e ‘?‘” U budlbid
jid

LEDzeppehn

SDP22 Team 25 CDR -

Michael Forbes, Gavin Ba?zi‘~Stephen Thzmothe & Sebastian Harder

Stephen Thimothe

Computer Engineering

Team 25 — Senior Design Project 2022

Sebastian Harder Gavin Baril
Computer Engineering Electrical Engineering
Advisor:

Professor Daniel Holcomb

1 1 .ial

Michael Forbes

Electrical Engineering

March 9, 2022

SDP22 Team 25 | CDR

DO

Stephen Thimothe
Embedded Software Lead

Component Programming

Team Responsibilities

Sebastian Harder

Software Dev Lead

GUI Programming &
Design

Gavin Baril
Hardware Lead

Component Design

1 1 .ial

Michael Forbes

Signal Processing Lead

Team Coordinator

March 9, 2022

SDP22 Team 25 | CDR

Qo

The Idea

- To create a lighting
system to be used as a
live performance aid for
solo guitarists.

- The lighting 1s on the
guitar and responds to

the live audio signal
created by the guitarist.

LEDzeppelin is a performance element.

. The signal will be retrieved from the wired
audio signal of the guitar.

. LEDzeppelin will be primarily a performance
element for solo guitarists and small bands.

Problem Statement

Independent guitarists are often looking for ways to
make their sets more 1nteractive and

unique. However, as artists at small gigs, their
options are limited by finances, space, and portability
as well as limited 1n flexibility and customizability.

LEDzeppelin will be piece of equipment that solo
artists or small bands can use to create a customizable
lighting experience for live performances. The
product will be portable, scalable, and unintrusive as
to not interfere with the artists’ playing style.

v
v
&

&

System Specifications & Testing Plan

The system has no more than 20ms
latency.*

An advanced knowledge of programming
1s not necessary to operate LEDzeppelin.

« A DMX controller allows for easy
adjustments mid-performance.

* The system 1s compatible with any standard
electric guitar.

- Impermanent, and easy to install.

The LEDs respond to a variety of signal
parameters, including:

- amplitude

- frequency

The refresh rate of the fret board will be
tested with an accurate camera and a known
shutter speed.

Focus groups will be used in two ways:

* To test audience reactions to both individual
configurations and an entire performance.

« To test guitarists’ experience using the system
for the first time.

Signal control testing:

* Amplitude detection accuracy will be tested by
strumming the guitar at various volumes.

* Frequency detection accuracy can be tested
with an oscilloscope for chords.

* Open string tuning should be at a known
fundamental frequency.

* For this project, latency is defined as the time between the creation of the signal (when the guitar is strummed), and the visual
response of the LEDs.

https://www.youtube.com/watch?v=m856SaPpLkY&t=34s

Notes on Latency

The latency specifications for the system are based on the
distance of the audience and the musician from the sound
source, and the average musician’s threshold for such
latency (about 12-20ms).

For example, a musician standing 1 meter from the
amplifier experiences ~3ms of latency.

The audience, however, in a small venue 1s likely ~4-5
meters away.

Also, note that while individual note detection results in
significant latency, a tuning function has room for this.

NSNS

System Specifications & Testing Plan (continued)

- LEDs are assigned to each string on each fret,

at least down to the body of the guitar.

- The system is portable.

- No more than one person is required to set it up.

* The entire system (not including the guitar) is
no more than 5 lbs.

- There are LED configurations that users can

control and assign.

* One of the preset functions will be a built-in
tuner.

* Other configuration settings for performing will
include color pickers, mode selection, and more.

- Example: Preset #3 sets the LEDs to change colors
depending on the frequency of audio.

+ More details on next slide.

Tested by inspection. | Satisfied

Portability testing:
* Total system weight will be measured.

* Setup/breakdown time will be recorded.

Tested by inspection.

Verify tuner is accurately narrowing
suggestions visually toward a consistent note
or frequency.

Test configurations by inspection, among other
methods. More details on next slide.

Configuration Specifications & Testing Plan

Using the GUI, the user can set the following
effects to be implemented:

V - Change LED colors, with the option of setting - We will test the color accuracy using a
specific hex color codes. spectrometer.

- Audio visualizer based on volume of playing / - Test by inspection, verifying that LED output
amplitude of signal. changes properly for different volumes played.

- Audio visualizer based on note played / - Test by inspection, verifying that LED output
frequency of signal. 1s consistent for a specific note strummed.

- Control any part (all or some) of the LED array - Test by inspection, checking that GUI settings
with chosen signal elements. for turning off sections of the LEDs work.

- Stacking multiple functions in a single - Test by inspection, combining the applicable
configuration. aforementioned tests for the various stacked

- Example: a configuration that scales the neck of outputs.

the guitar with volume while simultaneously
changing LED hue by frequency.

Hardware and Software Components

- Hardware
- Raspberry Pi1 Pico (RP2040)
* Fret Zealot LED strip
- 2N7000 BJT for level shifter
- LED and Barrel jack splitters.

- Software
- wxWidgets (GUI framework)

» C++ programming in Visual Studio, Visual Studio Code

Hardware Block Diagram

. User PC with USB
Main Board for Configuration

building
Analog Signal Prep RP 2040 and Peripherals

Anti-Aliasing Filter ADC

Input

Guitar Signal Amplify and Bias I2C Port

Analog Line In

ADC Protection \

MIDI In

: Voltage Regulator Level Shifter
Expression Pedal 3.3V, 5V)

Output

DMX Out

AC-DC 9V Power

Fret Zealot LED Strip
Transformer

o
2

Software Block Diagram

Q
=
©
<
(av]
-
=

GUI/ SETTINGS [J

per configuration:

Set light color palettes

= TR J Receives selected
active configuration

Set lights to turn on/off ‘ config . .

Cross-Platform GUI Library

@
3]
]
3
2
T

o=

A

Controls LEDs o

Save all configurations to acc:;r:flin%::tiaoc:ve ;
n separate files 9 :1

el

AUDIO E

SIGNAL A

A

D)

ek
Qo

The following were our proposed deliverables for CDR:

- The system 1s fully integrated on a printed
circult board.

- Demonstration of intuitive guitar tuning
configuration.

- Demonstration of frequency dependent
performance configurations.

&
&

- The GUI fully manipulates necessary
configuration parameters.

Frequency Detection (currently)

- Using KissFF'T library.

- Sampling at 5KHz, 5000 point FFT (1Hz
frequency resolution.

- Some 1ssue with double frequencies when
detecting strings.

- Plan to use Harmonic Addition to detect string
fundamentals.

Open Guitar String Fundamentals

Scientific
$tring Frequency pitch
notation

1(E) | 329.63 Hz
2 (B) | 246.94 Hz

3(G) | 196.00 Hz

4 (D) | 146.83 Hz
5(A) | 110.00 Hz
6 (E) = 82.41Hz

N
N
<
Bl P Local Windows jebugger - Debug %86 - I I~ I == N 12 Live Share & ’C;
§ minimal.cpp cApp.h _— ”II - cMaincpp + X GUI Demo - 5 %
E:‘_‘ %] wxWidgets_test - (Global Scope) = | o En E
L ' bsizer _main->Add(choice_configs, ©, WXALIGN_CENTER|wxALL, 15); - =
g 31 E i
- 32 i // COLOR PICKER // 3
S 33 o
5 34 A gSizer colors = new wxGridSizer(®, 4, @, @); g
35 : 5
36 ' button colorl = new wxButton(this, wxID ANY, “"Red”, wxDefaultPosition, wxDefaultsSize, 8); %
37 button_coloril->SetBackgroundColour(wxColour(255, @, @));)
38 button_colorl->SetToolTip("#FFeeea"); =
39 gSizer colors->Add(button_colorl, 8, wxALL, 5); _%
40 : 2
41 button_color2 = new wxButton(this, wxID ANY, "Orange", wxDefaultPosition, wxDefaultSize, @); g‘
42 ' button_color2->SetBackgroundColour(wxColour(255, 165, @)); &
43 button_color2->SetToolTip("#FFA5€8"); Y
44 : gSizer colors->Add(button color2, @, wxALL, 5); i
45 : 5
46 1 button_color3 = new wxButton(this, wxID ANY, "Yellow", wxDefaultPosition, wxDefaultSize, @);)
47 button_color3->SetBackgroundColour(wxColour(255, 255, 9)); §
48 button_color3->SetToolTip("#FFFFee"); §
49 gSizer colors->Add(button _color3, @, wxALL, 5); _g‘
50 5 g o
51 i button_color4 = new wxButton(this, wxID_ANY, "Green”, wxDefaultPosition, wxDefaultSize, 8); i a
52 1 button_colora->SetBackgroundColour(wxColour(®, 255, ©)); (@)
53 button_color4->SetToolTip("#e@FFee"); —
54 gSizer colors->Add(button color4, @, wxALL, 5); 0
55 ; N
56 button_color5 = new wxButton(this, wxID ANY, "Blue", wxDefaultPosition, wxDefaultSize, @); E
57 button_colors->SetBackgroundColour(wxColour(@, 128, 255)); g
58 ' button_colors->SetToolTip("#0080FF"); =~
59 gSizer colors->Add(button color5, @, wxALL, 5); o
60 ' &
; ! : = " . ; al
61 ! button_coloré = new wxButton(this, wxID ANY, "Purple”, wxDefaultPosition, wxDefaultSize, @); =
62 button_coloré->SetBackgroundColour(wxColour{128, @, 255)); v AN
112% = @ No issues found Ln:67 Ch:63 SPC CRLF
Error List Qutput
[J Ready M AddtoSource Control « &, 1 7

HET S uE e e eQ@ M AN JOEE ezl rw0 30

Budget

Guitar Already owned

Fret Zealot Strip $100
PCBs $50

Hardware (MCUs, equalizer) $60

9V Power Supply Unit Already owned

Total $210

Proposed FPR Deliverables

- The system 1s fully integrated on a printed circuit
board.

- Demonstration of frequency and amplitude
dependent performance and tuning configurations.

- The GUI fully manipulates all implemented
configuration parameters.

- System specifications all successfully tested using
test plans and criteria 1s met.

LEDzeppelin
Team 25

Sebastian Harder, Gavin Baril,
Stephen Thimothe, Michael Forbes

TASK

Administrative Tasks

Populate custom PCB

FPR presentation preparation
Hardware

Populate custom PCB

Get functions operating on PCB

Get the LEDs back online

Optimize hardware performance
Signal Processing

Frequency-dependent configurations

Tuning function
Software

Make GUI executable outside of IDE

The path to FPR: a Gantt chart

All
All

Gavin/Michael
All
All
Gavin

Michael /Stephen
Michael/Stephen

Sebastian

28

Start date:

Wed, 3/9/2022

3/14/22
4/11/22

3/16/22
3/22/22
3/10/22
3/18/22

3/16/22
3/10/22

3/10/22

3/18/22
4/17/22

3/22/22
4/10/22
3/20/22
3/28/22

3/30/22

3/20/22

3/7/2022

371472022 3/21/2022 3/28/2022 41472022

4/11/2022

4/18/2022

3/15/22
3724422
3/25/22
3/20/22
3/23/22

3/25/22
4/5/22
4/6/22
4/3/22
4/10/22

Qutput GUI config files directly to MCU Sebastian
Add LED brightness/amplitude settings

Add frequency settings

Sebastian
Sebastian/Stephen
Sebastian/Stephen

Sebastian

Tuner settings

FIRRRR B8 BRRR

Improve & expand GUI design elements

|
|
|
|
|
|
|
|
|
3/22/22 |
|
|
|
|
|
|
|
|
|

Insert new rows ABOVE this one

Questions?

