SDP - Team 26

Defuse It or Lose It!

Ethan LaFleur, EE, Edward “Matt” Buiser, CSE, Krishna Vijayakumar, CSE

Abstract — Modern applications of virtual reality are
mainly used to simulate experiences by emerging the user
into an interactive virtual environment. Not many things
originate in virtual reality that can be brought to the
physical world. Rather, these systems are mostly used as
simulation tools for real world experiences. However, one
industry that makes use of creating completely new and
interactive experiences that may be feasible to bring out of
virtual reality, is video games. Some of these games are
centered around interactive, virtual, handheld objects to
progress in the game. Our project creates a physical
prototype system of one of these games, “Keep Talking and
Nobody Explodes.” The prototype will have limited features
of the actual game but will demonstrate key aspects.

1. Introduction

Figure 1: Sample “bomb” from online video game

The virtual reality game, “Keep Talking and Nobody
Explodes”, has a fairly simple objective for the two players:
complete all the puzzles in less than three tries and before time
runs out. The game is played with two players, one who has the
VR system and one who has a manual with the instructions on
how to defuse the bomb. Since each player can only see their
respective item, player one sees the virtual object and player
two sees the manual, player two must communicate the
instructions for each puzzle to player one. However, since
player two does not know the configuration of each puzzle,
s(he) must rely on player one to explain the puzzle’s

configuration. The rest of the paper explains more on our
prototype and how it compares to the virtual reality game.

A. Significance

Virtual reality provides many innovative and creative
ideas for the engineering world to explore. We can simulate
designs for systems with visual results to further our
understanding of how a system may behave in the physical
world. This is no exception with the video game industry. With
the new advancements in technology, board games of previous
generations feel outdated by the creativity and innovation of
modern day simulated games on a device. This project seeks to
revive the board game industry with much more immersive and
elaborate games that can compete with the oversaturated video
game industry.

B. Context and Competing Solutions in the Marketplace

Currently, there are no physical implementations of
“Keep Talking and Nobody Explodes™ available on the market.
However, there have been a few personal hobbyist projects
created and shared on the internet since the game’s inception in
2015. These existing solutions have implemented much of the
same functionality as the original game except for
hot-swappable modules [9]. A project by Reddit user
Benoit2600 uses Arduino Mega breakout boards in serial
communication with a Raspberry P1i, a graphical user interface
as the central hub, and 3D printing for the enclosure [10].

These projects are thoroughly designed solutions to
the stated problem. However, they have limited scope for
commercial use as they are bulky and expensive. Our design
goal is to make our own slightly modified version of the game
that is portable and inexpensive.

SDP - Team 26

C. Societal Impacts

As of right now, virtual reality is a ground-breaking
technology that has been pushing the boundaries of what we
can do. Virtual reality is a great way for people to implement
things that we cannot have readily available to us in the
physical world. However, since this technology is so new, it is
currently not affordable for everyone. By bringing a game like
“Keep Talking and Nobody Explodes” to the physical world,
we aimed to make this game more accessible to people who
cannot afford VR technology. We feel that this game suits the
physical world in a family board game type of setting. This
game can help build communication and teamwork skills in a
fun and entertaining way. We believe that bringing this game to
more people will have a positive impact on the people who
would play this game.

D. System Requirements and Specifications

Specification Requirement

Tses physical game with modules already installed N/A

Randomizes each individual moduole with each new level 20+ Random configurations per madule

Includes difficulty in the form of levels set by the user 5+ Difficulty levels

Number of regular modules 2+ Regular modules

Number of needy modules 1+ Needy modules

Rechargeable power source 30+ hours of gameplay before recharge

Manual and difficulty select converted to app N/A

Table 1: Requirements and Specifications

The first specification we came up with is the basis of
our project. We wanted to have a physical version of the game
with the modules already installed. Unlike the online game, the
specific games that you play each time is not a randomized set ,
rather we have the games already installed and you play the
same specific mini-games every time. This is due to the
physical implementation and also the time constraints.

Next, each of the mini-games must be randomized
each time the game is played. The solution to each game should
not be repeated often enough for the player to notice. 20+
configurations for each level is suitable to achieve this
specification.

The online version of the game includes difficulty
levels, however it does allow the player to select what level
they would like to play on. Our version must incorporate these
difficulty levels while allowing the player to choose which one
before the game is played. We decided on 5+ difficulty levels to
give the game sufficient replayability.

The number of regular modules (these are the standard
mini games like Simon Says and the Password game) that are
present in our game should be at least two. Due to the time that

it takes to develop these games, two is a sufficient amount of
games to be present. As for needy modules (a module that must
be done continuously while doing the other main modules such
as holding a button for a certain amount of time), one of these is
sufficient.

To keep the feeling of a board game, we wanted to
have the system be powered by a rechargeable power source,
rather than having to have it plugged into the wall while
playing. 30+ hours of gameplay should be sufficient as this is
roughly the amount of time a controller for a video game
console lasts. Plus, this should be a fairly low power system.

And finally, we wanted to convert the manual to an
app. We feel that a paper manual would be clunky and not in
the spirit of the project, thus the app should contain both
difficulty select and the manual.

II. Design

A. Overview

Our solution design takes a very modular approach to
setting up the system consisting of a parent board, child boards,
and an IOS application. The single parent board keeps track of
time, the overall game state, when to start , and when a game is
finished correctly or incorrectly.It also handles communication
with the child boards and the application. While our project
does not feature a large number of child boards, the number of
child boards that can be used in our system is scalable due to
the modularity of our system’s design. Our project has two
puzzle boards; each of these boards is tasked with keeping only
the state on the board and communication with the parent
board. The IOS application acts as a central hub for the game
itself. A user is able to start the game and look at the
instructions for solving puzzles through the use of this
application.

B. Parent Board

The parent board consists of two Atmega328P MCUs
in tandem. One Atmega is tasked with maintaining important
information about the overall game. This includes the game’s
level of difficulty, a list of uncompleted and completed puzzles,
and time elapsed. As mentioned, the parent board must wait for
the level of difficulty to come from the 10S application via
BLE technology in order to set up the rest of the game and start.
Once the difficulty level is received by the parent board, the
parent can then use this information to set up the rest of the
game such as how much time is allotted to this attempt, and

SDP - Team 26

information about the serial number. This Atmega sends all the
appropriate information to each of the child boards and to the
other Atmega328P on the main board, so that each can start
their individual tasks. The protocol used for sending
information between the parent board and child boards is the
12C protocol, allowing for more simplicity in hardware.

The second Atmega328P on the main board has a
single functionality, to keep track of time. This microcontroller
includes a 4 digit 7-segment display that will count down the
minutes and seconds left in the playthrough once the game has
started. It determines the amount of time allotted based on the
level of difficulty sent through 12C communication and then
sends a message through 12C back to the parent if time has run
out.

C. Child Boards

Password Game. The password game program runs on
an Atmega328P MCU and works by randomly selecting one
word from a list of 35, five letter words defined in the manual
for “Keep Talking and Nobody Explodes.” For each of the five
characters, an additional number of letters » is generated based
on the difficulty level passed from the parent module such that
each character position has an array of size n+1/ letters. All of
the additional letters are different from the one belonging to the
word chosen. In the array of letters for each character position,
a random one is chosen and displayed on a 16x2 liquid crystal

Parent/Clock PCBA

display [5]. Each character has a corresponding push button
which utilizes an internal input pull-up resistor such that a
switch press is read on a falling edge. For every press, the
character displayed changes, displaying the next element in the
array. It is the job of one player to communicate the different
letters and the player with the manual who has the list of
possible passwords determines the correct word. The player
“defusing the bomb” then presses the submit button and the
program checks if the letters match the randomly chosen word.
If letters match, then a green LED is lit signifying the module is
solved and that gets communicated to the parent chip via I2C. If
the letters do not match, then a red LED is lit signifying that a
strike has happened which gets communicated to the parent via
12C.

Simon Says Game. The Simon Says program also runs
on an Atmega328P MCU. The game is set up after the random
seed, difficulty level, and a boolean indicating if there is a
vowel in the serial number, are passed from the parent via [12C.
A random sequence is flashed on four different colored LED
arcade buttons using the standard C PRNG and seed. The
length of this sequence / is based on the difficulty level. After
the sequence has flashed, the player who can look at the bomb
must remember the sequence and communicate it to the player
with the manual. This player can reflash the sequence with a
push button press. The player with the manual then determines
the solution sequence based on the system’s current
configuration which the other player must also communicate.

Simon Says PCBA

Parent Simon Says Simon Says
. R ——GPIO—»)
Peripherals ATMega328P-PU Peripherals
GPIO
dafrui P e
Adafruit SPI arent
User IP ——
serirhone BE Friend ATMega328P-PU
- 12¢
{ e : Password Game PCBA
Clock Clock Password Password Game
—GPIO. 5V. GPIO— !
ATMega328P-PU = Peripherals ATMega328P-PU Peripherals
I i
5V
Lithium | ‘ Adafruit ‘
fthitm ton 3.7V PowerBoost 120VAC Wall Outlet
Battery Pack

‘ 1000 Charger

Figure 2: High level look of hardware design

SDP - Team 26

The solution changes based on the existence of a vowel in the
serial number and the number of strikes made so far in the
attempt. The input sequence gets pressed on the arcade buttons
and checked to see if it matches the solution sequence. If it
does, a green light briefly flashes and the sequence length
lengthens by 1 and the process repeats until three rounds are
done. Then the green light is turned on and the module
communicates to the parent that it is solved via 12C. If a wrong
answer is inputted at any moment, a strike is sent to the parent
via I12C.

III. Prototype

A. Overview

Our system incorporates all the components listed in
the block diagram in Figure 2. It consists of 3 unique PCBA
designs, one for each of the separate mini-games/modules. The
parent PCBA controls all the communication between the
boards and keeps track of all the necessary information such as
total strikes, and the status of each game. The child boards
contain their own hardware components and ruleset for their
own respective game. The BLE application allows the user to
input the difficulty setting and contains the manual.

B. Hardware Components

Moving onto the hardware of our system, there are a
variety of components that will be broken down by module.

Figure 3: Game state diagram / sofiware component diagram

Firstly, we have the parent module. At the heart of this we have
an ATmega328P [1] which is running at 8 MHz and being
powered with ~5V. This MCU is what controls everything for
this module. It communicates with the Adafruit SPI Friend [2]
using SPI, and with all the other modules using I2C. It also
controls an LCD display [5] that is used for the serial number,
and 3 red LEDs indicating strikes. In terms of our power
supply, we are using the PowerBoost 1000 Charger from
Adafruit [3]. That allows us to use a LiPo battery that can be
recharged and also have the output of the battery be boosted up
to 5V which we need.

Next we have the clock module. Again, this is
controlled by another Atmega328P. This MCU only worries
about implementing an accurate timer and controlling a 4 digit
7 segment display.

The first of two mini-games is our Simon Says game.
Like all the other modules it is controlled by an ATmega328P
MCU running at 5V and 8 MHz. The first piece of hardware for
this game includes four LED 30mm arcade buttons in red,
green, blue and yellow from Adafruit. These act both as buttons
and LEDs similar to the online game version. This module also
includes two regular LEDs, one in red and one in green. These
indicate the status of this game as complete or incomplete. And
finally, it includes one normal push button that allows the
player to replay the sequence if they need to see it again.

Our last module is the Password game module. The
Atmega328P controls another LCD display that displays the
word for the player to cycle through. Under this we have six
normal push buttons, five corresponding to each of the five
letters in the word, and one to submit the password.

avr/io.h
stdlib.h
stdbool h

- = [2C communication

SDP - Team 26

C. Software Components

The software in the system consists of four programs
written in C++ using Microchip Studio. All programs include
the C standard library, the C standard boolean library, and the
AVR input/ output library. The parent module utilizes the
Arduino BLE library for communication between the iPhone
application. The program also makes use of EEPROM to store,
retrieve, and update the random seed through configurations to
the EEPROM registers [1]. The pseudo-random number
generator used to vary the game’s configuration is provided by
the rand() function available in the standard C library. For
serial communication of necessary information, all four
programs utilize the 12C library provided by Arduino which
greatly simplifies the complex signals involved in 12C
communication. The chip on the parent board which passes the
necessary variables to start the game and acts as the event
handler is set up in master mode while the peripheral chips are
set up in slave mode.

D. The Application

The application is a fairly simple IOS application that
implements the Core Bluetooth stack for BLE app
development. The application GUI is displayed in Figure 4,
which shows the basic home screen and another screen for the
manual PDF file. The home screen features a connect button
that will begin setting up the BLE communication between the
app and the system, a slider to select the level of difficulty, and
the play button which sends the level to the device and transfers
the user to the PDF of the manual.

Figure 4: App home screen & manual

E. Custom Hardware

Figure 5: Parent/Clock Module PCBA

Figure 6: Simon Says Module PCBA

SDP - Team 26

Figure 7: Password Game Module PCBA

As mentioned in the overview, we have three unique
PCBAs. One containing the Parent and Clock modules, another
for the Simon Says module, and one for the Password module.
The design for these PCBAs was done exclusively in the
Altium Designer software. The fabrication was done by
JLCPCB [4]. Each PCB has an ISP header that allows it to be
programmed via the Atmel ICE. The power input to the system
is on the Parent PCB in the form of a MicroUSB that receives
5V. These PCBs were designed to distribute power from the
Parent PCB to the other Child PCBs using JST connectors.
There are 12C headers on all PCBAs that allow for
communication between the boards. And of course, each PCBA
contains all of its own specific hardware directly on the PCB.
The population of the PCBAs was done through a variety of
soldering techniques including through hole, hot air surface
mount soldering, and manual hand surface mount soldering.
The testing of these were mainly done by transferring what we
had on solderless breadboards to the custom hardware. We were
looking to see if we had the same functionality on the PCBA as
we had on the breadboard.

F. Prototype Functionality
Our prototype should feature similar functionality to

the virtual reality game it is based on; however, some of this
functionality may be fairly limited. One of these functionalities

that must be demonstrated is replayability. This means that the
game should feel unique every time it is played or having
different combinations of puzzle solutions. Our solution is to
add elements of randomness to different parts of the system
such that the user can play enough times before recognizing
they are getting repeated solutions.

Another aspect that must be realized is a portable
power source. Since virtual reality systems are portable, our
design should be as well. This means that our system should be
cordless and have a power supply that allows for multiple
playthroughs on a single charge.

G. Prototype Performance

Randomness. The source of randomness in both
modules comes from a pseudo-random number generator
whose seed is determined by a linear congruential generator
programmed in the Parent module and passed via I2C. Since
the random seed is a byte, there are 256 total configurations for
the game (we can exponentially increase this number in a future
endeavor by having each module calculate a seed separately).
The requirements for randomness in our system is that each
password/button flash happens equally as often and that
repeated configurations are unlikely to happen within 5-10
rounds of gameplay. These properties can be tested by looking
at the serial number generated by the parent module. The serial
number consists of four letters and two numbers meaning there
are 1020 letters and 560 numbers for the total number of
distinct sequences in the game. Since the Password and Simon
Says games use the same PRNG, this means that if the serial
number sufficiently satisfies the requirements for randomness,
so do these games. We calculated the frequency of each letter in
the string of 1020 letters and found that no letter appeared more
than 46 times and no letter appeared less than 36 times. Also,
the configurations of the device do not repeat until 256 rounds
because they are seeded with a linear congruential generator
with modulus 256. This level of randomness is sufficient for the
loose requirements for our design. Refer to Appendix C for
more information regarding the testing of randomness
properties.

Power. Since our project is based on a virtual reality
game, the prototype’s battery life should be comparable to, if
not better, than a virtual reality head set’s battery life. As stated
by Oculus, the typical VR headset will last about two to three
hours on a single charge [8]. This is a fairly short battery life as
other handheld gaming products such as controllers and other
battery powered devices may last up to thirty hours on a single

SDP - Team 26

charge so for our design, we would like the system to be more
comparable to this thirty hour battery life. Our prototype runs
on a 6600 mAH lithium ion battery. As described in the
Appendix under testing methods, we find the average current
draw of our system is about 27 mA. This gives us a total of 244
hours of play time which is well over the battery life of the
average video game controller and virtual reality system.

Figure 8: Graph of instantaneous velocity sampled at each
second

IV. Conclusion

Altogether, this project turned out very well. We
originally aimed to bring the fun online game “Keep Talking
and Nobody Explodes” to the physical world. Although our
game is not nearly as developed as the online game, we have
provided a prototype that includes two of these mini-games and
has lots of the same functionality of the original game. We are
able to communicate with the systems via bluetooth, and
communication between the subsystems works flawlessly. We
believe that our take on the game is one that stands out among
others, but also can be built upon in the future.

V. Acknowledgements

Team 26 would like to thank all the people who have
helped us along the way, as there have been many. First off, we
would like to thank our evaluators Professor Hollot, Professor
Pourgahily, and now Professor Soules. They all gave invaluable
advice and feedback throughout the duration of this project.
Next we would like to thank Wouter Schievink who helped us
with all of our orders and helped answer any questions we had
for him. Next, we would like to thank Charles Malloch who
helped us learn some of the protocols used in our project. We

would like to give a big thank you to Chris Caron who
answered our endless questions about nearly every facet of our
project. We would also like to thank Shira Epstein for
suggesting this project idea as we did not have a definitive one
coming into SDP. And finally, we would like to thank Professor
Gong for giving us the direction we needed to progress this
project to where it is now.

VI. Appendix

A. Design Alternatives

An alternate design we considered was having
multiple games on a single Atmega328P MCU to avoid dealing
with potentially complex serial communication protocols and
reducing the number of chips required. We decided against this
design mainly because it makes the scalability of modules
much more difficult. In addition to the messy circuitry, adding
more games might require adding another chip which must
communicate serially with another chip and one or more
programs must keep track of games running on their chip as
well as games running on any other chips. Our current modular
design which uses one chip to setup and manage the game state
allows for seamless additions and removals of peripheral
modules with the two wire 12C protocol and minimal changes
to the code. This is important because we wanted to keep our
options open on how many games to add as well as make any
future enhancements easy.

Another design we considered was in respect to the
difficulty selection and starting the game. An option we
considered was to do this locally on the embedded system
itself. However, we did not like the idea of having a paper
manual in the modern computing era, so we decided to create
an IOS application for it. We decided that adding bluetooth
capabilities here would enhance the user experience and make
the game simpler to understand. We chose bluetooth for
wireless communication because it is able to be used locally
without any connection to the internet and can still satisfy any
distance requirements.

B. Technical Standards

Our project included several technical standards. The
main ones were 12C, SPI, and BLE. These were used in various
locations in our project to implement seamless communication
between the various devices incorporated in our project. [2C
was the most prominent communication protocol that was used.

SDP - Team 26

This was chosen because it allowed us to use one device to
control all the other devices and how they communicate.
Making use of the Arduino “Wire.h” library we were able to
implement polling from our parent microcontroller to all the
child microcontrollers. This protocol also only uses two wires
which was useful as we had many peripheral devices that used
a lot of GPIOs. The two wire interface also provides scalability
for serial communication between devices as all the clock lines
and all the data lines for each device can be arranged in parallel
on two rails. This can allow for more games to be added in a
possible future endeavor.

For the communication between the parent
microcontroller and the Adafruit SPI Friend [2], we used SPI of
course. SPI was chosen in this case because in our original
prototype using the Adafruit Feather 32u4 Bluefruit LE, we
implemented this communication using SPI as it was already
present on the breakout board. Once we moved to the
standalone component, implementation of SPI was easy as we
already knew the method.

And finally, our application was implemented via
Bluetooth Low Energy. The leading reason we chose Bluetooth
LE is because it is low energy. Implementing BLE allowed us
to get rid of a paper manual, and made use of an IPhone which
holds a majority of the market share of mobile devices. BLE
was also useful as it does not require anything other than a cell
phone which can be used anyplace, and does not need to be
connected to a larger network.

C. Testing Methods

Randomness. The PRNG used in our system is
provided by the rand() function available in the C standard
library. The seed to the PRNG is assigned by a linear
congruential generator which has requisite coefficients to make
its cycle length equal to the modulus which is 256. This is
because the current seed is stored in EEPROM which uses 8
bits per address. The current seed is used as the input to the
following seed. We use this LCG to seed the PRNG because
noticeable patterns in the serial number and words chosen for
the password game occurred with simple incrementing of the
seed. The number of possible configurations is thus, 256. This
number can be exponentially increased by having each module
generate its own seed for its random number generator. The
properties of randomness our system must satisfy are that each
word chosen for the password game, LED flashed for a
sequence in the Simon Says game, and character in the serial
number is around equally likely to happen i.e. there is no
human identifiable deviation from a uniform distribution. This

property can be tested by checking the number of letters in the
serial number. A serial number contains six characters, four
letters and two numbers. Since there are 256 possible
configurations before repetition, we recorded 256 serial
numbers containing 1020 letters.

Histogram of Letter Frequencies
50
45
40
3s
30
25
20
15
10

ABCDEFGHI JKLMNOPQRSTUVWKXY

Figure 9: Histogram of letter frequencies

Looking at the histogram of letter frequencies as shown in
Figure 5, no letter appears less than 36 times and no letter
appears more than 46 times. For a casual player, this is close
enough to a uniform distribution such that deviations are not
noticeable. Applying a more quantitative metric such as the
Kolmogorov-Smirnov goodness-of-fit test for uniform
distributions which quantifies distance between the distribution
of samples from the reference cumulative distribution function,
results in sufficient evidence against uniformity [6]. Another
property regarding the randomness of our system is that the
configurations should not repeat in 10 or less consecutive
rounds. This property can be tested simply through analysis of
the random number generator. The rand() PRNG is
deterministic and is seeded with a deterministic linear
congruential generator, so the configurations cycle through the
length of the modulus on the LCG which is 256. This means
that a user would have to play the game more than 256 times to
see repeated configurations. One downside to the deterministic
nature of our system is that its configuration can be determined
with knowledge of the seed or the coefficients of the LCG.
However, this information is not easily accessible to a player as
it is in firmware and EEPROM memory. An attacker could
connect a supported AVR debugger to the on-chip 6-pin ISP
header or perform other circuit level attacks, but we do not
consider this as an issue because the system is meant for casual
fun. Thus, we believe that security through obscurity is
sufficient and the properties of randomness sufficient and are
satisfied.

SDP - Team 26

Power. We wanted to test how long our system should
last such that the user does not have to recharge it after very
few uses. This means that our system should be able to last on a
single charge for an extended period of time on our 6600 mAH
battery. We measure current drawn from the battery by
connecting an ammeter in series with our system as shown in
Figure 9. We then estimate how many games can be played on
a single charge of the battery. We do this by periodically
sampling the instantaneous current draw using the ammeter
over a small sample of five minute games to find the average
current draw of each playthrough. From these samples, we
average these playthroughs to determine an overall average
current draw for a single playthrough. We then determine how
many games with this average current draw to determine
approximately how long the battery should last.

System

Figure 10: Circuit to analyze power

D. Project Expenditures

Table 2: SDP Expenditures
Our project stayed comfortably under the $500 budget.

E. Project Management

Being a three person team made sure that our whole
team had a significant role in the development of the project.
Ethan was mainly responsible for the hardware of the project.
He was in charge of assembling the project on breadboards and
PCBAs. He was also responsible for designing, populating, and
testing the PCBAs. He was also in charge of designing the
enclosure for our final version of the prototype. And finally, he
was team coordinator. Krishna was mainly in charge of the
development of the software for all the modules. He worked
closely with the code in both Arduino and in C. He did research
on how to implement some of the technical standards we used
like 12C. Krishna was also the budget lead, being responsible
for submitting orders for all the necessary parts. Edward was in
charge of the bluetooth application development. He developed
the application for an I0S device and implemented bluetooth
communication into the project. When not working on the
application, he assisted Krishna with the development of the C
code. He was in charge of submitting and keeping track of the
orders from JLCPCB [4].

F. Beyond the Classroom

1) Ethan: Before this project I did not have much
hands-on experience. Firstly, this project was very helpful on

SDP - Team 26

learning how to be a part of a team. I had worked on group
projects before, but nothing on this scale. Managing a project
like this has definitely helped me grow as an engineer. In terms
of actual engineering skills, I got to work with many things I
had never seen before. I learned how to solder both through
hole and SMD. And of course, got lots of experience with PCB
design using Altium Designer. I worked with different
communication protocols and standards for microcontrollers
like I2C and SPI, and sharpened my C coding skills as well. All
in all this project exposed me to a lot of different things which I
believe will help me in the future as I move into a professional
career.

2) Matt: Like Ethan, I also did not have much
hands-on experience with developing an engineering project let
alone carrying one out on a small team. This experience gave
me a much better understanding of the engineering process and
what it takes to develop a system from the original
brainstorming of ideas to finalizing the design on a custom
PCB. This process has also taught me how to work as a group
in a whole new capacity. Many assignments throughout my
college career have been completed on my own or in a pair.
Something about working in a slightly larger group showed me
how important communication can be on large scale projects
like the Senior Design Project. We found that it may be difficult
to understand a part code or design that someone else has
written earlier and so it is important to communicate to your
team, whether it is personally explaining what has been done or
commenting code to explain what has been done. This project
has also helped me develop my engineering skills. We have not
used many of the parts and protocols used in our project so |
got a better understanding of how to research, implement, and
test these parts and protocols. I believe that SDP helped me
better develop my engineering skills that I will eventually use
in my career.

3) Krishna: Similarly to Matt and Ethan, I have not
had any experience with a year-long, independent project,
which forced me to adapt quickly, manage time effectively, and
collaborate with the group. Working primarily with low-level
embedded software, a major skill I needed to develop was
troubleshooting. The more limited debugging capabilities on
embedded systems and having such a wide range for the source
of issues guided me to develop innovative debugging
techniques that ranged from many different layers of a
computing system. Some methods I utilized throughout the
project were analyzing circuit components and their
connections, reading circuit-level analog and digital signals,

10

and modifying/ stepping through various critical parts of code.
Some of these skills and knowledge will definitely carry over to
my professional career.

VII. References

[1]JAtmel Corporation, “ATmega328P Datasheet,” Datasheet,
2015.

[2] K. Townsend, “Introducing the Adafruit Bluefruit LE SPI
Friend,” Adafruit.com, 07-Jul-2015. [Online]. Available:
https://learn.adafruit.com/introducing-the-adafruit-bluefruit-spi-
breakout. [Accessed: 08-Apr-2022].

[3] L. Ada, “Adafruit Powerboost 1000C,” Adafruit.com,
21-Apr-2015. [Online]. Available:
https://learn.adafruit.com/adafruit-powerboost-1000c-load-shar
e-usb-charge-boost. [Accessed: 08-Apr-2022].

[4] “PCB prototype & PCB fabrication manufacturer,”
JLCPCB. [Online]. Available: https://jlcpcb.com/. [Accessed:
08-Apr-2022].

[5] Hitachi, “HD44780U (LCD-II),” Datasheet.

[6] “Kolmogorov-Smirnov Test,” Kolmogorov-Smirnov test -
Encyclopedia of Mathematics. [Online]. Available:
https://encyclopediaofmath.org/wiki/Kolmogorov-Smirnov_test
. [Accessed: 06-Apr-2022].

[7] C. E. Shannon and W. Weaver, The mathematical theory of
communication. Urbana, IL: Univ. of Illinois Press, 1949.

[8] “VR headsets, Games & Equipment,” Oculus, 11-Oct-2020.
[Online]. Available: https://www.oculus.com/. [Accessed:
08-Apr-2022].

[9] “R/KTANE - I made a physical version of the video game
keep talking and nobody explodes!,” reddit. [Online].
Available:
https://www.reddit.com/r/ktane/comments/a3fgyt/i_ made a ph
ysical_version_of the video game keep/. [Accessed:
08-Apr-2022].

[10] “R/3dprinting - I made a bomb (Keep Talking nobody
explodes),” reddit. [Online]. Available:
https://www.reddit.com/r/3Dprinting/comments/j0q9ls/i_made
a_bomb_keep talking nobody_explodes/. [Accessed:
08-Apr-2022].

