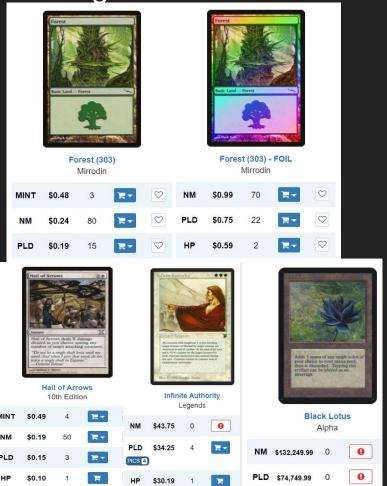

Magic: The Sortening Team 24

Zalman Lipschitz (MechE)

Prof. Mario Parente

Malcolm Okaya (CompE) Henry Powell (EE, MechE) Liam Rees (MechE)


Background: Secondhand Magic: The Gathering cards market

Magic: The Gathering is a trading card game, where players collect cards and combine them into decks to play against each other, or simply collect for rarity (like baseball cards).

The Secondhand market for *Magic* cards is extensive [1].

The value of a given card is determined by its condition and rarity.

How is this condition determined and measured?

Background: Magic card condition rating

There are two major, complementary systems for analyzing card condition. Both are fairly inconsistent & subjective, though there are specific guidelines for each:

Qualitative [2]

- Mint: Almost no wear whatsoever
- Near Mint: Very little wear
- Lightly Played: Limited wear
- Moderately Played: Worn
- Heavily Played: Very worn
- Damaged: Worthless
- Cards that have been altered (e.g. signed) are generally not given a condition rating

Quantitative [3]

- 1-10 scale either on the card as a whole or on its individual parts (edges, surface, etc).
 - May be mapped to a corresponding qualitative rating.
- Typically used by professional rating services.

Problem Statement

- Reselling lots of cheap cards has large returns, but is expensive and annoying to sort, especially when grading and checking for forgeries is involved.
- Solutions exist, but they're not good enough, as they only do card ID.
- We'll make a device that does everything needed.

Goals, Specifications, Testing Plan

Project Goal

A machine capable of identifying, grading, verifying, and sorting bulk Magic: The Gathering Cards at a comparable level of competency to a human.

Goals For CDR

- Total integration of every core system:
 - \circ Sorting
 - Grading
 - Fraud Detection

System Specifications and Verification - Overview

Item	Description/spec	Test Plan/Verification
Card Throughput	>2 cards/min, >1000 card capacity	Basic verification of speed and capacity.
Card Condition Grading	Catch signs of damage. Provide a valid grading based on that damage.	Demonstrate that solution identifies all damage visible to the human eye. Demonstrate that grading generally agrees with guide used by client.
Card ID	Solution must find the name of card as well as the set it comes from. >95% accuracy	Prove with 95% confidence that accuracy is >95%
Forgery Detection	Customer asked for 4 benchmarks to detect fakes. Solution must perform all 4 checks.	Demonstrate that all 4 checks are present, and that they pass valid cards, and that 90% of forgeries fail at least one.
Card Damaging	No noticeable new damage to cards after processing	Prove with 95% confidence that no cards are damaged.
Output Bins	Need at least 15 software-configurable output bins	Demonstrate functionality.

Specifications - Card Throughput (Review)

Goal:

>2 cards/min, >1000 card capacity

Reason:

Requested by vendor. About what a human person is capable of.

Verification:

Basic demonstration of each. Fully process 2 cards in 1 minute.

Specifications - Condition Grading (Review)

Goal:

Find >95% of damage visible to human eye. 90% confidence. Sides (new) Front Back

Reason:

Key goal of this project is finding and evaluating damage to cards.

Verification:

Manually map all damage on digital image of card. Compare with computer-generated damage map. Do this for front/back/sides. 19/20 pieces of damage visually identified should also be identified by the computer. Do this 10 times.

Specifications - Card ID (Review)

Goal:

Correctly identify cards 95% of the time. 95% certainty.

Reason:

Second key goal of this project is sorting cards correctly.

Verification:

Run 20 cards through identification. No more than 1 card misidentified. Do this 20 times. Unidentifiable cards that are correctly judged as such don't count.

Specifications - Forgery Detection (Review)

Goal:

Weight check Glossiness check Printing verification check 1 (print pattern) Printing verification check 2 (dots)

Reason:

Third key goal of this project is finding forgeries. Vendor mentioned each of these checks.

Verification:

90% of legitimate cards pass all 4 tests. 90% of fake cards fail at least one. 90% confidence: Run through 10 of each, 10 times. No more than 1 false positive/negative each run.

Specifications - Card Damaging (Review)

Goal:

Cause minimal damage to cards through processing

Reason:

Want to have client trust. Damaging the cards hurts their value.

Verification:

Run 1 card through 5 times. Damage detection software should not detect more than 5% additional damage. Visual inspection should also show no damage.

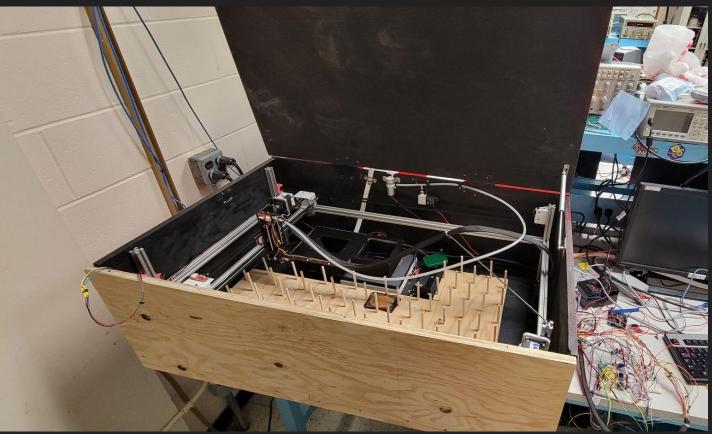
Demonstrate fail-safe by unplugging mid-operation and showing no fires.

Specifications - Output Bins (Review)

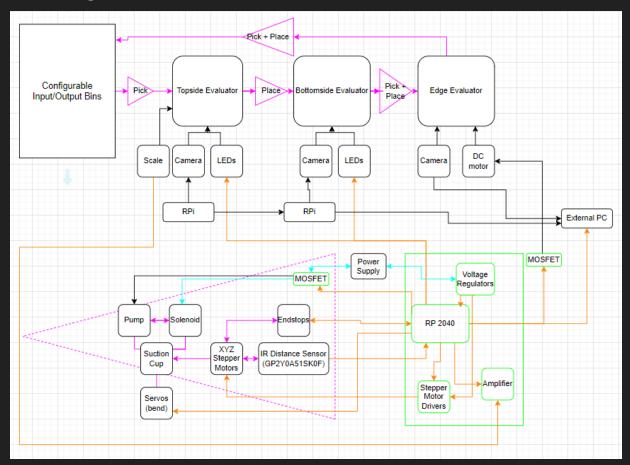
Goal:

At least 15 configurable input/output bins.

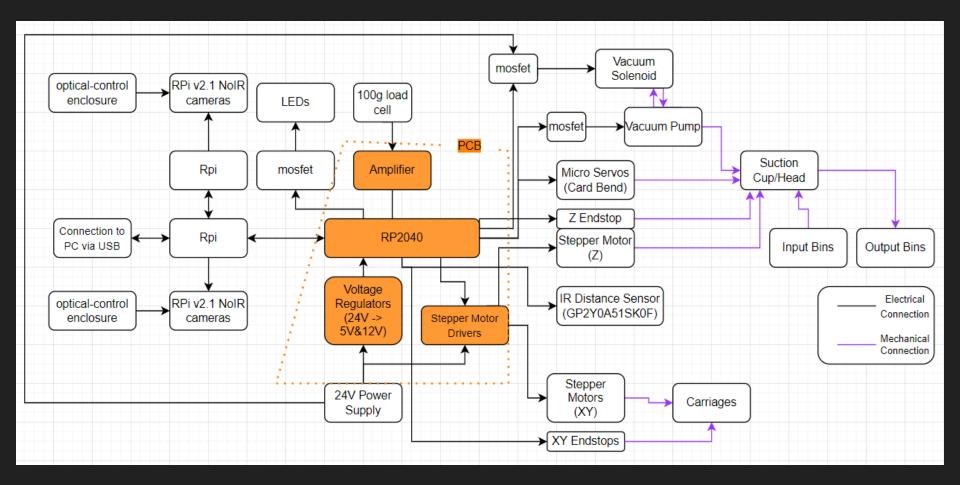
Reason:

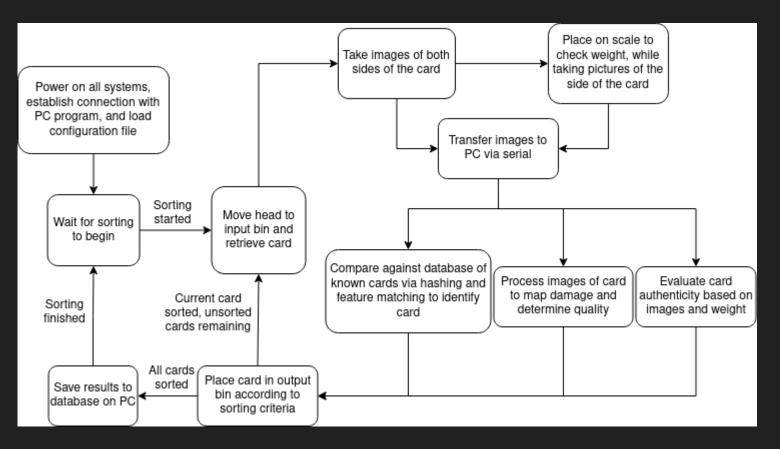

Distributor identified maximizing number of possible outputs as very desirable.

Verification:


Demonstrate system is capable of accessing each bin. Demonstrate that they may be configured.

System Design


Current Design — General


Hardware Diagram + Path of a Card

Hardware Diagram

Software Diagram

Prototype Performance

Card Throughput, Capacity, & Configurability

Throughput Goal: >2 cards/min, >1000 card capacity

Current Ability:

Card processing rate is not yet determined but could potentially be up to 5 cards/min. Capacity surpasses 1000 cards

Configurability Goal: At least 15 configurable input/output bins.

Current Ability: There are 27 bins - we anticipate using 13 as input, and 14 as configurable outputs.

Each bin has ~250 card capacity, giving the system a total capacity of ~3,250 cards and an estimated runtime of ~28 hours if the minimum throughput goal is met.

Condition Grading

Goal:

Find >95% of damage visible to human eye. 90% confidence.

Current Ability:

Very strong performance to isolate the card art from any damage/dust(artifacts). In future, we plan use blown air to move dust in order to distinguish between damage and dust.

Card ID

Goal:

Correctly identify cards 95% of the time. 95% certainty.

Current Ability:

We have been able to identify the majority of cards tested so far.

Top is original image. Bottom is identified photo in database!

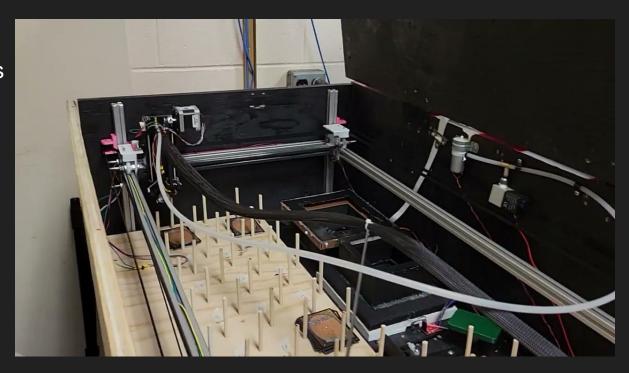
Forgery Detection

Goal: Weight check Glossiness check Printing verification check (pattern) Printing verification check 2 (dots) — stretch

Current Ability: Scale integration is incomplete - physically installed, software incomplete.

Glossiness check is incomplete

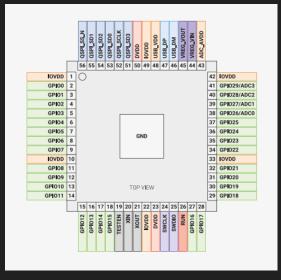
- The pattern check is incomplete
- Known dot pattern check is incomplete
- While incomplete, they are all still goals


Fake

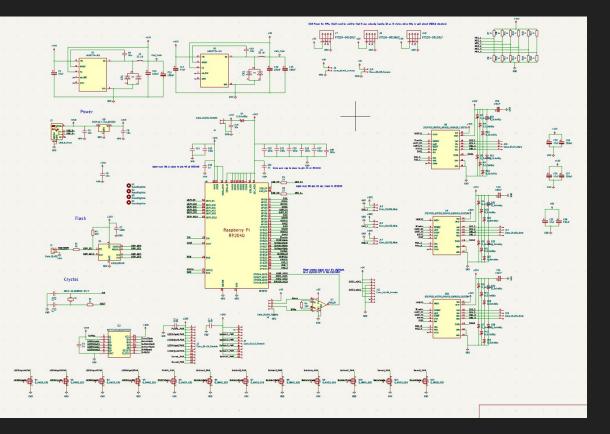
Card Damaging

Goal: Cause minimal damage to cards through processing

Current Ability: With careful calibration, we are able to process a card with no discernable damage.

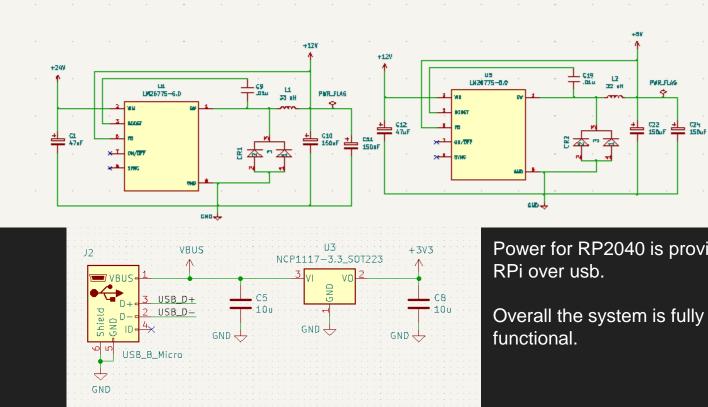

CDR Performance Summary

Item	Specification	Capability
Card Throughput, Capacity	>2 cards/min, >1000 card capacity	Full. Need to perform formal verification for throughput, but shouldn't be a problem. Capacity is met.
Card Condition Grading	Catch signs of damage. Provide a valid grading based on that damage.	Full. Need to perform formal verification. May be some improvements required in the looking-up case
Card ID	Solution must find the name of card as well as the set it comes from. >95% accuracy	Full. Need to perform formal verification.
Forgery Detection	Weight check Glossiness check Printing verification checks (pattern & dots)	Partial.
Card Damaging	No noticeable damage to cards.	Partial. Further changes are needed to improve the reliability.
Output Bins	Need at least 15 software-configurable output bins	Partial. Need to finish programming coordinates.


Custom PCB

The PCB

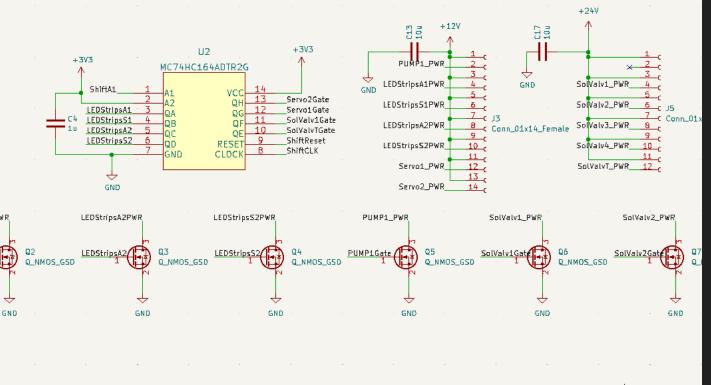
- RP2040 microcontroller
- Voltage regulation from 24V to 5V and 12V
- Interface with sensors for system
 - IR distance sensor for z-axis of gantry
 - endstops for all 3 axes of gantry
 - load cell
 - current sensor on pump to check if card is dropped accidentally (spike)
- Motor drivers
- Current status is not fully functional so breadboard is used.



Main PCB Full Image

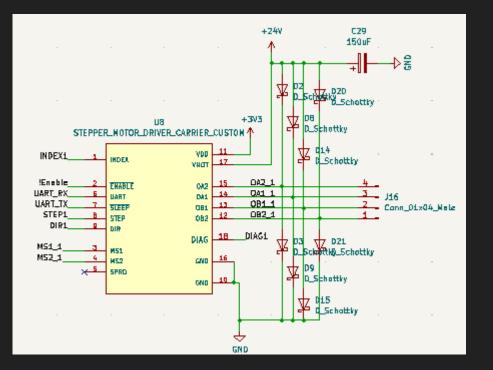
The main PCB had around 120 components. We will go over some of the subsections in future slides.

Voltage regulation for power



Large capacitors and inductors are required to manage the high power throughput.

Power for RP2040 is provided by connection to

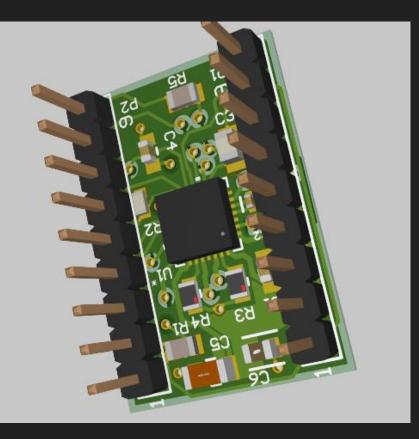

Overall the system is fully populated, but not fully

Power Output Control


Shift register is used to extend I/O. NMOS are used to power the pumps, motors, and LEDs (in breadboard we use TIP31C NPN)

Stepper Motor Driver Carrier on Main PCB

The diodes insure that back EMF doesn't harm the motor driver or other components.


Stepper Motor Driver Carrier PCB

Errors were found in the pin layout, and some resistors and connections were missing, but UART demonstrated functionality. New version was ordered and has shipped but not arrived.

PCB Layout for rev 2

FPR Plan

FPR Revisions

- Improve integration, reliability, and repeatability
 - Enclosure
 - Wire management
 - Card Stack Location
 - PCB and PSU
- Improve capability of prototype for core performance
 - Damage Detection
 - Forgery Detection: Glossiness
 - Side of Card

Gantt chart through FPR

T						<u> </u>									_	_			-	_		
					3/	'20/	/2022		3/	/27/2022		4	4/3/	2022		4	/10/	2022	?	4	/17/	/2022
Task Name	Start Date	End Date	Team Member(s)	М	Т	W	Th F	Μ	Т	W Th F	М	Т	W	Th F	Μ	Т	W	Th F	Μ	Т	W	Th F
Hardware																						
Finalize Controls and Integration	3/20/2022	4/10/2022	MO, HP, ZL																			
Final Revision Head	3/20/2022	4/3/2022	LR																			
Evaluator Performance Improver	4/3/2022	4/17/2022	HP, JM																			
Forgery Detection Finalization	3/20/2022	4/10/2022	MO, JM, HP																			
Finishing touches	3/27/2022	4/17/2022	HP, MO, LR, ZL, JM																			

FPR Demonstration Plan

- Put together a small deck of cards representative to our system capabilities (of different damage levels, of different values, and some forgeries)
- Process the small deck in front of whoever is watching

Expenditures & Management

Expenditures: Hardware

Item	Description	Link	Price (to us)	#	Justification					
LDO-42STH38-1004A	Stepper Motors for each gantry axis	https://ldomotors.en	\$0.000	3	Free to us					
Makerbot Mechanical Endstop V1.2	Endstops for each gantry axis & head	https://www.amazon	\$0.000	3	Free to us					
A4988 Stepper Motor Driver Carrier	Breakout boards for A4988 Stepper Motor Drivers	https://www.pololu.c	\$0.000	3	Free to us					
Ramps 1.4 Board + Arduino Mega	Board to control stepper motors		\$0.000	1	1 Free, used for prototyping (will be replaced by PCB)					
20mm Tslot frame rail	Frame Rail	https://www.mcmast	\$11.000	6	compatible with	other frame comp	onents. Of smalle	est viable size.		
2020 Series Aluminum Extrusion Conne	Frame Connectors	https://www.amazon	\$17.000	1	compatible with	other frame comp	onents. Of smalle	est viable size.		
48 PCS 3D Printer POM Pulley Wheel \$	Wheels for carriages	https://www.amazon	\$19.000	1	compatible with	other frame comp	onents. Of smalle	est viable size.		
5M GT2 Timing Belt 6mm Width + 4pcs	Belt and belt accecories for carriages	https://www.amazon	\$16.000	1	compatible with	onents. Of smalle	est viable size.			
Electric Solenoid Air Valve	Solenoid to engage and disengage vacuum	https://www.amazon	\$0.000	1	free to us					
NW Air Pump 5V-6VDC Miniature Vacua	pump to generate vacuum	https://www.amazon	\$0.000	1	free to us					
Servo - Generic (Sub-Micro Size)	https://www.sparkfur	\$9.000	2	2 very small. may be used to bend cards to stop them sticking.						
RPi NoIR Camera V2.1	https://www.cytron.id	\$29.000	2	2 Good Quality, relatively low price camera						
IR Distance Sensor	Distance Sensor to determine clearances on head	https://www.robotsh	\$12.000	1	Very low range I	R Distance sense	or at low price			
Suction Cup 5427A786	Used to pick up cards and to place them	https://www.mcmast	\$10.000	1	Good dimension					
Mini Load Cell - 100g, Straight Bar (TAL	load cell to be used to determine card weights	https://www.sparkfur	\$9.000	1	1 appropriate size and fidelity for use on playing cards					
Alise 100N/22.5lb Up Opening Pneuma	Hold box open	https://us.amazon.co	\$12.990	1	good spec & che	eap				
Design House 181438 6-Hole x 3 1/2", 5	Hinge for box door	https://www.amazon	\$6.100	1	good spec & che	eap				
40PCS L Bracket Corner	Hold box & gantry together	https://www.amazon	\$8.990	1	good spec & che	eap				
HATCHBOX PLA 3D Printer Filament	Printer filament	https://www.amazon	\$22.990	\$1	good spec & che	eap				
20 Sets Jst 2.0 Ph 4 Pin Connector Plug	connector pins	https://www.amazon	\$7.690	1	correct spec					
Jetson	Image processor	https://store.nvidia.c	\$60	1	Good at image p	processing and O	K price			
DC Converter	24V - 5V 5A	https://www.digikey.e	\$25.48	1	1 Necessary to have sufficient current to power all parts that					
DC Converter	24V - 3.3V 2.5A	https://www.digikey.	\$27.57	1	power pump and	l low-power devic	es			

Approximately \$20 left in budget

Expenditures: Board Components

W25Q128JVSIQ-ND	IC FLASH 128MBIT SPI/QUAD 8SOIC	https://www.digikey.	\$1.880	2 PCB component
NCP1117DT33GOS-ND	IC REG LINEAR 3.3V 1A DPAK		\$0.760	2 PCB component
X983-ND	CRYSTAL 12.0000MHZ 32PF TH		\$0.700	2 PCB component
SN74HC164PW-ND	IC SHIFT REGISTER 8BIT 14-TSSOP		\$1.160	2 PCB component
A19473-ND	CONN HEADER VERT 9POS 2.54MM		\$0.700	2 PCB component
609-1045-ND	CONN RCPT USB2.0 TYPEA 4POS R/A		\$0.930	6 PCB component
RMCF0805FT100RCT-ND	RES 100 OHM 1% 1/8W 0805		\$0.100	2 PCB component
A98333-ND	TERM BLK 2P SIDE ENT 2.54MM PCB		\$1.450	2 PCB component
296-48568-1-ND	IC REG BUCK 5V 5A TO263-3		\$6.950	2 PCB component
ED10568-ND	TERM BLK 12P SIDE ENT 2.54MM PCB		\$3.320	4 PCB component
NVTR4503NT1GOSCT-ND	MOSFET N-CH 30V 1.5A SOT23-3		\$0.306	24 PCB component
541-1343-1-ND	FIXED IND 22UH 7.2A 46.97MOHM SM		\$3.960	2 PCB component
SRP1265A-330MCT-ND	FIXED IND 33UH 8A 58 MOHM SMD		\$2.140	2 PCB component
LM2677SX-12/NOPBCT-ND	IC REG BUCK 12V 5A TO263-7		\$6.950	2 PCB component
1276-1015-1-ND	CAP CER 10000PF 50V X7R 0805		\$0.100	4 PCB component
478-7804-1-ND	DIODE SCHOTTKY 40V 500MA 1206		\$0.315	50 PCB component
455-2932-1-ND	CONN RCP MICRO USB B 5POS SMD RA		\$2.650	2 PCB component
1276-1043-1-ND	CAP CER 0.1UF 25V X5R 0402		\$0.011	18 PCB component
SS5P4-M3/86AGICT-ND	DIODE SCHOTTKY 40V 5A TO277A		\$0.670	4 PCB component
493-4685-1-ND	CAP ALUM POLY 47UF 20% 50V T/H		\$4.279	10 PCB component
1189-2325-ND	CAP ALUM 47UF 20% 50V RADIAL		\$0.192	12 PCB component
1276-1122-1-ND	CAP CER 10UF 6.3V X5R 0805		\$0.086	14 PCB component
311-1019-1-ND	CAP CER 27PF 50V COG/NPO 0402		\$0.026	10 PCB component
1276-1275-1-ND	CAP CER 1UF 10V X7R 0805		\$0.059	10 PCB component
493-3717-ND	CAP ALUM POLY 150UF 20% 16V T/H		\$0.782	10 PCB component
RMCF0402FT1K00CT-ND	RES 1K OHM 1% 1/16W 0402		\$0.015	10 PCB component
311-27JRCT-ND	RES 27 OHM 5% 1/16W 0402		\$0.013	10 PCB component
311-27JRCT-ND	RES 27 OHM 5% 1/16W 0402		\$0.013	10 PCB component
\$7042-ND	CONN HDR 9POS 0.1 GOLD PCB	https://www.digikey.	\$0.670	6 PCB component
31111SCT-ND	RES 0.11 OHM 1% 1/8W 0805		\$0.360	10 PCB component

Total So Far: \$503.84 (note that some of this is out-of pocket).

Project Management

- Mechanical Lead Gantry: Zalman Lipschitz
 - Insuring there is a proper mechanical system for moving the head to where it needs to go.
- Mechanical Lead Evaluator: Liam Rees
 - Designing and managing the head of the gantry, responsible for picking up cards as well as taking pictures of them
- Software Lead: Malcolm Okaya
 - Card ID tweaks as needed, controlling motors, code for sensors, code for fraud detection.
- Damage Detect Lead: Joseph Maloyan
 - Using CV to find damage on the card and grade it.
- PCB Lead and Team Coordinator: Henry Powell
 - Need to manage all sensor systems, as well as power and motor drivers.