EMG Computer Interface

Meet SDP Team 12

Sam Worrell EE

Team Coordinator Circuit Lead

Aidas Jakubenas CompE

Budget Lead Signal Processing Lead Ryan Dewsnap CompE

> PCB Lead Software

Interface Lead Software

Team 12 Advisor: Eric Polizzi

All parts of the project are worked on in collaboration

Introduction

According to a Princeton University study; there is a 2% chance of a COVID-19 level pandemic occurring each year.

It was found that in one's lifetime there is a **38% chance** that we will **live through a pandemic on the scale of COVID-19**. This probability may even increase in the next decades.

Problem Statement

- Pandemic is a wake up call for preventing the spread of germs/illness
- Precautions that we take include mask wearing, social distancing, and cleaning common surfaces.
- However the safest and most efficient way to keep surfaces clean is not to touch them, especially ones shared in public settings.
- Why not emphasize more touchless options?

While there are many products that allow for **touchless interactions** with computers, there are no comprehensive interfaces that allow the user to **navigate and interact with a computer** without touching any common screens or buttons.

Introduction to Our Solution

EMG Sensing

Computer Interface

Completing Simple Tasks in a Fun and Safe Way

What about other similar products and research?

University of Massachusetts Amherst

[References 1]

Survey 2: Tap Strap 2

Seems like a great product...

But reviews are mixed...

[References 2]

Survey 3: Real Time EMG-Based Assistive Computer Interface for Upper Limb Disabled

Competing Solutions

	Compatible with any computer	Non-Intrusive	Customizable profiles	Movements + Voice
Real Time EMG Interface				
Tap Strap 2				
Air Keyboard				
Our Solution				

System Specifications

- Compatible with any computer that has access to wireless serial communication (Potentially add wired compatibility as backup).
- Utilize human movement and voice to interact with computers, terminals, and kiosks in public settings and accomplish a task (order library book, purchase train ticket).
- Enable customizable profiles for users to choose how to interact with various features and provide accessibility for those with disabilities.
- Ergonomic enough to be worn through the workday and not impede normal writing or typing capabilities.
- Connection time to an interface shall take less than 1 minute.
- Battery life sufficient for everyday use (3 hours actively using the device) and rechargeable.

Verification Plan

- 1. Interface wirelessly with a computer in M5 to reserve parts or UMass library computers to check out a book.
- 2. Demonstrate the capability to customize and then switch to another interface profile.
- 3. Demonstrate writing a simple sentence on paper while wearing the device.
- 4. Test that the average connection time to the interface takes under a minute.
- 5. Demonstrate that batteries are rechargeable and sufficient for everyday use by actively using the device for 3 hours.

Software Block Diagram

EMG Circuit Diagrams

[References 5]

EMG Circuit Diagrams

[References 6]

University of Massachusetts Amherst BE REVOLUTIONARY

Budget Breakdown

Generic Name	Specific Name	Cost	MDR or FDR
Analog to Digital Converter (2 count)	ADS79	\$10	Both
Microcontroller	ATmega328P	\$15	Both
Bluetooth Module (2 count of each)	HC-05	\$26	Both
	BLE112-A-V1	\$54	FDR
Rechargeable Battery Setup	TBD, 2124 Battery Backpack	\$70	Both
MDR Components (Op Amps, Resistors, Capacitors, etc.)	Misc.	\$30	MDR
Myoware Sensor (2 count)	Sparkfun Myoware Sensor	\$40	Both
Electrodes (120 count)	Versa-Trode Electrodes	\$36	Both
Onboard Components (Op Amps, Resistors, Capacitors, etc.)	Misc.	\$30	FDR
PCB	TBD	\$70	FDR
TOTAL COST	\$	381.00	

Proposed MDR Deliverables

- Create custom analog EMG circuit that functions using electrodes
 - Sense distinct, basic muscle movements using custom EMG circuitry and generate corresponding analog output
- Demonstrate a functional analog to digital conversion subsystem
- Convert MyoWare input into distinct keystrokes sent to computer through wired connection via Arduino
- Demonstrate basic wireless subsystem between Arduino and computer
- Demonstrate rechargeable battery subsystem

						Wk 1	l				Wk	2				Wk 3				۷	Nk 4	1			٧	Vk 5				W	6				W	k 7				Wk	8		
MDR Subsystem Review TASK OF	TASK OWNER	START	END	10/4	10/5	10/6	10/7	10/8	10/11	10/12	2 10/1	3 10/14	4 10/15	10/18	3 10/19	10/20	10/21	10/22 1	0/25	10/26	10/27	10/28	10/29	11/1	11/2	11/3	11/4	11/5	11/8	1/9 11	10 11/	11/13	2 11/	15 11/1	6 11,	/17 11/	18 11/	9 11/2	2 11/2	3 11/2	24 11/3	25 11/	/26
Hardware		10/04	11/29																																								
EMG Circuit Prototype	Sam	10/04	10/29																						_																		
ADC System	Sam/Aidas	10/18	11/14																																							T	
EMG Circuit Verification	Berke	11/01	11/29											-																													
Wireless Subsystem	Ryan	11/08	11/19																																					Γ		T	
Rechargeable Battery System	Aidas	11/15	11/19																																								
Software		10/04	11/29				1																																				
Develop Basic Threshold Based Sensing	Aidas	10/04	10/22																																								
Send Keystrokes from Arduino to Computer	Berke/Ryan	10/04	11/05																																								
Wireless Subsystem Data Transmission	Ryan	11/08	11/19																																								
Map MyoWare inputs to Keystrokes	Sam	11/15	11/19																																								

References

- [1] Gaba, Jacob A., "Air Keyboard: Mid-Air Text Input Using Wearable EMG Sensors and a Predictive Text Model" (2016). *Dartmouth College Undergraduate Theses*. 114. <u>https://digitalcommons.dartmouth.edu/senior_theses/114</u>
- [2] Tap Systems, Inc., "Tap Strap 2". *Tapwithus.com.* https://www.tapwithus.com/product/tap-strap-2/

University of Massachusetts Amherst BE REVOLUTIONARY

- [3] C. Choi and J. Kim, "A Real-time EMG-based Assistive Computer Interface for the Upper Limb Disabled". 2007 IEEE 10th International Conference on Rehabilitation Robotics, 2007, pp. 459-462, doi: 10.1109/ICORR.2007.4428465. https://ieeexplore.ieee.org/document/4428465
- [4] Backyard Brains, "Experiment: Signal Classification". *Backyardbrains.com*. https://backyardbrains.com/experiments/RobotHand
- [5] Maciej Zajaczkowski, "Simple Dry Electrode EMG for Arduino". *Instructables.com* <u>https://www.instructables.com/Simple-Dry-Electrode-EMG-for-Arduino/</u>
- [6] Sylvain Colliard-Piraud, "Using an electromyogram technique to detect muscle activity". *STMicroelectronics* <u>https://www.st.com/resource/en/application_note/dm00356634-using-an-electromyogram-technique-to-detect-muscle-activity-stmicroelectronics.</u> <u>pdf</u>
- [7] M. Marani, G. G. Katul, W. K. Pan, and A. J. Parolari, "Intensity and frequency of extreme novel epidemics," *Proc Natl Acad Sci* USA, vol. 118, no. 35, p. e2105482118, Aug. 2021, doi: <u>10.1073/pnas.2105482118</u>.

Bonus Sneak Peak

Thank you

Questions?

