
SDP22 – TEAM 12 1

Society has been moving away from physical interfacing for

some time now. From eye tracking to voice control, we are always

finding better and more intuitive ways to accomplish everyday

tasks on computer devices. Compounded by the recent pandemic,

touchless interactions have become somewhat coveted not only for

health reasons, but also ease of use. Our design aims to incorporate

electromyography (EMG) sensing technology to detect arm/hand

gestures to carry out common tasks such as purchasing a train

ticket, facilitating a class, or navigating a presentation. We see our

device being applicable to large companies or campuses that could

benefit from faster, more efficient, hands-free interactions.

Similarly, the device could be used by speakers and teachers to aid

in presenting or utilized in a hospital where custom gestures for

those with disabilities could be used to call for a nurse or other

important functions.

I. INTRODUCTION

 Significance

In 2020, the Covid-19 pandemic took the world by storm and

initiated major shifts in the way society as whole functions.

With this shift came a need for novel methods to minimize the

transmission of this virus, and in turn the problem that our

project aims to solve is being able to minimize touchless

interactions among common surfaces, specifically public

computers. In fact, a Princeton Review Study notes that there is

“a high probability of observing pandemics similar to COVID-

19 (probability of experiencing it in one’s lifetime currently

about 38%), which may double in coming decades” [1]. This

suggests that touchless interfaces may soon become the norm

rather than the exception in our society. Not only this, there are

far more advanced applications that could be explored in the

future.

 Context and Competing Solutions in Marketplace

Similar solutions for minimizing touch interactions with

computers exist in the market, however they do not cover the

breadth of features that exist in our design. There are products

that do allow for touchless interactions, but they either do not

allow for gesture customizability, or do not allow for accurate

readings based on user review. Many also do not have an

ergonomic design as with our project. Our design aims to be a

wireless, ergonomic sleeve that allows for a full range of

interaction with a public computer. For example, the Air

Keyboard is a novel undergraduate thesis project that utilizes

EMG sensing along with predictive text to use finger

movements as a keyboard [2]. The downside of this product is

that they never released a commercial or viable product, and

their device exclusively emulates a keyboard. Similarly, the

Tap Strap 2 focuses on keyboard interaction however it is a

commercially released product [3]. Its downside is that the

device, according to user reviews, is hard to handle (i.e. do

something else while wearing the device such as using a phone)

and even harder to learn which gestures do what. The final

product we examined was the Real Time EMG-Based Assistive

Computer Interface for Upper Limb Disabled that utilized non-

arm gestures to provide assistance for those with upper limb

disabilities [4]. However, this product lacks customizability for

those with other disabilities and is hardwired for a specific set.

The pros and cons of all three devices compared to our device

can be best summarized by Table 1.

 Compatible with

any computer
Non-Intrusive

Customizable

profiles

Movements

+

Voice

Real Time

EMG Interface

Tap Strap 2

Air Keyboard

Our Solution

 Table 1: Competing Solutions Analysis Matrix. Movements + Voice

refers to the concept that we intend to use built in speech-to-text

functions that are inherent in all Apple and Windows systems to avoid

having to configure all 26 letters of the alphabet in our device.

 Societal Impacts

The main constituents of our project will be organizations

that aim to minimize the spread of Covid-19, or any virus in the

case of another pandemic arising. Our product is specifically

designed to be utilized within an organization, such as a college

campus or private enterprise. Thus, these entities will be able to

take an extra precautionary measure to prevent the spread of

viral material among individuals.

 System Requirements and Specifications

Any system that is designed will need to have system

EMG Computer Interface

Aidas Jakubenas, CSE, Ryan Dewsnap, CSE, Samuel Worrell, EE, and Berke Belge, CSE

SDP22 – TEAM 12 2

requirements and specifications to align with the goals of the

engineers. These allow for tangible targets to reach for out of

our envisioned EMG computer interface. The following system

specifications and requirements were determined.

S1. The system shall sense gesture movements with a

reasonable accuracy. This ultimately means that the design of

our system must be able to categorize 5 distinct gestures with

the EMG sensors used. And we must be able to do this in a

reasonable accuracy which was determined to be a net 90% true

positive accuracy.

S2. The system must be reliable. This specification requires

the EMG sensing interface to be reliable from person-to-person,

and for daily shifts in placement on the forearm. We need to

ensure that a user can put the sleeve on to a relative area on the

arm and be able to use it properly.

S3. The system shall be ready to use in a reasonable amount

of time. This specification requires the system to be powered-

on and in a usable condition in less than a minute.

S4. The system shall have reasonable power consumption.

We have designed this specification around our products

battery life. As this device is not constantly used, a minimum of

3 hours of active operation time on one battery charge is

expected.

S5. The system shall be ergonomic. Overall, our device will

need to be ergonomic enough for daily use without much hackle

and stress. It should be easy to put on and adjust to one’s

forearm. This should take only a maximum of 1 minute to

adjust.

S6. The system must be usable within a reasonable distance.

As the system will have a plug-in version and a Bluetooth

version the device must be usable as a computer interface up to

3 meters away from host computer.

S7. The system must have some customizability. The user

must be able to pair 5 distinct muscle movements with 5

different gestures using the GUI interface developed as a part

of our product system. We arrived upon 5 distinct muscle

movements by looking at the anatomy of the muscles on the

forearm and seeing that with how muscles overlap and

influence each other, we are limited by the human biology

rather than the accuracy of our sensors [5].

Table 2: Requirements and Specifications

II. DESIGN

 Overview

The design primarily utilizes a microcontroller with four

EMG sensors to capture the voltage difference across the arm

as time series data which is sent to a host computer where the

time series data is compared against an ML model that classifies

the data according. If the gesture is bound to a keystroke, that

keystroke is executed on the host computer. As see in Figure 1,

the software is evenly divided between our communication in

C on the ATmega328p [6] and Python on the host computer.

Figure 1: Software Block Diagram

Initially we planned to use a custom EMG sensing circuit

rather than the MyoWare, however as discussed in Appendix A,

the custom circuit did not aid our accuracy and performed far

worse than the MyoWare sensor. We also attempted to initially

set simple threshold values in the software to process signals,

however the variability of the skin to electrode contact made

this unreliable. We then pivoted to using machine learning

(ML) on the host computer to obtain our desired 90% accuracy.

Our HC05 Bluetooth Module allows us to adhere to IEEE

802.15.1 standard Bluetooth protocol. The device is also FCC

compliant with under 1.6 W/kg of RF exposure (watts over

kilograms of body tissue).

Finally, for our wired communications our device is compliant

with IEEE RS-232 standard format.

 The Hardware

The majority of our hardware is invested in our PCB. As see

in Figure 2, the ATMega328p [11] does the brunt of our data

collection and communication.

SDP22 – TEAM 12 3

Figure 2: Hardware Block Diagram

The MyoWare 1.0 [7] and MyoWare 2.0 [8] sensors are

housed on the outside of the PCB enclosure and multicore wires

with snap leads are connecting the electrodes in the sleeve to

the sensors. Our FT232R USB to serial UART interface [9] is

used to send the time series data through a wired connection.

The HC05 Bluetooth module [10] is used to send the data

wirelessly and the entire system is powered and charged by our

LiPo micro-USB shield [11]. In Figure 3, the schematic for each

breakout is defined outside the PCB.

Figure 3: PCB layout along with breakout components.

 Embedded Software

The embedded software for this project was originally going

to involve classifying gestures and performing all the logic.

However, our team decided it would be more efficient for

specifications such as battery life to just perform simple tasks

on the embedded hardware.

The embedded software was written in C and revolves

around some built-in functions in the ATMega328P. The

software included functions for collecting data from the

MyoWare sensors and running those analog inputs through the

built in Analog-to-Digital Converter (ADC) which then leave

us with digital datapoints that we can use more appropriately.

Next the software included UART serial communication

code for both the USB and Bluetooth modules. This part of the

software determined the size of the buffer we would send across

UART and accurately displayed sensor data in readable form

for our host computer. This software then sent the data across

UART communications to the host computer which has a

separate host software running which decodes and processes the

data from the hardware.

 Host Software

The host software is defined as the software that will held

and used by the interfacing computer. In this case, when the

EMG Interface device is paired with a computer to interact

with. The computer will hold the host software which will allow

the device to work properly. Because our scope is generalized

to a network dedicated to a certain company, institution, or

campus, we assume firmware will be easily flashed on all

machines and updated as an update to the network.

The host software will consist of one main GUI that performs

as the main “hub” for the user to configure and use their device.

The GUI allows users to do the following: maintain a live graph

of EMG signal inputs, train the ML model (Section II, Part E),

configure various gestures, and ultimately allow for easy profile

swapping. An example of what the gesture configuration screen

looks like is shown below in Figure 4.

Figure 4: Gesture configuration GUI example. Each finger can be

custom mapped to a keystroke. We plan on adding more gestures

beyond simple finger selections in the future.

The host software is all written in Python utilizing multiple

libraries to help ease implementation. The GUI is written in

PySide6 which is a GUI/User interface library to help create an

interactive python experience.

Once the user intends to interact with the computer, the host

software begins by sampling UART serial data stream from our

devices Bluetooth/wired connection. It reads inputs that reveal

all MyoWare sensor data inputs in one string format. The Host

software then runs the data through an analysis portion which

will calculate the Root Mean Square (RMS) value for the last

20 samples it receives. It proceeds by running these RMS values

as inputs to the trained prediction model. The model will then

determine if the output is a gesture and activate a keyboard

SDP22 – TEAM 12 4

shortcut to perform the paired gesture-to-action task.

 Machine Learning Software

Machine learning is a hot topic in today’s computing

literature and projects. It is popular for a reason other than being

technically interesting, but it is quite accurate at making

decisions based on context.

In our case, the EMG Computer Interface utilizes a k-

Nearest Neighbors (kNN) clustering algorithm to determine

what gesture a user is performing with real-time data taken from

our MyoWare sensors.

For context, we developed our kNN cluster utilizing Python

sklearn library which was developed to simplify the

mathematical workings of the models and let users utilize ML

learning as a part of their project rather than learning how to re-

invent something that has already been done. We then sample

data serially in real time and use these data points as test points

for our kNN clustering scheme.

As mentioned, our system uses RMS to classify distinct

gestures, rather than using the raw data. It is important to

understand how kNN works with our data to produce a working

classifier. Our model takes RMS values that have been

calculated from a pre-gathered dataset that has been classified.

Each classification is a gesture and classifies that combination

of RMS values from each of the sensors. We then give the kNN

cluster this training dataset and it will determine cluster groups

for each of the classifications. In this case if we have 5 gestures,

our model will determine 5 cluster areas of data and define these

general spaces as a gesture. Once we feed live RMS data from

our sensors into the algorithm it will simply determine which

cluster this data point belongs to. The more distinct and

repeatable the RMS values are, the more accurate our model

will be.

It is important to realize that training the algorithm is the

most intense portion of this machine learning process. This is

typically done off-site and takes from minutes to hours

depending on the model size. However, once we have a trained

model, we just simply determine which category the data falls

into which is why our system is so fast. We are classifying

gestures in real-time. As seen in Figure 5 below, when using a

subsection of training data as test data, we achieve extremely

high accuracy.

Figure 5: K-Nearest classification accuracy. From the training

dataset provide, 70% was used to train the model and the other 30%

was used as test data and classified to obtain the results seen above.

III. THE REFINED PROTOTYPE

A. Prototype Overview

 The refined prototype consists of an interchangeable PCB

which has all our hardware embedded except for the MyoWare

sensors themselves. This interchangeable PCB is sometimes

swapped out with a custom-built proto board. In the refined

prototype state, we are still testing proto-board and PCB

compatibility with the MyoWare sensors, and our ML model

descripted in Section II Part E.

 The refined prototype however contains all the working parts

described in the block diagram, excluding the MyoWare

Sensors. The final prototype is housed in a PCB enclosure on

our embedded electrode sleeve in an ergonomic fashion. As

seen in Figure 6 below, the embedded electrode sleeve allows

for easy application of the wet electrodes to ensure placement

is relatively consistent.

SDP22 – TEAM 12 5

Figure 6: Final prototype of EMG electrode sleeve with enclosed

PCB strapped onto bicep using Velcro.

B. List of Hardware and Software

• ATmega328p [6]

• MyoWare Sensors x4 [8]

• C code, analog read/UART transmit

• FT232 breakout [9]

• HC-05 Bluetooth Module [10]

• LiPo charging breakout [11]

• Breaker switch

• USB Micro-B receptacle

• 8 MHz crystal

• LEDs

• Caps, resistors

• Reusable Wet EMG Electrodes

C. Custom Hardware

For our custom design, we went with the

ATmega328p for our microcontroller. This MCU is

somewhat of a standard in the automotive industry for its

versatility while maintaining low power draw.

 For Bluetooth communications, we switched from the

BLE112 to the HC-05. We made this decision because of a

design change regarding the designation of our device as HID

compliant. Initially, we planned on configuring the Bluetooth

module exactly as a wireless keyboard would be. After dabbling

in machine learning, we realized that if we were going to

process data on the host computer, we may as well execute

keystrokes from the host computer as well. In turn we are using

a cheaper Bluetooth module with an older protocol (low energy

vs. classic). This came with its own tradeoffs in terms of power

consumption and response time, but we ultimately concluded

that the switch was justified.

To communicate over USB, we used a FT232 based

breakout. FTDI is an industry leader in TTL converters, and

while this part was difficult to acquire, it was well worth it in

terms of compatibility and reliability.

Figure 7: Prototype board used for rapid testing and deployment.

As you can see in Figure 7, we made use of female pin

headers and a DIP adapter to easily swap out parts should

something go wrong. This helped greatly with our testing

process as things inevitably went wrong and we were able to

troubleshoot piece by piece. We also used female headers to

connect MyoWare sensors and debug/program via ISP. We

utilized 2 LEDs, one for power and one as a general indicator.

We tested this circuit by reading analog values from each port

we were utilizing (A0-A3). We then ensured we could send

these values over UART through USB and Bluetooth with

reasonable speed and accuracy. Since most of our processing

will be done on the host computer through Python, our

hardware design was kept relatively simple and essentially just

reads and transmits our data.

Figure 8: PCB with populated parts, front and back view.

SDP22 – TEAM 12 6

After verifying our prototype, we ported the design to a PCB

as seen in Figure 8. For our PCB we obviously used the SMD

versions of the breakouts we had previously used, apart from

exempted hardware. For USB communications, we had to

design our own circuit using the FT232RL and Micro-B

receptacle. The PCB functions perfectly on the first revision, of

which the routing layout can be seen below in Figure 9.

Figure 9: PCB routing without components.

The PCB functioning on the first revision is something that we

are very proud of and wouldn’t have been accomplished with

the extensive planning and preparation we did prior to ordering

the first revision.

D. Prototype Functionality

Figure 10: Software Diagram.

As seen in Figure 10, our software is divided in half with the

signal capture and communication done on the ATmega328p

while the processing and keystroke input is done on the host

computer. There is a power switch available on the device that

allows it to be powered off when not in use which is crucial to

preserve the battery for three hours of active use. The signal can

be sent over Bluetooth or a wired USB as the UART data line

is common. The signal sent is four comma separated values as

a time series so that we capture the entire signal. Once on the

host computer, our Python program calculates the root-mean-

square (RMS) for every 10 values which makes the impulse of

the gesture much easier to characterize. Then, this RMS series

is compared against the ML model for each point in the series.

The corresponding keystroke is executed once there is a change

in gesture (i.e. from no gesture being detected to a fist, because

to the ML model its getting a bunch of fist values from the time

series).

Figure 11: Hardware Block Diagram

As seen in Figure 11, our hardware is composed of our

electrode sleeve, the PCB housing and sensor array, and our

peripheral connections to power and USB. The electrode sleeve

only contains the dry electrodes and cables to connect to the

MyoWare sensors located on the PCB housing. The MyoWare

sensors capture the voltage different between the two electrodes

and these four analog values are converted to digital values and

sent to the host computer via UART connection. We went

through many iterations of the electrode sleeve design as there

are many unpreventable factors that make sensing so unreliable

(without taking measures). The humidity of the day, how

sweaty you are, how recently you showered, and any small

deviations on electrode contact can completely affect not just

the values of the sensors, but the entire resulting waveform that

we capture as a time series. This is why we added a Velcro strap

to consistently strap oneself into the device.

E. Prototype Performance

S1. The system shall sense gesture movements with a

reasonable accuracy. This specification entailed sensing 5

distinct movements with a net 90% true accuracy. As of the

writing of this report, our current best iteration of the design can

reliably detect three different movements (a cupping come-here

motion, flicking five fingers out, and contract the middle finger)

with an average of 85% accuracy which can be seen in Figure

12.

SDP22 – TEAM 12 7

Figure 12: Percent accuracy of the three gestures, come here, flick,

and retracting the middle finger, over 100 trials for Person 1 (Sam).

This accuracy was achieved using an incredibly small dataset

(only 200 trials of the gesture obtained via time series

collection) and with only two MyoWare sensors. A week prior

to MDR, two of our MyoWare sensors broke through a faulty

ground cable. This happened at the same time as the release of

the MyoWare 2.0 sensor, so there was a period of two to three

weeks where we were down to only two MyoWare sensors and

had no ability to order more (as the MyoWare 1.0 went out of

stock before the MyoWare 2.0 released). Therefore, with a large

dataset (collected over multiple days, multiple people) and

using our final sleeve design in conjunction with the PCB will

allow us to get the accuracy we need, only 5% more, and expand

the gesture count up to five.

S2. The system must be reliable. With the advent of our final

sleeve design and PCB, we have a system that can be utilized

by anyone provided they complete an initial user setup where

they give the program a small training dataset (100 trials of each

gesture) to correlate against the main dataset.

S3. The system shall be ready to use in a reasonable amount

of time. The device can be powered-on and in a usable condition

in an average of 15 seconds. This far outperforms our initial

goal of a minute of connection time.

S4. The system shall have reasonable power consumption.

The device can be used, powered-on, for four consecutive

hours. This outperforms our initial goal of three hours of active

use.

S5. The system shall be ergonomic. The adjustable electrode

sleeve allows for reliable and repeatable use; so that a user

wouldn’t need to constantly order wet EMG electrode pads that

are irritating to skin. Moving the MyoWare sensors off the arm

and onto the PCB housing allows for one to easily use a phone,

write, or even eat food while having the sleeve on.

S6. The system must be usable within a reasonable distance.

Our device functions reliably within three meters. The

Bluetooth wireless connection can be used from further than

that but we include the wired connection as a backup.

S7. The system must have some customizability. Utilizing the

customization GUI, users can manage and upload their training

data, bind new keys to gestures, and select which gestures they

use.

IV. CONCLUSION

Our EMG computer interface serves as an excellent proof of

concept demonstrating that it is feasible to design a device that

allows humans to interface with computers of various forms

(our interface functions on Windows and Apple devices) using

physical gestures. The system comprises of two Myoware

sensors [8] placed on specified locations on the forearm that

correspond to muscles that contract upon the flexing of different

fingers. The signals obtained from these sensors are sensed by

our Myoware sensor and converted to digital values (via

differential amplifiers on two electrodes that is rectified and

filtered) and sent to a computer through either a wired or

Bluetooth connection on the UART signal line. Our Python

application on the host computer is then able to classify gestures

made by the user using a k-Nearest-Neighbors (KNN) machine

learning model, and the user can customize which key binds

correspond to each gesture on a simple GUI. As shown in Table

3, our system can identify two distinct gestures with 100%

accuracy. The accuracy of the prototype did decrease with an

additional gesture, however as displayed in Table 3, the correct

gesture is still identified in ~90% cases with false negatives

occurring more than false positives (+6% difference). With

more dimensions of data (from additional sensors, an

accelerometer, more EMG sensors, etc.) our system shows it is

possible to produce enough accurately defined gestures to allow

for touchless human interaction with computers in many

different use cases.

This could enable further customization for those with

disabilities by moving the sensors to places such as the neck or

leg to allow for someone to call for a nurse or request water.

Further, the potential for augmented or virtual reality control

without the use of joysticks or buttons could lead to remote

surgery advances or more accurate bomb defusal robots.

Berke

Sam

 Thumb Ring Index Thumb Ring Index

Correct 84 96 88 Correct ? 92 88

False

Positive 4 0 8

False

Positive ? 0 8

False

Negative 12 4 4

False

Negative ? 8 4

SDP22 – TEAM 12 8

 ring index ring index

Correct 100 100 Correct 100 100

False

Positive 0 0

False

Positive 0 0

False

Negative 0 0

False

Negative 0 0

Table 3: Percent accuracy of the three gestures, moving the thumb,

ring and index finger, over 100 trials for two people. The training

dataset for this test was collected exclusively from Sam and is a proof

of concept for robust design that it performed better when on Berke,

even though the machine learning is using data from Sam’s muscles.

ACKNOWLEDGEMENT

We are especially appreciative of Professor Polizzi and his

time, dedication, and words of wisdom. His patient tutelage and

insightful advice was a mainstay during the entire project, and

we are incredibly grateful that we had the opportunity to work

with and learn from Professor Polizzi. Additionally, we wanted

to extend our gratitude to our faculty evaluators, Professor

Taneja and Professor Jackson, for being flexible with us on

rescheduling presentations due to our illnesses throughout the

year and for being willing to work with us as we navigated chip

shortages, sensor depreciation, and the discontinued product

support of the Arduino MyoWare 1.0 Sensor mere weeks before

our final presentation. acknowledgement

REFERENCES

[1] Marani, M., Katul, G., Pan, W. and Parolari, A., 2021. Intensity and

frequency of extreme novel epidemics. Proceedings of the National

Academy of Sciences, [online] 118(35). Available at:

https://www.pnas.org/doi/full/10.1073/pnas.2105482118

[2] Gaba, Jacob A., "Air Keyboard: Mid-Air Text Input Using Wearable

EMG Sensors and a Predictive Text Model" (2016). Dartmouth College

Undergraduate Theses. 114.

https://digitalcommons.dartmouth.edu/senior_theses/114

[3] Tap Systems, Inc., “Tap Strap 2”. Tapwithus.com.

https://www.tapwithus.com/product/tap-strap-2/

[4] C. Choi and J. Kim, "A Real-time EMG-based Assistive Computer

Interface for the Upper Limb Disabled". 2007 IEEE 10th International

Conference on Rehabilitation Robotics, 2007, pp. 459-462, doi:

10.1109/ICORR.2007.4428465.

https://ieeexplore.ieee.org/document/4428465

[5] Backyard Brains, “Experiment: Signal Classification”.

Backyardbrains.com.

 https://backyardbrains.com/experiments/RobotHand

[6] ATmega328p Microcontroller, Data Sheet, Microchip,
https://ww1.microchip.com/downloads/en/DeviceDoc/ATmega48A-PA-

88A-PA-168A-PA-328-P-DS-DS40002061B.pdf

[7] MyoWare 1.0, Data Sheet, Sparkfun,

https://www.sparkfun.com/products/13723

[8] MyoWare 2.0, Data Sheet, Sparkfun,

https://www.sparkfun.com/products/18977

[9] FT232R USB UART IC, Data Sheet, Future Technology Devices

International Ltd,

https://cdn.sparkfun.com/datasheets/BreakoutBoards/DS_FT232R.pdf

[10] HC05 Bluetooth Module, Data Sheet, ITead Studio,

https://components101.com/sites/default/files/component_datasheet/HC-

05%20Datasheet.pdf

[11] LiPo Battery Charger, Data Sheet, Adafruit Industries LLC,

https://www.digikey.com/en/products/detail/adafruit-industries-

llc/4410/10673110?utm_adgroup=Evaluation%20and%20Demonstratio

n%20Boards%20and%20Kits&utm_source=google&utm_medium=cpc

&utm_campaign=Shopping_Product_Development%20Boards%2C%20

Kits%2C%20Programm

[12] Maciej Zajaczkowski, “Simple Dry Electrode EMG for Arduino”.

Instructables.com

 https://www.instructables.com/Simple-Dry-Electrode-EMG-for-

Arduino/

[13] Sylvain Colliard-Piraud, “Using an electromyogram technique to detect

muscle activity”. STMicroelectronics

https://www.st.com/resource/en/application_note/dm00356634-using-

an-electromyogram-technique-to-detect-muscle-activity-

stmicroelectronics.pdf

https://www.pnas.org/doi/full/10.1073/pnas.2105482118
https://digitalcommons.dartmouth.edu/senior_theses/114
https://www.tapwithus.com/product/tap-strap-2/
https://ieeexplore.ieee.org/document/4428465
https://backyardbrains.com/experiments/RobotHand
https://ww1.microchip.com/downloads/en/DeviceDoc/ATmega48A-PA-88A-PA-168A-PA-328-P-DS-DS40002061B.pdf
https://ww1.microchip.com/downloads/en/DeviceDoc/ATmega48A-PA-88A-PA-168A-PA-328-P-DS-DS40002061B.pdf
https://www.sparkfun.com/products/13723
https://www.sparkfun.com/products/18977
https://cdn.sparkfun.com/datasheets/BreakoutBoards/DS_FT232R.pdf
https://components101.com/sites/default/files/component_datasheet/HC-05%20Datasheet.pdf
https://components101.com/sites/default/files/component_datasheet/HC-05%20Datasheet.pdf
https://www.digikey.com/en/products/detail/adafruit-industries-llc/4410/10673110?utm_adgroup=Evaluation%20and%20Demonstration%20Boards%20and%20Kits&utm_source=google&utm_medium=cpc&utm_campaign=Shopping_Product_Development%20Boards%2C%20Kits%2C%20Programmers_NEW&utm_term=&utm_content=Evaluation%20and%20Demonstration%20Boards%20and%20Kits&gclid=CjwKCAjwur-SBhB6EiwA5sKtjgk1yO24kL4iQbUZsaUTI9x8pX6YcAquHWWYJex2-zovFmFdA2sAEhoC-Q8QAvD_BwE
https://www.digikey.com/en/products/detail/adafruit-industries-llc/4410/10673110?utm_adgroup=Evaluation%20and%20Demonstration%20Boards%20and%20Kits&utm_source=google&utm_medium=cpc&utm_campaign=Shopping_Product_Development%20Boards%2C%20Kits%2C%20Programmers_NEW&utm_term=&utm_content=Evaluation%20and%20Demonstration%20Boards%20and%20Kits&gclid=CjwKCAjwur-SBhB6EiwA5sKtjgk1yO24kL4iQbUZsaUTI9x8pX6YcAquHWWYJex2-zovFmFdA2sAEhoC-Q8QAvD_BwE
https://www.digikey.com/en/products/detail/adafruit-industries-llc/4410/10673110?utm_adgroup=Evaluation%20and%20Demonstration%20Boards%20and%20Kits&utm_source=google&utm_medium=cpc&utm_campaign=Shopping_Product_Development%20Boards%2C%20Kits%2C%20Programmers_NEW&utm_term=&utm_content=Evaluation%20and%20Demonstration%20Boards%20and%20Kits&gclid=CjwKCAjwur-SBhB6EiwA5sKtjgk1yO24kL4iQbUZsaUTI9x8pX6YcAquHWWYJex2-zovFmFdA2sAEhoC-Q8QAvD_BwE
https://www.digikey.com/en/products/detail/adafruit-industries-llc/4410/10673110?utm_adgroup=Evaluation%20and%20Demonstration%20Boards%20and%20Kits&utm_source=google&utm_medium=cpc&utm_campaign=Shopping_Product_Development%20Boards%2C%20Kits%2C%20Programmers_NEW&utm_term=&utm_content=Evaluation%20and%20Demonstration%20Boards%20and%20Kits&gclid=CjwKCAjwur-SBhB6EiwA5sKtjgk1yO24kL4iQbUZsaUTI9x8pX6YcAquHWWYJex2-zovFmFdA2sAEhoC-Q8QAvD_BwE
https://www.digikey.com/en/products/detail/adafruit-industries-llc/4410/10673110?utm_adgroup=Evaluation%20and%20Demonstration%20Boards%20and%20Kits&utm_source=google&utm_medium=cpc&utm_campaign=Shopping_Product_Development%20Boards%2C%20Kits%2C%20Programmers_NEW&utm_term=&utm_content=Evaluation%20and%20Demonstration%20Boards%20and%20Kits&gclid=CjwKCAjwur-SBhB6EiwA5sKtjgk1yO24kL4iQbUZsaUTI9x8pX6YcAquHWWYJex2-zovFmFdA2sAEhoC-Q8QAvD_BwE
https://www.instructables.com/Simple-Dry-Electrode-EMG-for-Arduino/
https://www.instructables.com/Simple-Dry-Electrode-EMG-for-Arduino/
https://www.st.com/resource/en/application_note/dm00356634-using-an-electromyogram-technique-to-detect-muscle-activity-stmicroelectronics.
https://www.st.com/resource/en/application_note/dm00356634-using-an-electromyogram-technique-to-detect-muscle-activity-stmicroelectronics.
https://www.st.com/resource/en/application_note/dm00356634-using-an-electromyogram-technique-to-detect-muscle-activity-stmicroelectronics.
https://www.st.com/resource/en/application_note/dm00356634-using-an-electromyogram-technique-to-detect-muscle-activity-stmicroelectronics.pdf

SDP22 – TEAM 12 9

APPENDIX

 Design Alternatives

We had to iterate through many different design alternatives

when it came to the sensor, sleeve design, and layout of the final

device. Firstly, we had to forgo our custom EMG sensing circuit

and instead use the industry standard Arduino MyoWare sensor.

We initially found several examples of projects that used

custom EMG sensing circuits, such as [12] that also used dry

electrodes or [13] that achieved high accuracy, which gave us

hope in this approach. However, we made the decision to forgo

the custom sensors because the accuracy of our custom circuit

was far worse than the MyoWares. This can be seen in Figure

13 where the accuracy for three different gestures, contracting

the ring ringer, twitching the thumb, and making a fist, for the

custom EMG circuit over 100 trials is quite poor.

Figure 13: Custom EMG Sensor Accuracy Over 100 Trials

If we compare this to Figure 14, where we see the accuracy

for the same three different gestures, contracting the ring ringer,

twitching the thumb, and making a fist, of the Arduino

MyoWare over 100 trials, we see the MyoWare performs far

better.

The design of our electrode sleeve pivoted from using sticky,

wet electrode pads to utilizing a neoprene sleeve that can be

velcroid on for repeatable, reliable use. This was done to allow

our design to be used on different people and achieve similar

skin contact, along with making the device more ergonomic and

able to be reused infinitely.

Figure 14: Arduino MyoWare Sensor Accuracy Over 100 Trials

Finally, we changed the layout of our sensors as we found

that this positively impacted performance. First, we moved the

sensors themselves off the arm sleeve by soldering multicore

electrode snaps onto headers on the device. This allows the PCB

and sensors to be housed in one ergonomic unit. Additionally,

the sleeve itself is now just some light wires, electrodes, and the

material itself. This can be seen below in Figure 15.

Figure 15: Custom EMG Electrode Sleeve Prototype.

 Technical Standards

In order for our device to communicate with a host machine,

communication standards must be in place so that both devices

are speaking the same language. Our goal is to make the device

wireless for ease of use. Additionally, a wired backup will be

available in case of battery depletion or stationary

configurations.

For wireless communications, we are using an IEEE 802.15.1

standard Bluetooth protocol. The HC-05 we are using is a class

2 device, meaning it can communicate in ranges up to 10

meters. This device is also FCC compliant with under 1.6 W/kg

of RF exposure (watts over kilograms of body tissue).

For our wired communications, we are using IEEE RS-232

standard format to transmit data from the microcontroller. This

is sent using UART protocol to our FTDI TTL converter. This

SDP22 – TEAM 12 10

converts transistor logic (RS-232) to USB protocol allowing

data to be read via COM port from a computer.

 Testing Methods

Our team used various amounts of testing methods, however

not all testing methods that we had developed could be used as

the product has changed through multiple design reviews

throughout the process. Our main testing methods that we used

were manual collection of accuracy data. Simply put we would

take our entire system and see how accurate the system is. As

someone performs a movement, we categorize the movement

into a class: true-positive, true-negative, false-positive, false-

negative. This allows us to aggregate and determine the overall

accuracy of our system throughout various trials, re-designs,

and placement on the forearm.

Another main testing method was to be able to send

information through our UART interface to the host computer.

We made sure that we could accurately send information via the

USB cable and more specifically send 3 inputs, in proper format

for our system to recognize. Then the use of 3 potentiometers

were used to determine the delay between turning

potentiometer and receiving the input at the host computer.

Lastly, we have verification testing protocols that we will use

for each of our system specifications that will be used for us to

judge our final product against and determine if each

specification was hit. V numbers in the following section match

up with the S numbers provided in the system specifications in

section ID.

V1. To verify S1, we determined that we will test that the

sensing system can meet true positive/negative and false

positive/negative percent specifications over 100 trials for each

gesture. In other words, we will make sure that the true accuracy

for our product is over 90% for 100 trials of each of the 5

gestures.

V2. To verify S2, we will intentionally misplace the device

on our forearm by a few centimeters from marked locations that

are known to work. We will perform this task on multiple users

to determine if the accuracy remains constant despite the subtle

changes in placement.

V3. To verify S3, we simply will time the power on to

successful connection time to the host computer on a stopwatch

100 times and determine if all of the connection times were

under a minute.

V4. To verify S4, we will demonstrate that the device can be

actively used for up to 3 hours by measuring current draw from

each component and calculate the theoretical active time on.

We will use current draw calculations from the higher end of

consumption to simulate active use.

V5. To verify S5, we will demonstrate that while holding the

EMG interface device a user can actively write a paragraph on

paper with a pen or pencil and then utilize a cell phone to make

a phone call. These show how the system is at an ergonomic

level.

V6. To verify S6, we will demonstrate the ability to connect

a device from multiple distances from the host computer, using

3 increments and measuring up to 3 meters away.

V7. To verify S7, we will verify that all keyboard inputs can

be customized to bind to distinct movements. Ex: Fist can bind

to voice activation. Fist can then re-bind to tab input. Fist can

then re-bind to space input.

 Project Expenditures

Specific Name Cost MDR or FPR

Reusable EMG Electrodes (80 ct) $15 Both

Tape, Snap-pins, Reuseable Pads $15 Both

Cables, Cable Shields $10 FPR

HC-05 $10 Both

BLE-112 $20 Both

FT232RL USB-Serial Breakout $25 FPR

2124 LiPo Battery Backpack $20 Both

Misc. MDR Components (Op Amps,

ADC, etc.) $10 MDR

Sparkfun MyoWare Sensor $160 Both

Additional MyoWare 2.0 Sensors $80 Both

Versa-Trode Electrodes (120 ct) $36 Both

Onboard Components (Op Amps,

Resistors, Capacitors, etc.) $30 FPR

PCB $60 FPR

$491.00

Table 4: Project Expenditures

 Project Management

Although each of us certainly specialized in certain fields, we

each collaborated and helped out in each and every aspect of

this project. Sam Worrell functioned as the team coordinator,

leading communications with our advisor, the instruction team,

and our evaluators. Along with this, he devoted most of his time

prior to MDR on threshold detection software and our custom

EMG sensing circuit that ultimately wasn’t as accurate as the

industry standard MyoWare. Sam additionally led the electrode

https://core-electronics.com.au/sparkfun-usb-to-serial-breakout-ft232rl.html
https://www.sparkfun.com/products/13723
https://www.sparkfun.com/products/18977

SDP22 – TEAM 12 11

sleeve design effort and had a hand in in prototyping the ML

programming along with extensive test data collection. Aidas is

the champion of our signal processing and has also been the go-

to when it comes to ML. He helped in many other ways, such

as helping in electrode sleeve design, protoboard manufacture,

and microcontroller programming. Ryan spearheaded the PCB

design, PCB manufacture, and created our initial protoboard

design. He was the expert when it came to the entire PCB

fabrication process and worked with Aidas to develop all of our

microcontroller software. Additionally, Ryan single handedly

tackled the design and creation of our team website. Berke

primarily assisted in data collection and all software outside the

microcontroller. He designed the custom GUI to use the device,

developed Python code to speed up data collection, and was our

go-to testing subject for developing new gestures for our ML

training datasets. Finally, Berke helped to improve and explore

Bluetooth wireless communication on our final design.

We have been communicating well and stuck regularly to

meeting weekly, especially after MDR. Sam usually acts as the

spokesperson for the group and provides leadership during

presentations, meetings, and check-ins. Aidas uses his

organizational skills to lead our lab sessions and make sure we

devote our energy in areas where our effort will be best

rewarded.

 Beyond the Classroom

Aidas Jakubenas – The biggest challenges and learning that

needed to be done with a project like this was time management.

Ultimately, we design and build a product from the bottom up,

and this requires a lot more planning and time management than

I previously thought. Another big challenge was learning how

ML works. None of our team had major experience with ML

models and especially how to implement them, so the use of

multiple research papers on similar topics was a major help as

we could pick up patterns on which models to use for a project

like ours.

Ryan Dewsnap – Throughout this project, I’ve learned a lot

about the overall design process through experience as we

started with an idea, rapidly prototyped, refined our

specifications, and executed our gameplan. Starting with just an

Arduino and a breadboard, we were able to gradually build our

idea from the ground up. One major takeaway I got from this

stage was the power of parallel processing through careful

planning and teamwork. What seemed like an extremely

difficult task, soon became much less scary as we separately

developed subsystems and brought them all together.

After we had finalized our design, I got much valuable

experience with prototyping on protoboard. I learned how to

utilize DIP adapters, SMD adapters, and developed my hand

soldering skills through building out and testing our system on

this protoboard. Using the protoboard, I worked on my C

coding skills as we moved from the Arduino to a standalone

328p. After verifying our circuit’s functionality, it came time to

design the PCB itself. With the help of Chris Caron’s wonderful

tutorial videos, I was able to design a compact PCB compliant

with the manufacturer’s specifications. I also gained valuable

experience communicating with Sam to verify the design, as

well as the manufacturer to ensure everything was printed as

intended. Once the PCB came in, we all learned about the many

ways one can solder SMD components. For our application, it

was easiest to use a hotplate.

Overall, I have learned a lot this year and feel that most of it

will be applicable to my professional life in the future. I learned

how to design a PCB from start to finish, intricacies of

communication protocols, greatly improved my soldering

skills, and more. Though I’ve developed many technical skills,

I think the most valuable takeaway from our experience this

year has been teamwork and problem-solving skills. This is the

essence of engineering. Facing new challenges each day has

tested our resilience and drive to create something we are proud

of.

Sam Worrell – The development of key fabrication,

manufacture, and design skills were essential in helping my

team and I develop our final prototype. In the lab, I learned

different new soldering techniques to help with surface mount

circuits. Additionally, I further my knowledge of circuit

debugging and troubleshooting techniques by repairing our

Arduino MyoWare sensors and developing our protoboard.

Outside the lab, I learned how to use Altium design to develop

multiple revisions of a PCB the size of a credit card. Chris

Caron’s YouTube tutorials were instrumental in helping us both

design our PCB and manufacture it. Most importantly, our

advisor, Professor Polizzi, was our most valuable source of

advice when we encountered difficulties or setbacks in our

project. His advice enabled our project to be much more

realizable and feasible than our initial proposal. Although I may

not focus on embedded programming, circuit design, or even

work with PCB’s, I will certainly take with me the experiences

I have had working with my team on going from PDR to FPR.

I learned many lessons on time management, resiliency,

planning, and creative thinking that I will utilize throughout my

professional career.

Berke Belge - In my opinion, the greatest challenge in

developing this project has been adapting the overall design

based on various extenuating circumstances. There have been

many instances where we have had to make major revisions to

the design and scope of our project to adapt to changing needs

and obstacles that have arisen. Our advisor, Professor Polizzi

was a great help to us in revising aspects of our design to

account for various changing variables, as well as our

evaluators, Professor Jackson, and Professor Taneja. I

personally gained a substantial amount of knowledge regarding

SDP22 – TEAM 12 12

embedded and host software as well as the general overview of

all the hardware design aspects that go into creating a project

such as ours. Another area that I have improved in over the

course of this project is in my presenting skills. Doing various

presentations over the course of these two semesters in a

simulated professional environment will be useful in my career

moving forward in the industry.

