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Society has been moving away from physical interfacing for 

some time now. From eye tracking to voice control, we are always 

finding better and more intuitive ways to accomplish everyday 

tasks on computer devices. Compounded by the recent pandemic, 

touchless interactions have become somewhat coveted not only for 

health reasons, but also ease of use. Our design aims to incorporate 

electromyography (EMG) sensing technology to detect arm/hand 

gestures to carry out common tasks such as purchasing a train 

ticket, facilitating a class, or navigating a presentation. We see our 

device being applicable to large companies or campuses that could 

benefit from faster, more efficient, hands-free interactions. 

Similarly, the device could be used by speakers and teachers to aid 

in presenting or utilized in a hospital where custom gestures for 

those with disabilities could be used to call for a nurse or other 

important functions. 

I. INTRODUCTION 

 Significance 

In 2020, the Covid-19 pandemic took the world by storm and 

initiated major shifts in the way society as whole functions. 

With this shift came a need for novel methods to minimize the 

transmission of this virus, and in turn the problem that our 

project aims to solve is being able to minimize touchless 

interactions among common surfaces, specifically public 

computers. In fact, a Princeton Review Study notes that there is 

“a high probability of observing pandemics similar to COVID-

19 (probability of experiencing it in one’s lifetime currently 

about 38%), which may double in coming decades” [1]. This 

suggests that touchless interfaces may soon become the norm 

rather than the exception in our society. Not only this, there are 

far more advanced applications that could be explored in the 

future. 

 Context and Competing Solutions in Marketplace 

Similar solutions for minimizing touch interactions with 

computers exist in the market, however they do not cover the 

breadth of features that exist in our design. There are products 

that do allow for touchless interactions, but they either do not 

allow for gesture customizability, or do not allow for accurate 

readings based on user review. Many also do not have an 

ergonomic design as with our project. Our design aims to be a 

wireless, ergonomic sleeve that allows for a full range of 

interaction with a public computer. For example, the Air 

Keyboard is a novel undergraduate thesis project that utilizes 

EMG sensing along with predictive text to use finger 

movements as a keyboard [2]. The downside of this product is 

that they never released a commercial or viable product, and 

their device exclusively emulates a keyboard. Similarly, the 

Tap Strap 2 focuses on keyboard interaction however it is a 

commercially released product [3]. Its downside is that the 

device, according to user reviews, is hard to handle (i.e. do 

something else while wearing the device such as using a phone) 

and even harder to learn which gestures do what. The final 

product we examined was the Real Time EMG-Based Assistive 

Computer Interface for Upper Limb Disabled that utilized non-

arm gestures to provide assistance for those with upper limb 

disabilities [4]. However, this product lacks customizability for 

those with other disabilities and is hardwired for a specific set. 

The pros and cons of all three devices compared to our device 

can be best summarized by Table 1. 

 

 Compatible with  

any computer 
Non-Intrusive 

Customizable 

profiles 

Movements 

+ 

Voice 

Real Time  

EMG Interface 
    

Tap Strap 2     

Air Keyboard     

Our Solution     

 Table 1: Competing Solutions Analysis Matrix. Movements + Voice 

refers to the concept that we intend to use built in speech-to-text 

functions that are inherent in all Apple and Windows systems to avoid 

having to configure all 26 letters of the alphabet in our device. 

 Societal Impacts 

The main constituents of our project will be organizations 

that aim to minimize the spread of Covid-19, or any virus in the 

case of another pandemic arising. Our product is specifically 

designed to be utilized within an organization, such as a college 

campus or private enterprise. Thus, these entities will be able to 

take an extra precautionary measure to prevent the spread of 

viral material among individuals. 

 System Requirements and Specifications 

Any system that is designed will need to have system 
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requirements and specifications to align with the goals of the 

engineers. These allow for tangible targets to reach for out of 

our envisioned EMG computer interface. The following system 

specifications and requirements were determined. 

S1. The system shall sense gesture movements with a 

reasonable accuracy. This ultimately means that the design of 

our system must be able to categorize 5 distinct gestures with 

the EMG sensors used. And we must be able to do this in a 

reasonable accuracy which was determined to be a net 90% true 

positive accuracy. 

S2. The system must be reliable. This specification requires 

the EMG sensing interface to be reliable from person-to-person, 

and for daily shifts in placement on the forearm. We need to 

ensure that a user can put the sleeve on to a relative area on the 

arm and be able to use it properly. 

S3.  The system shall be ready to use in a reasonable amount 

of time. This specification requires the system to be powered-

on and in a usable condition in less than a minute. 

S4. The system shall have reasonable power consumption. 

We have designed this specification around our products 

battery life. As this device is not constantly used, a minimum of 

3 hours of active operation time on one battery charge is 

expected. 

S5. The system shall be ergonomic. Overall, our device will 

need to be ergonomic enough for daily use without much hackle 

and stress. It should be easy to put on and adjust to one’s 

forearm. This should take only a maximum of 1 minute to 

adjust. 

S6. The system must be usable within a reasonable distance. 

As the system will have a plug-in version and a Bluetooth 

version the device must be usable as a computer interface up to 

3 meters away from host computer. 

S7. The system must have some customizability. The user 

must be able to pair 5 distinct muscle movements with 5 

different gestures using the GUI interface developed as a part 

of our product system. We arrived upon 5 distinct muscle 

movements by looking at the anatomy of the muscles on the 

forearm and seeing that with how muscles overlap and 

influence each other, we are limited by the human biology 

rather than the accuracy of our sensors [5]. 

 

 
Table 2: Requirements and Specifications 

II. DESIGN 

 Overview 

The design primarily utilizes a microcontroller with four 

EMG sensors to capture the voltage difference across the arm 

as time series data which is sent to a host computer where the 

time series data is compared against an ML model that classifies 

the data according. If the gesture is bound to a keystroke, that 

keystroke is executed on the host computer. As see in Figure 1, 

the software is evenly divided between our communication in 

C on the ATmega328p [6] and Python on the host computer.  

 

 
Figure 1: Software Block Diagram 

 

Initially we planned to use a custom EMG sensing circuit 

rather than the MyoWare, however as discussed in Appendix A, 

the custom circuit did not aid our accuracy and performed far 

worse than the MyoWare sensor. We also attempted to initially 

set simple threshold values in the software to process signals, 

however the variability of the skin to electrode contact made 

this unreliable. We then pivoted to using machine learning 

(ML) on the host computer to obtain our desired 90% accuracy. 

Our HC05 Bluetooth Module allows us to adhere to IEEE 

802.15.1 standard Bluetooth protocol. The device is also FCC 

compliant with under 1.6 W/kg of RF exposure (watts over 

kilograms of body tissue). 

Finally, for our wired communications our device is compliant 

with IEEE RS-232 standard format. 

 The Hardware 

The majority of our hardware is invested in our PCB. As see 

in Figure 2, the ATMega328p [11] does the brunt of our data 

collection and communication.  
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Figure 2: Hardware Block Diagram 

 

The MyoWare 1.0 [7] and MyoWare 2.0 [8] sensors are 

housed on the outside of the PCB enclosure and multicore wires 

with snap leads are connecting the electrodes in the sleeve to 

the sensors. Our FT232R USB to serial UART interface [9] is 

used to send the time series data through a wired connection. 

The HC05 Bluetooth module [10] is used to send the data 

wirelessly and the entire system is powered and charged by our 

LiPo micro-USB shield [11]. In Figure 3, the schematic for each 

breakout is defined outside the PCB. 

 
Figure 3: PCB layout along with breakout components. 

 Embedded Software 

The embedded software for this project was originally going 

to involve classifying gestures and performing all the logic. 

However, our team decided it would be more efficient for 

specifications such as battery life to just perform simple tasks 

on the embedded hardware. 

The embedded software was written in C and revolves 

around some built-in functions in the ATMega328P. The 

software included functions for collecting data from the 

MyoWare sensors and running those analog inputs through the 

built in Analog-to-Digital Converter (ADC) which then leave 

us with digital datapoints that we can use more appropriately. 

Next the software included UART serial communication 

code for both the USB and Bluetooth modules. This part of the 

software determined the size of the buffer we would send across 

UART and accurately displayed sensor data in readable form 

for our host computer. This software then sent the data across 

UART communications to the host computer which has a 

separate host software running which decodes and processes the 

data from the hardware. 

 Host Software 

The host software is defined as the software that will held 

and used by the interfacing computer. In this case, when the 

EMG Interface device is paired with a computer to interact 

with. The computer will hold the host software which will allow 

the device to work properly. Because our scope is generalized 

to a network dedicated to a certain company, institution, or 

campus, we assume firmware will be easily flashed on all 

machines and updated as an update to the network. 

The host software will consist of one main GUI that performs 

as the main “hub” for the user to configure and use their device. 

The GUI allows users to do the following: maintain a live graph 

of EMG signal inputs, train the ML model (Section II, Part E), 

configure various gestures, and ultimately allow for easy profile 

swapping. An example of what the gesture configuration screen 

looks like is shown below in Figure 4.  

 

 
Figure 4: Gesture configuration GUI example. Each finger can be 

custom mapped to a keystroke. We plan on adding more gestures 

beyond simple finger selections in the future.  

 

The host software is all written in Python utilizing multiple 

libraries to help ease implementation. The GUI is written in 

PySide6 which is a GUI/User interface library to help create an 

interactive python experience. 

Once the user intends to interact with the computer, the host 

software begins by sampling UART serial data stream from our 

devices Bluetooth/wired connection. It reads inputs that reveal 

all MyoWare sensor data inputs in one string format. The Host 

software then runs the data through an analysis portion which 

will calculate the Root Mean Square (RMS) value for the last 

20 samples it receives. It proceeds by running these RMS values 

as inputs to the trained prediction model. The model will then 

determine if the output is a gesture and activate a keyboard 
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shortcut to perform the paired gesture-to-action task. 

 Machine Learning Software 

Machine learning is a hot topic in today’s computing 

literature and projects. It is popular for a reason other than being 

technically interesting, but it is quite accurate at making 

decisions based on context. 

In our case, the EMG Computer Interface utilizes a k-

Nearest Neighbors (kNN) clustering algorithm to determine 

what gesture a user is performing with real-time data taken from 

our MyoWare sensors. 

For context, we developed our kNN cluster utilizing Python 

sklearn library which was developed to simplify the 

mathematical workings of the models and let users utilize ML 

learning as a part of their project rather than learning how to re-

invent something that has already been done. We then sample 

data serially in real time and use these data points as test points 

for our kNN clustering scheme. 

As mentioned, our system uses RMS to classify distinct 

gestures, rather than using the raw data. It is important to 

understand how kNN works with our data to produce a working 

classifier. Our model takes RMS values that have been 

calculated from a pre-gathered dataset that has been classified. 

Each classification is a gesture and classifies that combination 

of RMS values from each of the sensors. We then give the kNN 

cluster this training dataset and it will determine cluster groups 

for each of the classifications. In this case if we have 5 gestures, 

our model will determine 5 cluster areas of data and define these 

general spaces as a gesture. Once we feed live RMS data from 

our sensors into the algorithm it will simply determine which 

cluster this data point belongs to. The more distinct and 

repeatable the RMS values are, the more accurate our model 

will be. 

It is important to realize that training the algorithm is the 

most intense portion of this machine learning process. This is 

typically done off-site and takes from minutes to hours 

depending on the model size. However, once we have a trained 

model, we just simply determine which category the data falls 

into which is why our system is so fast. We are classifying 

gestures in real-time. As seen in Figure 5 below, when using a 

subsection of training data as test data, we achieve extremely 

high accuracy. 

 
Figure 5: K-Nearest classification accuracy. From the training 

dataset provide, 70% was used to train the model and the other 30% 

was used as test data and classified to obtain the results seen above. 

III. THE REFINED PROTOTYPE 

A.   Prototype Overview 

 The refined prototype consists of an interchangeable PCB 

which has all our hardware embedded except for the MyoWare 

sensors themselves. This interchangeable PCB is sometimes 

swapped out with a custom-built proto board. In the refined 

prototype state, we are still testing proto-board and PCB 

compatibility with the MyoWare sensors, and our ML model 

descripted in Section II Part E.  

 The refined prototype however contains all the working parts 

described in the block diagram, excluding the MyoWare 

Sensors. The final prototype is housed in a PCB enclosure on 

our embedded electrode sleeve in an ergonomic fashion. As 

seen in Figure 6 below, the embedded electrode sleeve allows 

for easy application of the wet electrodes to ensure placement 

is relatively consistent. 
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Figure 6: Final prototype of EMG electrode sleeve with enclosed 

PCB strapped onto bicep using Velcro. 

 

B.  List of Hardware and Software 

• ATmega328p [6] 

• MyoWare Sensors x4 [8] 

• C code, analog read/UART transmit 

• FT232 breakout [9] 

• HC-05 Bluetooth Module [10] 

• LiPo charging breakout [11] 

• Breaker switch 

• USB Micro-B receptacle  

• 8 MHz crystal 

• LEDs 

• Caps, resistors 

• Reusable Wet EMG Electrodes 

C.   Custom Hardware 

For our custom design, we went with the  

ATmega328p for our microcontroller. This MCU is 

somewhat of a standard in the automotive industry for its 

versatility while maintaining low power draw. 

 For Bluetooth communications, we switched from the 

BLE112 to the HC-05. We made this decision because of a 

design change regarding the designation of our device as HID 

compliant. Initially, we planned on configuring the Bluetooth 

module exactly as a wireless keyboard would be. After dabbling 

in machine learning, we realized that if we were going to 

process data on the host computer, we may as well execute 

keystrokes from the host computer as well. In turn we are using 

a cheaper Bluetooth module with an older protocol (low energy 

vs. classic). This came with its own tradeoffs in terms of power 

consumption and response time, but we ultimately concluded 

that the switch was justified.  

To communicate over USB, we used a FT232 based 

breakout. FTDI is an industry leader in TTL converters, and 

while this part was difficult to acquire, it was well worth it in 

terms of compatibility and reliability.  

Figure 7: Prototype board used for rapid testing and deployment. 

As you can see in Figure 7, we made use of female pin 

headers and a DIP adapter to easily swap out parts should 

something go wrong. This helped greatly with our testing 

process as things inevitably went wrong and we were able to 

troubleshoot piece by piece. We also used female headers to 

connect MyoWare sensors and debug/program via ISP. We 

utilized 2 LEDs, one for power and one as a general indicator. 

We tested this circuit by reading analog values from each port 

we were utilizing (A0-A3). We then ensured we could send 

these values over UART through USB and Bluetooth with 

reasonable speed and accuracy. Since most of our processing 

will be done on the host computer through Python, our 

hardware design was kept relatively simple and essentially just 

reads and transmits our data.  

 
Figure 8: PCB with populated parts, front and back view. 
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After verifying our prototype, we ported the design to a PCB 

as seen in Figure 8. For our PCB we obviously used the SMD 

versions of the breakouts we had previously used, apart from 

exempted hardware. For USB communications, we had to 

design our own circuit using the FT232RL and Micro-B 

receptacle. The PCB functions perfectly on the first revision, of 

which the routing layout can be seen below in Figure 9. 

 

 
Figure 9: PCB routing without components. 

The PCB functioning on the first revision is something that we 

are very proud of and wouldn’t have been accomplished with 

the extensive planning and preparation we did prior to ordering 

the first revision. 

 

D.   Prototype Functionality 

 

 

Figure 10: Software Diagram. 

As seen in Figure 10, our software is divided in half with the 

signal capture and communication done on the ATmega328p 

while the processing and keystroke input is done on the host 

computer. There is a power switch available on the device that 

allows it to be powered off when not in use which is crucial to 

preserve the battery for three hours of active use. The signal can 

be sent over Bluetooth or a wired USB as the UART data line 

is common. The signal sent is four comma separated values as 

a time series so that we capture the entire signal. Once on the 

host computer, our Python program calculates the root-mean-

square (RMS) for every 10 values which makes the impulse of 

the gesture much easier to characterize. Then, this RMS series 

is compared against the ML model for each point in the series. 

The corresponding keystroke is executed once there is a change 

in gesture (i.e. from no gesture being detected to a fist, because 

to the ML model its getting a bunch of fist values from the time 

series). 

 

 
Figure 11: Hardware Block Diagram 

 

As seen in Figure 11, our hardware is composed of our 

electrode sleeve, the PCB housing and sensor array, and our 

peripheral connections to power and USB. The electrode sleeve 

only contains the dry electrodes and cables to connect to the 

MyoWare sensors located on the PCB housing. The MyoWare 

sensors capture the voltage different between the two electrodes 

and these four analog values are converted to digital values and 

sent to the host computer via UART connection. We went 

through many iterations of the electrode sleeve design as there 

are many unpreventable factors that make sensing so unreliable 

(without taking measures). The humidity of the day, how 

sweaty you are, how recently you showered, and any small 

deviations on electrode contact can completely affect not just 

the values of the sensors, but the entire resulting waveform that 

we capture as a time series. This is why we added a Velcro strap 

to consistently strap oneself into the device. 

E.   Prototype Performance 

S1. The system shall sense gesture movements with a 

reasonable accuracy. This specification entailed sensing 5 

distinct movements with a net 90% true accuracy. As of the 

writing of this report, our current best iteration of the design can 

reliably detect three different movements (a cupping come-here 

motion, flicking five fingers out, and contract the middle finger) 

with an average of 85% accuracy which can be seen in Figure 

12.  
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Figure 12: Percent accuracy of the three gestures, come here, flick, 

and retracting the middle finger, over 100 trials for Person 1 (Sam). 

This accuracy was achieved using an incredibly small dataset 

(only 200 trials of the gesture obtained via time series 

collection) and with only two MyoWare sensors. A week prior 

to MDR, two of our MyoWare sensors broke through a faulty 

ground cable. This happened at the same time as the release of 

the MyoWare 2.0 sensor, so there was a period of two to three 

weeks where we were down to only two MyoWare sensors and 

had no ability to order more (as the MyoWare 1.0 went out of 

stock before the MyoWare 2.0 released). Therefore, with a large 

dataset (collected over multiple days, multiple people) and 

using our final sleeve design in conjunction with the PCB will 

allow us to get the accuracy we need, only 5% more, and expand 

the gesture count up to five.  

S2. The system must be reliable. With the advent of our final 

sleeve design and PCB, we have a system that can be utilized 

by anyone provided they complete an initial user setup where 

they give the program a small training dataset (100 trials of each 

gesture) to correlate against the main dataset.  

S3.  The system shall be ready to use in a reasonable amount 

of time. The device can be powered-on and in a usable condition 

in an average of 15 seconds. This far outperforms our initial 

goal of a minute of connection time. 

S4. The system shall have reasonable power consumption. 

The device can be used, powered-on, for four consecutive 

hours. This outperforms our initial goal of three hours of active 

use. 

S5. The system shall be ergonomic. The adjustable electrode 

sleeve allows for reliable and repeatable use; so that a user 

wouldn’t need to constantly order wet EMG electrode pads that 

are irritating to skin. Moving the MyoWare sensors off the arm 

and onto the PCB housing allows for one to easily use a phone, 

write, or even eat food while having the sleeve on.  

S6. The system must be usable within a reasonable distance. 

Our device functions reliably within three meters. The 

Bluetooth wireless connection can be used from further than 

that but we include the wired connection as a backup.  

S7. The system must have some customizability. Utilizing the 

customization GUI, users can manage and upload their training 

data, bind new keys to gestures, and select which gestures they 

use. 

IV. CONCLUSION 

Our EMG computer interface serves as an excellent proof of 

concept demonstrating that it is feasible to design a device that 

allows humans to interface with computers of various forms 

(our interface functions on Windows and Apple devices) using 

physical gestures. The system comprises of two Myoware 

sensors [8] placed on specified locations on the forearm that 

correspond to muscles that contract upon the flexing of different 

fingers. The signals obtained from these sensors are sensed by 

our Myoware sensor and converted to digital values (via 

differential amplifiers on two electrodes that is rectified and 

filtered) and sent to a computer through either a wired or 

Bluetooth connection on the UART signal line. Our Python 

application on the host computer is then able to classify gestures 

made by the user using a k-Nearest-Neighbors (KNN) machine 

learning model, and the user can customize which key binds 

correspond to each gesture on a simple GUI. As shown in Table 

3, our system can identify two distinct gestures with 100% 

accuracy. The accuracy of the prototype did decrease with an 

additional gesture, however as displayed in Table 3, the correct 

gesture is still identified in ~90% cases with false negatives 

occurring more than false positives (+6% difference). With 

more dimensions of data (from additional sensors, an 

accelerometer, more EMG sensors, etc.) our system shows it is 

possible to produce enough accurately defined gestures to allow 

for touchless human interaction with computers in many 

different use cases.  

This could enable further customization for those with 

disabilities by moving the sensors to places such as the neck or 

leg to allow for someone to call for a nurse or request water. 

Further, the potential for augmented or virtual reality control 

without the use of joysticks or buttons could lead to remote 

surgery advances or more accurate bomb defusal robots. 

Berke 

  

Sam   

  Thumb Ring Index    Thumb Ring Index 

Correct 84 96 88  Correct ? 92 88 

False 

Positive 4 0 8  

False 

Positive ? 0 8 

False 

Negative 12 4 4  

False 

Negative ? 8 4 
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  ring index    ring index 

Correct  100 100  Correct  100 100 

False 

Positive  0 0  

False 

Positive  0 0 

False 

Negative  0 0  

False 

Negative  0 0 

Table 3: Percent accuracy of the three gestures, moving the thumb, 

ring and index finger, over 100 trials for two people. The training 

dataset for this test was collected exclusively from Sam and is a proof 

of concept for robust design that it performed better when on Berke, 

even though the machine learning is using data from Sam’s muscles. 
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https://www.digikey.com/en/products/detail/adafruit-industries-llc/4410/10673110?utm_adgroup=Evaluation%20and%20Demonstration%20Boards%20and%20Kits&utm_source=google&utm_medium=cpc&utm_campaign=Shopping_Product_Development%20Boards%2C%20Kits%2C%20Programmers_NEW&utm_term=&utm_content=Evaluation%20and%20Demonstration%20Boards%20and%20Kits&gclid=CjwKCAjwur-SBhB6EiwA5sKtjgk1yO24kL4iQbUZsaUTI9x8pX6YcAquHWWYJex2-zovFmFdA2sAEhoC-Q8QAvD_BwE
https://www.digikey.com/en/products/detail/adafruit-industries-llc/4410/10673110?utm_adgroup=Evaluation%20and%20Demonstration%20Boards%20and%20Kits&utm_source=google&utm_medium=cpc&utm_campaign=Shopping_Product_Development%20Boards%2C%20Kits%2C%20Programmers_NEW&utm_term=&utm_content=Evaluation%20and%20Demonstration%20Boards%20and%20Kits&gclid=CjwKCAjwur-SBhB6EiwA5sKtjgk1yO24kL4iQbUZsaUTI9x8pX6YcAquHWWYJex2-zovFmFdA2sAEhoC-Q8QAvD_BwE
https://www.digikey.com/en/products/detail/adafruit-industries-llc/4410/10673110?utm_adgroup=Evaluation%20and%20Demonstration%20Boards%20and%20Kits&utm_source=google&utm_medium=cpc&utm_campaign=Shopping_Product_Development%20Boards%2C%20Kits%2C%20Programmers_NEW&utm_term=&utm_content=Evaluation%20and%20Demonstration%20Boards%20and%20Kits&gclid=CjwKCAjwur-SBhB6EiwA5sKtjgk1yO24kL4iQbUZsaUTI9x8pX6YcAquHWWYJex2-zovFmFdA2sAEhoC-Q8QAvD_BwE
https://www.digikey.com/en/products/detail/adafruit-industries-llc/4410/10673110?utm_adgroup=Evaluation%20and%20Demonstration%20Boards%20and%20Kits&utm_source=google&utm_medium=cpc&utm_campaign=Shopping_Product_Development%20Boards%2C%20Kits%2C%20Programmers_NEW&utm_term=&utm_content=Evaluation%20and%20Demonstration%20Boards%20and%20Kits&gclid=CjwKCAjwur-SBhB6EiwA5sKtjgk1yO24kL4iQbUZsaUTI9x8pX6YcAquHWWYJex2-zovFmFdA2sAEhoC-Q8QAvD_BwE
https://www.instructables.com/Simple-Dry-Electrode-EMG-for-Arduino/
https://www.instructables.com/Simple-Dry-Electrode-EMG-for-Arduino/
https://www.st.com/resource/en/application_note/dm00356634-using-an-electromyogram-technique-to-detect-muscle-activity-stmicroelectronics.
https://www.st.com/resource/en/application_note/dm00356634-using-an-electromyogram-technique-to-detect-muscle-activity-stmicroelectronics.
https://www.st.com/resource/en/application_note/dm00356634-using-an-electromyogram-technique-to-detect-muscle-activity-stmicroelectronics.
https://www.st.com/resource/en/application_note/dm00356634-using-an-electromyogram-technique-to-detect-muscle-activity-stmicroelectronics.pdf
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APPENDIX 

 Design Alternatives 

We had to iterate through many different design alternatives 

when it came to the sensor, sleeve design, and layout of the final 

device. Firstly, we had to forgo our custom EMG sensing circuit 

and instead use the industry standard Arduino MyoWare sensor. 

We initially found several examples of projects that used 

custom EMG sensing circuits, such as [12] that also used dry 

electrodes or [13] that achieved high accuracy, which gave us 

hope in this approach. However, we made the decision to forgo 

the custom sensors because the accuracy of our custom circuit 

was far worse than the MyoWares. This can be seen in Figure 

13 where the accuracy for three different gestures, contracting 

the ring ringer, twitching the thumb, and making a fist, for the 

custom EMG circuit over 100 trials is quite poor.  

 
Figure 13: Custom EMG Sensor Accuracy Over 100 Trials 

If we compare this to Figure 14, where we see the accuracy 

for the same three different gestures, contracting the ring ringer, 

twitching the thumb, and making a fist, of the Arduino 

MyoWare over 100 trials, we see the MyoWare performs far 

better. 

The design of our electrode sleeve pivoted from using sticky, 

wet electrode pads to utilizing a neoprene sleeve that can be 

velcroid on for repeatable, reliable use. This was done to allow 

our design to be used on different people and achieve similar 

skin contact, along with making the device more ergonomic and 

able to be reused infinitely.  

 

 
Figure 14: Arduino MyoWare Sensor Accuracy Over 100 Trials 

Finally, we changed the layout of our sensors as we found 

that this positively impacted performance. First, we moved the 

sensors themselves off the arm sleeve by soldering multicore 

electrode snaps onto headers on the device. This allows the PCB 

and sensors to be housed in one ergonomic unit. Additionally, 

the sleeve itself is now just some light wires, electrodes, and the 

material itself. This can be seen below in Figure 15. 

 
Figure 15: Custom EMG Electrode Sleeve Prototype. 

 Technical Standards 

In order for our device to communicate with a host machine, 

communication standards must be in place so that both devices 

are speaking the same language. Our goal is to make the device 

wireless for ease of use. Additionally, a wired backup will be 

available in case of battery depletion or stationary 

configurations.  

For wireless communications, we are using an IEEE 802.15.1 

standard Bluetooth protocol. The HC-05 we are using is a class 

2 device, meaning it can communicate in ranges up to 10 

meters. This device is also FCC compliant with under 1.6 W/kg 

of RF exposure (watts over kilograms of body tissue). 

For our wired communications, we are using IEEE RS-232 

standard format to transmit data from the microcontroller. This 

is sent using UART protocol to our FTDI TTL converter. This 
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converts transistor logic (RS-232) to USB protocol allowing 

data to be read via COM port from a computer. 

 Testing Methods 

Our team used various amounts of testing methods, however 

not all testing methods that we had developed could be used as 

the product has changed through multiple design reviews 

throughout the process. Our main testing methods that we used 

were manual collection of accuracy data. Simply put we would 

take our entire system and see how accurate the system is. As 

someone performs a movement, we categorize the movement 

into a class: true-positive, true-negative, false-positive, false-

negative. This allows us to aggregate and determine the overall 

accuracy of our system throughout various trials, re-designs, 

and placement on the forearm. 

Another main testing method was to be able to send 

information through our UART interface to the host computer. 

We made sure that we could accurately send information via the 

USB cable and more specifically send 3 inputs, in proper format 

for our system to recognize. Then the use of 3 potentiometers 

were used to determine the delay between turning 

potentiometer and receiving the input at the host computer. 

Lastly, we have verification testing protocols that we will use 

for each of our system specifications that will be used for us to 

judge our final product against and determine if each 

specification was hit. V numbers in the following section match 

up with the S numbers provided in the system specifications in 

section ID. 

V1. To verify S1, we determined that we will test that the 

sensing system can meet true positive/negative and false 

positive/negative percent specifications over 100 trials for each 

gesture. In other words, we will make sure that the true accuracy 

for our product is over 90% for 100 trials of each of the 5 

gestures. 

V2. To verify S2, we will intentionally misplace the device 

on our forearm by a few centimeters from marked locations that 

are known to work. We will perform this task on multiple users 

to determine if the accuracy remains constant despite the subtle 

changes in placement. 

V3. To verify S3, we simply will time the power on to 

successful connection time to the host computer on a stopwatch 

100 times and determine if all of the connection times were 

under a minute. 

V4. To verify S4, we will demonstrate that the device can be 

actively used for up to 3 hours by measuring current draw from 

each component and calculate the theoretical active time on. 

We will use current draw calculations from the higher end of 

consumption to simulate active use. 

V5. To verify S5, we will demonstrate that while holding the 

EMG interface device a user can actively write a paragraph on 

paper with a pen or pencil and then utilize a cell phone to make 

a phone call. These show how the system is at an ergonomic 

level. 

V6. To verify S6, we will demonstrate the ability to connect 

a device from multiple distances from the host computer, using 

3 increments and measuring up to 3 meters away. 

V7. To verify S7, we will verify that all keyboard inputs can 

be customized to bind to distinct movements. Ex: Fist can bind 

to voice activation. Fist can then re-bind to tab input. Fist can 

then re-bind to space input. 

 Project Expenditures 

Specific Name Cost MDR or FPR 

Reusable EMG Electrodes (80 ct) $15 Both 

Tape, Snap-pins, Reuseable Pads $15 Both 

Cables, Cable Shields $10 FPR 

HC-05 $10 Both 

BLE-112 $20 Both 

FT232RL USB-Serial Breakout $25 FPR 

2124 LiPo Battery Backpack $20 Both 

Misc. MDR Components (Op Amps, 

ADC, etc.) $10 MDR 

Sparkfun MyoWare Sensor $160 Both 

Additional MyoWare 2.0 Sensors  $80 Both 

Versa-Trode Electrodes (120 ct) $36 Both 

Onboard Components (Op Amps, 

Resistors, Capacitors, etc.) $30 FPR 

PCB $60 FPR 

$491.00 
 

Table 4: Project Expenditures  

 Project Management 

Although each of us certainly specialized in certain fields, we 

each collaborated and helped out in each and every aspect of 

this project. Sam Worrell functioned as the team coordinator, 

leading communications with our advisor, the instruction team, 

and our evaluators. Along with this, he devoted most of his time 

prior to MDR on threshold detection software and our custom 

EMG sensing circuit that ultimately wasn’t as accurate as the 

industry standard MyoWare. Sam additionally led the electrode 

https://core-electronics.com.au/sparkfun-usb-to-serial-breakout-ft232rl.html
https://www.sparkfun.com/products/13723
https://www.sparkfun.com/products/18977
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sleeve design effort and had a hand in in prototyping the ML 

programming along with extensive test data collection. Aidas is 

the champion of our signal processing and has also been the go-

to when it comes to ML. He helped in many other ways, such 

as helping in electrode sleeve design, protoboard manufacture, 

and microcontroller programming. Ryan spearheaded the PCB 

design, PCB manufacture, and created our initial protoboard 

design. He was the expert when it came to the entire PCB 

fabrication process and worked with Aidas to develop all of our 

microcontroller software. Additionally, Ryan single handedly 

tackled the design and creation of our team website. Berke 

primarily assisted in data collection and all software outside the 

microcontroller. He designed the custom GUI to use the device, 

developed Python code to speed up data collection, and was our 

go-to testing subject for developing new gestures for our ML 

training datasets. Finally, Berke helped to improve and explore 

Bluetooth wireless communication on our final design. 

We have been communicating well and stuck regularly to 

meeting weekly, especially after MDR. Sam usually acts as the 

spokesperson for the group and provides leadership during 

presentations, meetings, and check-ins. Aidas uses his 

organizational skills to lead our lab sessions and make sure we 

devote our energy in areas where our effort will be best 

rewarded. 

 Beyond the Classroom 

Aidas Jakubenas – The biggest challenges and learning that 

needed to be done with a project like this was time management. 

Ultimately, we design and build a product from the bottom up, 

and this requires a lot more planning and time management than 

I previously thought. Another big challenge was learning how 

ML works. None of our team had major experience with ML 

models and especially how to implement them, so the use of 

multiple research papers on similar topics was a major help as 

we could pick up patterns on which models to use for a project 

like ours. 

 

Ryan Dewsnap – Throughout this project, I’ve learned a lot 

about the overall design process through experience as we 

started with an idea, rapidly prototyped, refined our 

specifications, and executed our gameplan. Starting with just an 

Arduino and a breadboard, we were able to gradually build our 

idea from the ground up. One major takeaway I got from this 

stage was the power of parallel processing through careful 

planning and teamwork. What seemed like an extremely 

difficult task, soon became much less scary as we separately 

developed subsystems and brought them all together.  

After we had finalized our design, I got much valuable 

experience with prototyping on protoboard. I learned how to 

utilize DIP adapters, SMD adapters, and developed my hand 

soldering skills through building out and testing our system on 

this protoboard. Using the protoboard, I worked on my C 

coding skills as we moved from the Arduino to a standalone 

328p. After verifying our circuit’s functionality, it came time to 

design the PCB itself. With the help of Chris Caron’s wonderful 

tutorial videos, I was able to design a compact PCB compliant 

with the manufacturer’s specifications. I also gained valuable 

experience communicating with Sam to verify the design, as 

well as the manufacturer to ensure everything was printed as 

intended. Once the PCB came in, we all learned about the many 

ways one can solder SMD components. For our application, it 

was easiest to use a hotplate. 

Overall, I have learned a lot this year and feel that most of it 

will be applicable to my professional life in the future. I learned 

how to design a PCB from start to finish, intricacies of 

communication protocols, greatly improved my soldering 

skills, and more. Though I’ve developed many technical skills, 

I think the most valuable takeaway from our experience this 

year has been teamwork and problem-solving skills. This is the 

essence of engineering. Facing new challenges each day has 

tested our resilience and drive to create something we are proud 

of.  

 

Sam Worrell – The development of key fabrication, 

manufacture, and design skills were essential in helping my 

team and I develop our final prototype. In the lab, I learned 

different new soldering techniques to help with surface mount 

circuits. Additionally, I further my knowledge of circuit 

debugging and troubleshooting techniques by repairing our 

Arduino MyoWare sensors and developing our protoboard. 

Outside the lab, I learned how to use Altium design to develop 

multiple revisions of a PCB the size of a credit card. Chris 

Caron’s YouTube tutorials were instrumental in helping us both 

design our PCB and manufacture it. Most importantly, our 

advisor, Professor Polizzi, was our most valuable source of 

advice when we encountered difficulties or setbacks in our 

project. His advice enabled our project to be much more 

realizable and feasible than our initial proposal. Although I may 

not focus on embedded programming, circuit design, or even 

work with PCB’s, I will certainly take with me the experiences 

I have had working with my team on going from PDR to FPR. 

I learned many lessons on time management, resiliency, 

planning, and creative thinking that I will utilize throughout my 

professional career. 

Berke Belge - In my opinion, the greatest challenge in 

developing this project has been adapting the overall design 

based on various extenuating circumstances.  There have been 

many instances where we have had to make major revisions to 

the design and scope of our project to adapt to changing needs 

and obstacles that have arisen.  Our advisor, Professor Polizzi 

was a great help to us in revising aspects of our design to 

account for various changing variables, as well as our 

evaluators, Professor Jackson, and Professor Taneja. I 

personally gained a substantial amount of knowledge regarding 
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embedded and host software as well as the general overview of 

all the hardware design aspects that go into creating a project 

such as ours. Another area that I have improved in over the 

course of this project is in my presenting skills. Doing various 

presentations over the course of these two semesters in a 

simulated professional environment will be useful in my career 

moving forward in the industry. 

 


