup with a 9800 GT compared to the single core of
the Intel E7300 CPU.

Today, several single GPU codes for computing fluid flow
are based on Jos Stam’s stable scheme.10 These codes are
excellent for visual purposes but aren’t sufficiently accurate
for physical simulations.

References
1. A. Khajeh-Saeed, S. Poole, and J.B. Perot, “Acceleration of the Smith-

Waterman Algorithm Using Single and Multiple Graphics Processors,”

J. Computational Physics, vol. 229, no. 11, 2010, pp. 4247–4258.

2. T. McGuiness and J.B. Perot, “Parallel Graph Analysis and Adaptive

Meshing Using Graphics Processing Units,” Proc. 18th Ann. Conf.

CFD Soc. Canada, CFD Soc. Canada, 2010; www.ecs.umass.edu/

mie/tcfd/ConferencePapers/GPU_Graph_Analysis.pdf.

3. J. Krüger and R. Westermann, “A GPU Framework for Solving

Systems of Linear Equations,” GPU Gems 2, Addison-Wesley, 2005,

pp. 703–718.

4. E. Elsen, P. LeGresley, and E. Darve, “Large Calculation of the Flow

over a Hypersonic Vehicle Using a GPU,” J. Computational Physics,

vol. 227, no. 4, 2008, pp. 10148–10161.

5. A. Corrigan et al., “Running Unstructured Grid-Based CFD Solvers

on Modern Graphics Hardware,” Int’l J. Numerical Methods in Fluids,

vol. 66, no. 2, 2011, pp. 221–229.

6. P. Micikevicius, “3D Finite Difference Computation on GPUs Using

CUDA,” Proc. 2nd Workshop on General Purpose Processing on

Graphics Processing Units, ACM, 2009, pp. 79–84.

7. D. Rossinelli et al., “GPU Accelerated Simulations of Bluff Body

Flows Using Vortex Particle Methods,” J. Computational Physics,

vol. 229, no. 9, 2010, pp. 3316–3333.

8. D.A. Jacobsen, J.C. Thibault, and I. Senocak, “An MPI-CUDA

Implementation for Massively Parallel Incompressible Flow

Computations on Multi-GPU Clusters,” Proc. 48th AIAA Aerospace

Sciences, American Inst. Aeronautics and Astronautics (AIAA), 2010;

http://works.bepress.com/inanc_senocak/3.

9. W. Ran et al., “GPU Accelerated CESE Method for 1D Shock

Tube Problems,” J. Computational Physics, vol. 230, no. 24, 2011,

pp. 8797–8812.

10. J. Stam, “A Simple Fluid Solver Based on the FFT,” J. Graphics Tools,

vol. 6, no. 2, 2001, pp. 43–52.

CISE-14-3-Khajeh.indd 3 3/26/12 4:59 PM

4 Computing in SCienCe & engineering

Roughly 90 percent of these slow random memory
accesses can be eliminated by

•	 reading large chunks of data into the shared-
memory space linearly, which is fast for all accesses;

•	 operating on the data in the shared memory;
and

•	writing the processed data back to the main
GPU memory (global memory) linearly.

This optimization is the key to speeding up the
GPU 45 times more than a CPU.

software
Our solution method uses a three-step, low-
storage Runge-Kutta scheme for time advance-
ment that’s second-order accurate (in space).1
This scheme is stable for eigenvalues on the
imaginary axis less than 2, which implies CFL < 2
for advective stability (where CFL is the Courant-
Friedrichs-Lewy number). Our simulations al-
ways use a maximum CFL < 1. The diffusive
terms are advanced with the trapezoidal method
for each Runge-Kutta substep, and the pressure
is solved using a classical fully discrete fractional
step method,2 although an exact fractional step
method is also possible.3 The solution of the el-
liptic pressure Poisson equation dominates the
solution time (roughly 90 percent), so we present
further details of this portion of the code in the
next section. We also present timing results later
that focus on this part of the algorithm.

For spatial discretization, we use a second-
order Cartesian staggered mesh scheme. This not
only conserves mass and momentum to machine
precision, but because it’s a type of discrete cal-
culus, this scheme also conserves vorticity (or
circulation) and kinetic energy in the absence of
viscosity.4 As a result, there’s no artificial viscos-
ity or diffusion in this method except for that
induced by the time-stepping scheme.5 In ad-
dition, the staggered mesh discretization is free
from pressure modes and the need for pressure
stabilization terms. This scheme’s physical fidel-
ity makes it highly appropriate for direct numeri-
cal simulations of turbulence in geometries with
walls (we provide a summary of references else-
where6). A Cartesian mesh method is also appro-
priate for most large simulations of turbulence.
The goal of fluid simulations on supercomputers
that use many GPUs is typically to study turbu-
lence, not complex geometries. Nevertheless, the
code is currently being converted to use an un-
structured mesh, and in future work we’ll discuss
this aspect of the implementation.

We performed our CFD simulations on 5123
meshes (with roughly half a billion unknowns)
with fully periodic boundary conditions on
the exterior of the computational domain, and
wall-boundary conditions on interior embedded
objects. We provide further simulation details
elsewhere.7

partitioning
All PDE solution methods ultimately involve
placing numerous unknowns (that approximate
the solution) into a 3D domain and evolving those
unknowns in time. Parallel-solution algorithms
typically partition these unknowns spatially
among the available processing units in groups
called subdomains.

To calculate a coupled solution, subdomains must
invariably communicate data with their neighbors.
In these simulations, the amount of subdomain
communication is minimized by choosing subdo-
mains with minimal surface area. Only data on the
boundary, or surface, of the subdomain is commu-
nicated, and communication occurs only with the
six local neighboring subdomains. For example,
for a 5123 simulation running on 64 GPUs, each
subdomain is 1283 and each GPU communicates
6 × 1282 = 0.1 million data items (or approximately
5 percent of its data). For optimal scaling, the MPI
must be “hidden” by overlapping communication
with useful computations.

For an efficient GPU solution, the subdomains
(one each per GPU) must also be further parti-
tioned into chunks (what Nvidia calls blocks). On
the GPU, each multiprocessor will handle one
or more chunks of data. In our implementation,
each chunk is 16 mesh points in x (or a multiple
of 16), any dimension in the y direction (though
we typically chose a multiple of 16 here), and the
full subdomain extent in the z direction. For ef-
ficient processing, it’s best to have at least two
chunks per multiprocessor. The GPU multipro-
cessors can hide memory latencies by having two
chunks active at the same time. The size of 16 in
the x direction is dictated by the fact that the GPU
multiprocessors each have 32 SIMD cores that
read data much more quickly (“coalesced memory
access” in Nvidia terminology) if they can do it
in groups of 16. We can construct subdomains
and chunks for unstructured meshes using mesh-
partitioning software such as Metis (see http://
glaros.dtc.umn.edu/gkhome/views/metis).

All CFD algorithms are strongly memory
bound. The memory speeds are therefore critical
to the code’s efficiency and scaling. The key is-
sue with multi-GPU computing is that there are

CISE-14-3-Khajeh.indd 4 3/26/12 4:59 PM

may/June 2012 5

a minimum of three widely differing memory
speeds. On a GPU, a chunk of data typically is
read into and operated on using fast shared mem-
ory (which is effectively a cache). The amount of
shared memory is fixed by the hardware and is 8
(Tesla S1070) or 24 Kbytes per chunk when run-
ning two chunks per multiprocessor on the Fermi
GPUs. A chunk’s boundary data is accessed via
an order-of-magnitude slower random-memory
reads to the GPU’s main memory. Subdomain
boundary data must also be transferred, and is
accessed via MPI calls that are yet another order
of magnitude slower. Although our CFD imple-
mentation aggressively minimizes the number of
slower memory accesses, these boundary com-
munications still impact the code performance on
everything but the largest problem sizes.

optimizations
Memory allocation and deallocation are expensive
on the GPU (and the CPU), because they require
calls to the operating system. To avoid this, the
code sets up its own temporary arrays at start up.
Any subroutine can hold and drop these quickly.
They’re only deallocated when the code completes.

Grid information such as Δx, Δy, Δz are stored
in a special GPU memory space called constant
memory. Constant memory is cached, and it’s
therefore fast for repeatedly called items, such as
geometry parameters.

Data transfers between the CPU and GPU are
relatively slow and expensive (5 to 10 Gbytes/s).
Almost all data for the CFD calculation therefore
resides on the GPU and stays on the GPU. We
only copy data to the CPU when it’s needed (for
MPI, or to write data to files).

We wrote the code so that low-level operations
come in either a CPU or GPU version. The user
makes a choice at compile time, and then the com-
piler optimizes the code for that given hardware.

Algorithm Details
We achieved considerable efficiency through our
optimized algorithm. Here we detail how it was
implemented.

gpu implementation
The code solves the pressure Poisson equation
using a polynomial preconditioned conjugate
gradient (PPCG) iterative method. The PPCG
method is an efficient iterative method and is
guaranteed to converge for a symmetric, positive-
definite matrix. The method is composed of one
large sparse-matrix multiply (w = Mp), one large
sparse-preconditioner-matrix multiply (z = Pr),

two scalar (dot) products (α = z × r and γ = p · w),
and three alpha X plus Y (AXPY) operations
(r = r − αw, x = x + αp, p = z + βp). The three
AXPY parts are easily mapped to the GPU ar-
chitecture. However, the most computationally
intensive part of the solution procedure is the sparse-
matrix multiplies that compute the Cartesian-
mesh discrete Laplacian (M) and its approximate
inverse (P). In the current implementation, the
preconditioner has the same sparsity pattern as
the Laplacian matrix, and it’s therefore imple-
mented in exactly the same way as the Laplacian.
To compute the Laplacian matrix for a particular
cell, all neighboring cells and the central cell are
needed (seven cells in 3D). The pseudocode for
the operator M is

w[i, j, k] = p[i, j, k] × diag[i, j, k] + (p[i + 1, j, k]
+ p[i − 1, j, k]) × Δx2[i] + (p[i + 1, j, k]
+ p[i, j − 1, k]) × Δy2[j] + (p[i, j, k + 1]
+ p[i, j, k − 1]) × Δz2[k].

When performed naively, the seven-point ma-
trix stencil reads each data item seven times from
the main GPU memory. Only the first three values
are linear, stride-one memory accesses and there-
fore fast; the others are large-stride memory ac-
cesses and essentially random memory operations.
We made the code more efficient using a modi-
fied version of Paulius Micikevicius’ implementa-
tion.8 This involves reading the data once into the
shared memory on each GPU multiprocessor, and
then accessing it from this fast-memory location
seven times. To do this, each multiprocessor keeps
three XY planes of data (from the data chunk) in its
memory. The middle XY plane contains five of the
stencil points (in the X and Y directions) saved in
shared memory (in the ps temporary variable that
we discuss more in a bit), while the upper and lower
XY planes contain the sixth and seventh stencil
values (just above and below the middle XY plane)
saved in registers. After the discrete Laplacian is
computed for the middle plane, the middle (shared
memory) and upper (register memory) planes are
copied to the lower (register memory) and middle
(shared memory) planes, respectively. The upper
plane then reads in the new data from the main
(global) GPU memory to the register memory. In
pseudocode, ps is now a planar array in fast-shared
memory, and pupper and plower are in registers:

w[i, j, k] = ps[i, j] × diag[i, j, k] + (ps[i + 1, j]
+ ps[i − 1, j]) × Δx2[i] + (ps[i, j + 1]
+ ps[i, j − 1]) × Δy2[j] + (pupper + plower)
× Δz2[k].

CISE-14-3-Khajeh.indd 5 3/26/12 4:59 PM

6 Computing in SCienCe & engineering

After this is computed for every i, j value in the
chunk, the planes are shifted up and new data
is read-in (for pupper) only. This scheme requires
reading only one input value for every output value
that’s computed (rather than seven). It can be
adapted to unstructured meshes fairly easily using
explicit neighbor pointers instead of [i, j, k] loca-
tion indexing.

However, to compute a 16 × 16 × NZ chunk of
data (where NZ is the chunk size in the z-direction),
an 18 × 18 data plane of input is required
(minus the four corners). This is read in as a 16 × 18
block (with stride-one fast access), and two 1 × 16
strips for the two sides. These last two strips
have a stride equal to the subdomain’s size in the
x-direction, and therefore are much slower to
read. It therefore takes roughly the same amount
of time to read the two 1 × 16 strips as it does the
rest of the data (18 × 16). This is the first example
where the internal GPU data is processed so effi-
ciently that the unusual operations (two boundary
strips in this case) take just as much time.

The other option would be to read 16 × 16
blocks efficiently (with no side strips) but only
compute a 14 × 14 region of the stencil. Because
the SIMD cores process 16 items at a time, this
means that the code would have an instruction
divergence—that is, some cores would perform an
operation, while other cores do something else.
On these SIMD cores, this results in slower ex-
ecution (by about a factor of two). In addition, this
approach means the multiprocessors are reading
blocks of 16 that overlap at the edges. This makes
the 16 × 16 read slower. Therefore, the advantage
of reading no boundary strips is actually lost.

The second major optimization in the PPCG
algorithm is to perform the two dot products
at the same time as the matrix multiply and
preconditioner-matrix multiply (one dot product
along with each matrix). Both arrays for the dot
product are already in fast-shared memory when
performing the matrix multiply, so this saves
reading the two arrays for each dot product (four
array reads total). The dot products are therefore
essentially free of any time impact on the code,
except that their final result must be summed
among all of the GPUs. This requires an MPI
all-to-all communication that can’t be hidden by
any useful computations (but the amount of data
communicated is small—one word per GPU). It’s
possible to restructure the PPCG algorithm so that
it overlaps dot-product summations with computa-
tion; however, this also leads to a PPCG algorithm
with more storage and more memory read/writes.
In any case, we wouldn’t expect the modified

PPCG algorithms’ speed improvement to be
significant.

Finally, with 5123 meshes, naive summation (for
turbulence averages) can lead to round-off errors
on the order of 109 times the machine precision
(for single precision this would mean a first-order
error). Although we use double precision in all
computations, we still perform the summation
in stages to reduce the round-off error. The 3D
array is first collapsed into a 2D array using the
GPU by summing along the Z direction. Fur-
ther reduction is then performed in the Y direc-
tion, then the X direction on the CPU, and then
by summing the results from all the GPUs us-
ing MPI all-to-all communication (four stages in
total). This procedure only loses roughly two
decimal places of accuracy during the summation,
and allows the computation’s expensive portion
(the first reduction to XY planes) to be performed
on the fast GPUs.

multi-gpu implementation
The approach to parallelism when using many
GPUs together is quite different from the type of
parallelism used within each GPU. The key as-
pect of the inter-GPU algorithm is the relatively
long communication times (using MPI) between
GPU subdomains. These long times are caused
by GPU-to-CPU copy times and CPU-to-CPU
MPI communication times. For a transfer, all data
must be copied from the GPU to the CPU over
the PCI Express bus. Only then can the CPU core
use MPI (or CPU threads) to communicate the
data. The MPI (or thread) communication then
occurs at CPU memory speeds (which are slower
than GPU main-memory speeds). The Lincoln
supercomputer has an InfiniBand single-data rate
(SDR) serial link. Orion (our in-house machine)
uses MPI on shared memory, which is as fast as
MPI can theoretically function (and is about
8 percent slower than using threads directly).
After the MPI calls, the data must be copied back
to the GPU.

To hide the copy time and the slow MPI commu-
nication times, data is prefetched and overlapped
with GPU computations as much as possible. A
subroutine’s basic structure (see Figure 1) is there-
fore as follows:

•	 Step A. On the GPU, load the six boundary
planes of the subdomain data (which resides
in the GPU’s main memory) into six smaller
(stride-one) arrays. This requires the GPU
and usually can’t be overlapped well with GPU
computations.

CISE-14-3-Khajeh.indd 6 3/26/12 4:59 PM

may/June 2012 7

•	 Step B. On the GPU, start the internal calcu-
lation. This step is the subroutine’s primary
action.

•	Step C. Copy the small boundary arrays
from step A to the CPU. This can overlap with
step B.

•	 Step D. When step C is finished, send/receive
the data planes using MPI. The CPU handles
all MPI operations and is otherwise idle, so this
can also overlap with step B.

•	 Step E. Copy the received data from the CPU
back to the GPU. Again, this still can overlap
with step B.

•	 Step F. When both steps B and E are finished,
apply the boundary data to the calculation.

On the latest GPU architecture (Fermi), it’s
possible to run up to 16 kernels at the same time.
So in theory, we can execute steps A and B at the
same time if there are available GPU resources.

In practice, the code rarely goes faster when do-
ing this. If the internal calculation (step B) takes
long enough, it can hide the communication oc-
curring in steps C, D, and E. Step F is the por-
tion of the subdomain boundary calculation that
can’t be hidden. Typically, the final boundary op-
eration (step F) involves some random memory
writes, and it can therefore never be optimized as
well as the internal bulk calculations (step B). For
smaller subdomain sizes (323 per subdomain and
less), steps A and F can take longer than step B
(the actual bulk calculation).

Results
Now that we’ve outlined the implementation de-
tails, let’s consider the results.

scaling
Figures 2 and 3 show the speedup (versus the same
number of CPU cores) and millions of cell updates

Figure 1. Typical flowchart for subdomain processing. Red indicates boundary operations (running on
stream 2), green indicates the primary bulk operation (running on stream 1), and purple indicates message
passing interface (MPI) send/receive instructions (running on the CPU).

Step A:
Extract the
boundaries

Step C:
Copy;
GPU → CPU

Step E:
Copy;
CPU → GPU

Step F:
Fix the
boundaries

Step B: Execute the interior

Step D:
Send/receive the
data planes with
MPI

Figure 2. Strong scaling results. (a) Speedup and (b) performance per processor for strong scaling of the 1283, 2563, and 5123
computational fluid dynamics (CFD) problem on Lincoln using GPUs and CPUs. MCUPS stands for millions of cell updates per
second.

Number of processors(a) (b)

Sp
ee

du
p

vs
. s

am
e

nu
m

be
r

of
 p

ro
ce

ss
or

s

0 8 16 24 32 40 48 56 64
0 0

10 10

20 20

30 30

40 40

50 50
1283

2563

5123

Number of processors

M
C

U
PS

/p
ro

ce
ss

or

16 32 48 64
100 100

101 101

102 102

103 103

1

1283 CPU 1283 GPU
2563 CPU 2563 GPU
5123 CPU 5123 GPU

CISE-14-3-Khajeh.indd 7 3/26/12 4:59 PM

8 Computing in SCienCe & engineering

per second per GPU or CPU core (MCUPS per
processor) for strong and weak scaling results,
respectively. MCUPS represents how many mil-
lions of finite-volume cells can be updated (one
per PPCG iteration) during a second of wall-clock
time. In the strong scaling situation, the problem
size is constant, so as the number of processors
increases, the problem size per processor grows
increasingly smaller. For strong scaling, the high-
est speedup (45 times) occurred for 16 GPUs
compared to 16 cores (on four CPUs). In the weak
scaling situation, the problem size per processor is
constant, so as the number of processors increases,
the communication times can grow larger. In the-
ory, the MCUPS per processor is directly related
to the hardware efficiency, and should look like
a horizontal line (a constant). As Figure 3 shows,
from 2 GPUs to 64 GPUs the performance loss
is less than 50 percent. (One GPU and one core
can each access more memory bandwidth and
therefore perform better than when the memory
system is loaded to its typical state). Also, using
64 GPUs on the Lincoln supercomputer means
using 32 server nodes and therefore four times
more network traffic than when computing with
64 CPU cores (which requires using only eight
server nodes).

poisson solution
Now let’s analyze the code’s performance on one
GPU on Orion. Timings indicate that 87 percent
of the code-execution time is spent in the PPCG
solver (which solves for the pressure and implicit
diffusion terms), and 50 percent of the overall

time is spent in the sparse-matrix multiply sub-
routines alone. Figure 4 gives a breakdown of the
time spent on the PPCG and Laplace algorithms.
The summation item in Figure 4b includes copy-
ing the dot product results from GPU to CPU,
plus the last steps of summation on the CPU.
As you can see, executing the interior (step B in
Figure 1) is the most time-consuming part of the
Laplace solver. Copying time plus using the MPI
for the largest cases is still four times smaller than
interior time. So on Orion, subdomain problem
sizes of 1283 per GPU and larger are sufficient
to hide the MPI and copying time. On Lincoln,
this isn’t actually true, because the copy time
is four times slower (the dashed black line in
Figure 4b)—so it always is as large as the use-
ful computation time. Current GPUs don’t have
enough memory to handle problem sizes greater
than 2883 grid points per GPU.

Because every node must send data on its
boundaries to other nodes, it must copy six
boundary surfaces to the CPU. Thus, steps A, C,
D, and E scale the same as N2. But step B (solving
the interior points) grows at the same rate as N3.
As we mentioned, Lincoln has four times slower
bandwidth between the CPU and GPU. Figure 4
shows the extrapolated time for copying between
the CPU and GPU on Lincoln without MPI time.
As you can see, even 2563 copying times barely
overlap with domain computation.

In addition, we used the Nvidia Parallel Nsight
tool to analyze the Laplace matrix multiply routine
when applied on a Tesla C2070 GPU on Orion.
Figure 5 shows the timeline for the Laplace

Figure 3. Weak scaling results. (a) Speedup and (b) performance per processor for weak scaling of the 1283 and 2563 CFD
problem on the Lincoln supercomputer using GPUs and CPUs.

Number of processors(a) (b)

Sp
ee

du
p

vs
. s

am
e

nu
m

be
r

of
 p

ro
ce

ss
or

s

0 8 16 24 32 40 48 56 64
0 0

10 10

20 20

30 30

40 40

50 50

Number of processors

M
C

U
PS

/p
ro

ce
ss

or

16 32 48 64
100 100

101 101

102 102

103 103

1

1283 CPU
1283 GPU
2563 CPU
2563 GPU

1283 per GPU or CPU
2563 per GPU or CPU

CISE-14-3-Khajeh.indd 8 3/26/12 4:59 PM

may/June 2012 9

Figure 4. Code performance. Time for the (a) polynomial preconditioned conjugate gradient (PPCG) and (b) Laplace
subroutines for different problem sizes. AXPY stands for alpha X plus Y; MPI stands for message passing interface; and
N is the problem size (x-axis).

Problem size(a) (b)

Ti
m

e
(m

s)

64 96 128 160 192 224 256 288
10–3 10–3

10–2 10–2

10–1 10–1

100 100

101 101

102 102

Laplace
MPI
AXPY
Laplace_Inverse

Problem size

Ti
m

e
(m

s)

64 96 128 160 192 224 256 288
10–2 10–2

10–1 10–1

100 100

101 101

102 102

103 103

Extract
Copy
Interior
MPI
Fix
Summation
N2

N3

Lincoln copy

Figure 5. Laplace matrix multiple routine performance on a Tesla C2070 GPU on Orion. Timeline for a Laplace kernel for
(a) 643, (b) 1283, and (c) 2563 problem sizes on one GPU. This figure highlights the fact that for small problem sizes (such
as that in Figure 5a) the GPU is so fast at computations (Figure 5b) that the time associated with communication operations
(Figures 5c through 5e) can’t be hidden.

CISE-14-3-Khajeh.indd 9 3/26/12 4:59 PM

10 Computing in SCienCe & engineering

matrix multiply from this software for problem
sizes of 643, 1283, and 2563.

Figure 5a shows the 643 problem size, which
doesn’t completely hide communication times.
Although the actual MPI time overlaps with com-
putation (just barely), the copy back to the GPU
doesn’t overlap well. In addition, it takes a long
time for the boundary fix (step F) to load to the
GPU and start executing (the bright green is
idle GPU time). This case is strongly affected by
the GPU synchronization delays. Synchroniza-
tion takes on the order of 200 μs to execute, which
is the same order of magnitude as the copy com-
mands themselves. In addition, it appears to pre-
vent loading of the Fix kernel code to the GPU,
which can take yet another 200 μs if it’s not per-
formed preemptively.

The latter two simulations show better com-
munication overlapping. On Orion, the 1283 case
even has some leeway for expanded MPI com-
munication times. However, on Lincoln, the two
copy times are four times larger and exceed the
computation time. Lincoln’s successor, called
Forge, is expected to perform the same as Orion
with full PCI Express bandwidth to the CPU
memory. For the 1283 case, the boundary com-
puting time (steps A and F) is 23 percent of the
bulk time (reducing the code’s effective perfor-
mance by roughly the same amount). In an ideal
calculation, this boundary processing would be as
fast as the bulk, and therefore take negligible time
(4.7 percent of the bulk).

The 2563 case shows relatively small communi-
cation times compared to the computations. On
Lincoln, however, the communication is 75 per-
cent of the computation, and the overlap barely
occurs. The boundary-processing time is now
down to roughly 8 percent of the bulk compu-
tation time. This large problem size involves
67 million unknowns and requires 2.7 Gbytes
of memory for double-precision calculations. The
Tesla S1070 has 4 Gbytes of memory, so this is
roughly the largest problem size possible. Less-
expensive retail GPUs typically have only 1.5
Gbytes of memory and a maximum problem size
that’s about half this simulation size.

W e discovered that synchro-
nization can profoundly ef-
fect GPU performance. This
is particularly true for smaller

subdomain sizes, such as 643 per GPU. With
only one fourth of 106 operations, the GPU
executes code faster than it can synchronize.

The cudaThreadSynchronize command some-
times takes 200 ms and can stop the CPU from
loading the next executable kernel to the GPU.
The cudaStreamSynchronize command is
similar, and makes the CPU and GPU stall if
the specified stream is still running. However, if
the stream has already finished, cudaStream
Synchronize doesn’t take as much time. This
code uses implicit synchronization (no explicit
commands) as much as possible.

The PCI Express bandwidth is a bottleneck in
the multi-GPU performance. Even though the
amount of data being sent is small (on the order
of 5 percent of the total data being processed by
the GPU), the slow speeds make this unusual task
a performance bottleneck. From 2007 to 2011, the
GPU main-memory bandwidth almost doubled,
but the PCI Express speed available on the GPUs
hasn’t changed.

These bottlenecks leave the GPU with a fairly
narrow operating range in terms of the number of
unknowns per subdomain that the GPU should
process. With less than one million mesh points,
CFD calculations don’t have enough internal work
to hide communication times. And with more
than four million mesh points, standard GPUs
run out of memory, while Tesla GPUs can go up to
four times larger (16 million mesh points). Chunk
sizes are also fairly constrained. The number of
chunks should be a multiple (two or greater) of
the number of multiprocessors. Chunk sizes can
vary from 162 × NZ to 322 × NZ, but are probably
best sized at 322 × NZ to optimize shared (cache)
memory use.

Although these observations aren’t surprising,
they do highlight an emerging problem in scien-
tific computing: common operations are now so
fast that they no longer control code performance
and unusual operations (related to either chunk or
subdomain boundaries) are now so out of balance
with these fast operations that they control the
performance on everything but the largest prob-
lem sizes. We’ve highlighted this problem here
with GPU hardware, but it will soon be a primary
issue with CPU hardware as well. In essence, a
form of Amdahl’s law applies here, which states
that small amounts of poorly performing opera-
tions can still have a large overall effect on the
code’s total performance. It’s therefore insuffi-
cient to design hardware that only speeds up com-
mon operations.

Acknowledgments
This work used the US National Science Foundation’s
(NSF’s) Teragrid/XSede supercomputer, Lincoln. The US

CISE-14-3-Khajeh.indd 10 3/26/12 4:59 PM

may/June 2012 11

Department of Defense primarily supported this proj-
ect via a subcontract from the Oak Ridge National
Laboratory, and we received support from the NSF.

References
1. J.B. Perot and J. Gadebusch, “A Stress Transport

Equation Model for Simulating Turbulence at Any

Mesh Resolution,” Theoretical and Computational Fluid

Dynamics, vol. 23, no. 4, 2009, pp. 271–286.

2. J.B. Perot, “An Analysis of the Fractional Step

Method,” J. Computational Physics, vol. 108, no. 1,

1993, pp. 183–199.

3. W. Chang, F. Giraldo, and J.B. Perot, “Analysis of an

Exact Fractional Step Method,” J. Computational

Physics, vol. 180, no. 1, 2002, pp. 183–189.

4. J.B. Perot and V. Subramanian, “Discrete Calculus

Methods for Diffusion,” J. Computational Physics,

vol. 224, no. 1, 2007, pp. 59–81.

5. J.B. Perot, “Conservation Properties of Unstructured

Staggered Mesh Schemes,” J. Computational Physics,

vol. 159, no. 1, 2000, pp. 58–89.

6. J.B. Perot, “Discrete Conservation Properties of Un-

structured Mesh Schemes,” Ann. Rev. Fluid Mechanics,

vol. 43, 2011, pp. 299–318.

7. J.B. Perot, “Determination of the Decay Exponent

in Mechanically Stirred Isotropic Turbulence,” AIP

Advances, vol. 1, no. 2, 2011; doi:10.1063/1.3582815.

8. P. Micikevicius, “3D Finite Difference Computation

on GPUs Using CUDA,” Proc. 2nd Workshop General

Purpose Processing on Graphics Processing Units, ACM,

2009, pp. 79–84.

ali Khajeh-saeed is a software engineer at CD-adapco.
His research interests include computational fluid
dynamics and high-performance computing using
general-purpose computation on graphics process-
ing units. Khajeh-Saeed has a PhD in mechanical
engineering (with a minor in computer science) from
the University of Massachusetts, Amherst. Contact
him at khajehsaeed@ecs.umass.edu.

J. blair perot is the director of the Theoretical and
Computational Fluid Dynamics Laboratory at the
University of Massachusetts, Amherst. His research
focuses on computer simulations of fluid flow and
the study of fluid turbulence. Perot has a PhD in
mechanical engineering from Stanford University.
Contact him at perot@ecs.umass.edu.

Selected articles and columns from IEEE Computer
Society publications are also available for free at

http://ComputingNow.computer.org.

CISE-14-3-Khajeh.indd 11 3/26/12 4:59 PM

