EMG Computer Interface

Revised Problem Statement

We want to emphasize touchless options for computer interfaces

While there are many products that allow for **touchless interactions** with computers, there are no comprehensive and easily customizable gestures interfaces that allow the user to **navigate and interact with a computer** without touching any common screens or buttons.

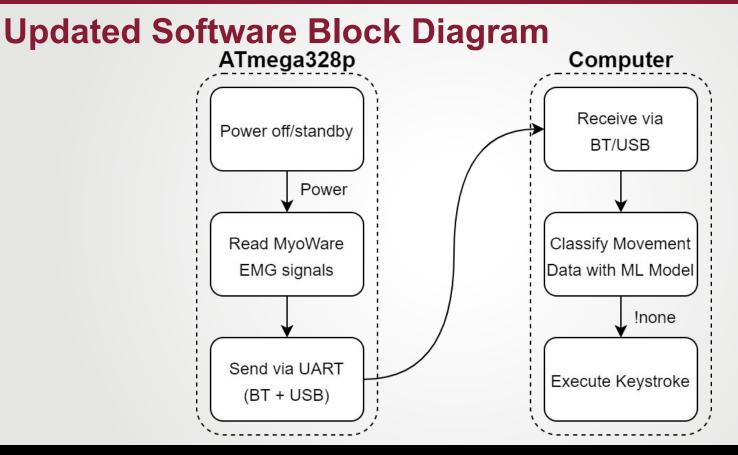
WHERE?

WHAT?

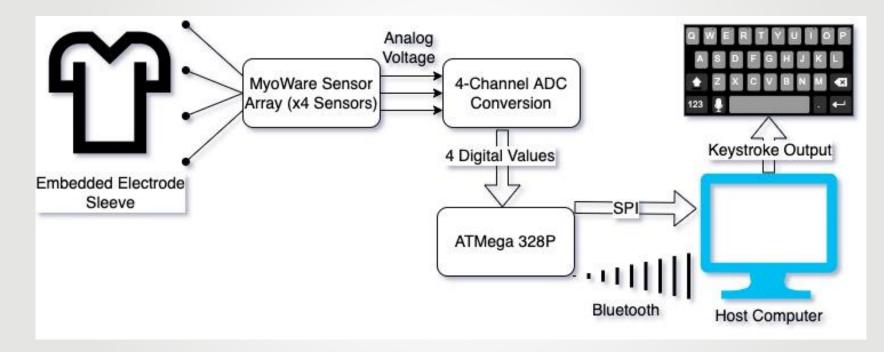
Academic, Company, Organization Campuses

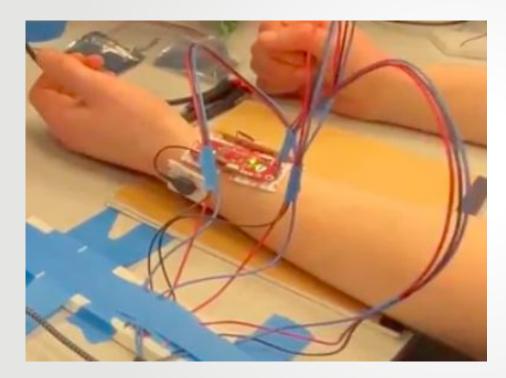
Presenting, Transactions, Lecturing

Updated Interface Specification & Verification Plan

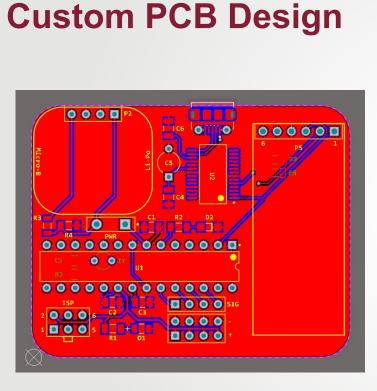

Requirement	Description	Verification						
Sensing Accuracy/Gesture Recognition	Sensing system will translate and transmit inputs with better than 90% true positive/negative and less than 10% false positive/negative rate for 5 distinct gestures . I.e. Fist, thumbs up, pointing	Test that the sensing system can meet true positive/negative and false positive/negative percent specifications over 100 trials for each gesture						
Reliability	Performance of the device must be consistent regardless of changes in between use	Demonstrate that Sensing Accuracy verification holds when pads are intentionally misplaced and across three different users						
Pre-Input Time	The time between stepping in front of an interface and inputting commands will be less than 1 minute	Test that pre-input connection time is on average less than a minute over 100 trials						
Power Consumption	The device should have sufficient battery life to last throughout a work day and be in active use for three hours	Demonstrate that device can be actively used for at least three hours by measuring current draw						

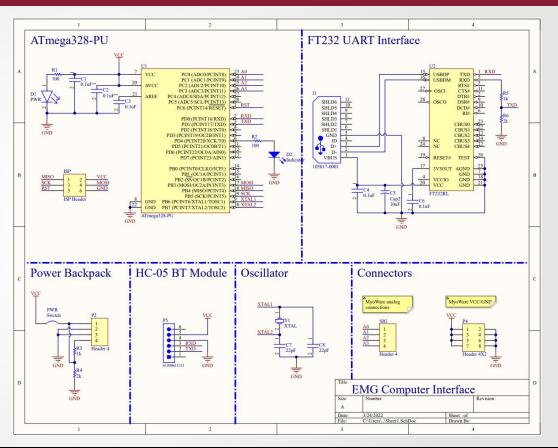
Updated Physical Specification & Verification Plan


Requirement	Description	Verification
Ergonomics	User must be capable of writing on paper and utilizing phone while wearing device	Demonstrate the ability to write a paragraph and utilize a cellphone to make a call
Interface Distance	User must be capable of utilizing device to interface with a computer up to 3 meters away	Demonstrate the ability to connect device and use from multiple distances (3 increments) up to 3 meters away from the computer
Customizability	Allow custom mapping of up to 5 human movements to distinct inputs	Verify that all keyboard inputs can be custom bound to distinct movements (each finger and any finger combination)

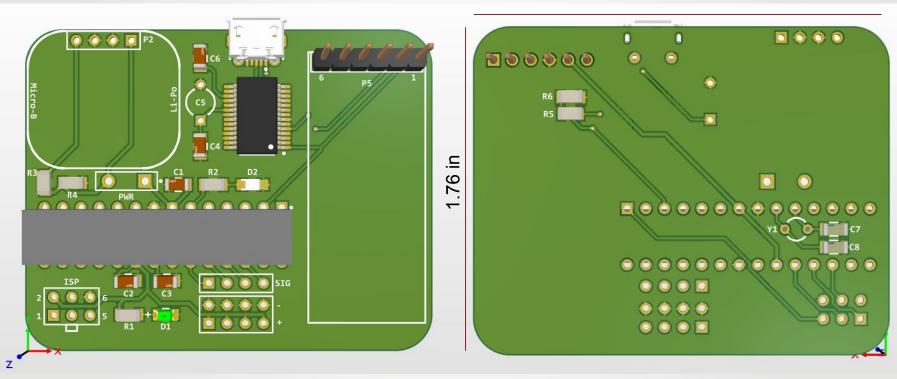


Updated Hardware Block Diagram




Sleeve Design Process

University of Massachusetts Amherst BE REVOLUTIONARY



Custom PCB Layout

2.22 in

Our CDR Deliverables

Implement machine learning to classify 3 motions with ~85% accuracy

Python machine learning can classify 4 distinct motions (includes "none") when fed live data with >85% accuracy

Reusable and ergonomic electrode sleeve

Reusable EMG electrode pads incorporated into a sleeve

Switched from Arduino-based processing to C code on 328P

No longer using default Arduino libraries to send sensor data over Bluetooth

Switched hardware to full proto-board

The hardware was moved from Arduino, to a full protoboard (mock of our PCB)

Our Still-To-Achieve Deliverables for FPR

Implement machine learning to classify 5 motions with >90% accuracy

Need to expand training dataset to incorporate more gestures/motions and increase training dataset size

Reliable Sleeve

Improve the reliability of the sleeve implementation

Incorporate battery system and Bluetooth in final PCB

The battery recharge system and Bluetooth modules have been incorporated into the proto-board

Develop Host GUI

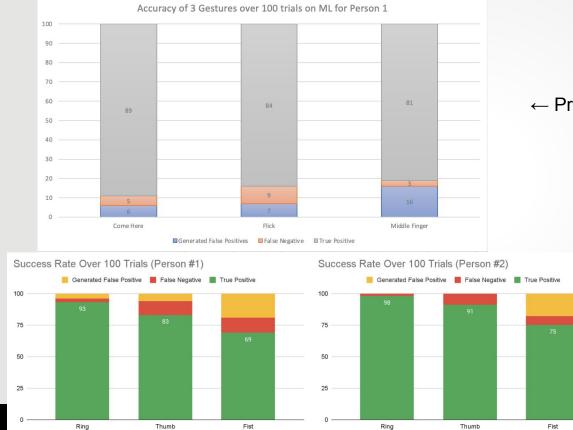
Allows seamless training data collection and model prediction, and allows user to customize gesture to keybinding

The "Theoretical Precision" of ML

RMS Model

Raw Model

[[20 0 0 0] [027 0 0] [1022 0] [02 080]]					[[[[27 0 2 0	0 29 0 1	3 1] 0 0] 52 14] 6 2893]]			
	ecision	recall	f1–score	support				precision	recall	f1–score	support
come_here	0.95	1.00	0.98	20		come	_here	0.93	0.87	0.90	31
flick	0.93	1.00	0.96	27			flick	0.97	1.00	0.98	29
middle	1.00	0.96	0.98	23		m	iddle	0.85	0.76	0.81	68
none	1.00	0.98	0.99	82			none	0.99	1.00	1.00	2900
accuracy			0.98	152		acc	uracy			0.99	3028
macro avg	0.97	0.98	0.98	152		macr	o avg	0.94	0.91	0.92	3028
weighted avg	0.98	0.98	0.98	152	re	ighte	d avg	0.99	0.99	0.99	3028


~30,000 Raw EMG Signal points

~1350 RMS Training points

~150 RMS Testing Points

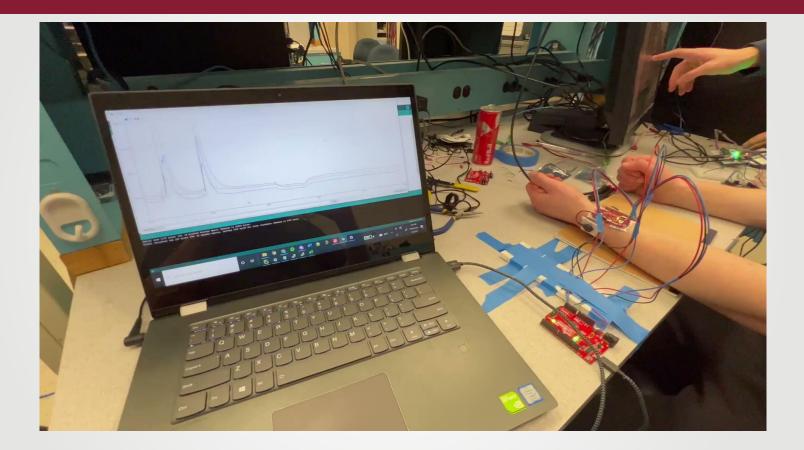
The "Actual Precision" of ML

← Precision for 3 gestures using RMS/ML

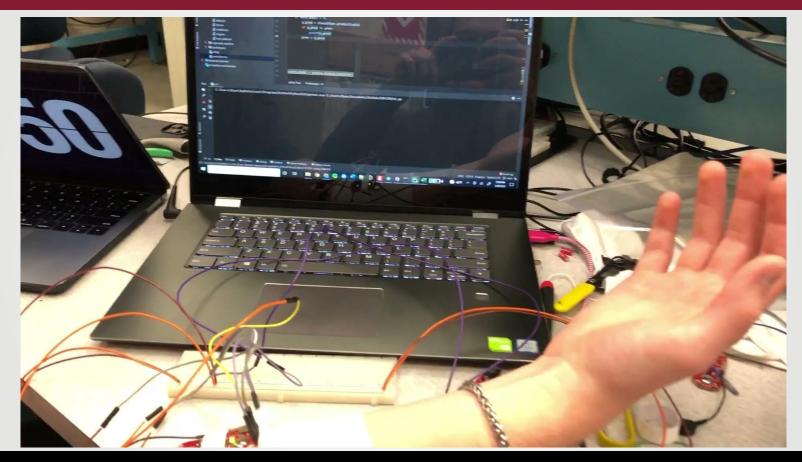
← Precision for 3 gestures using Threshold from MDR

Massachusetts Amherst BE REVOLUTIONARY"

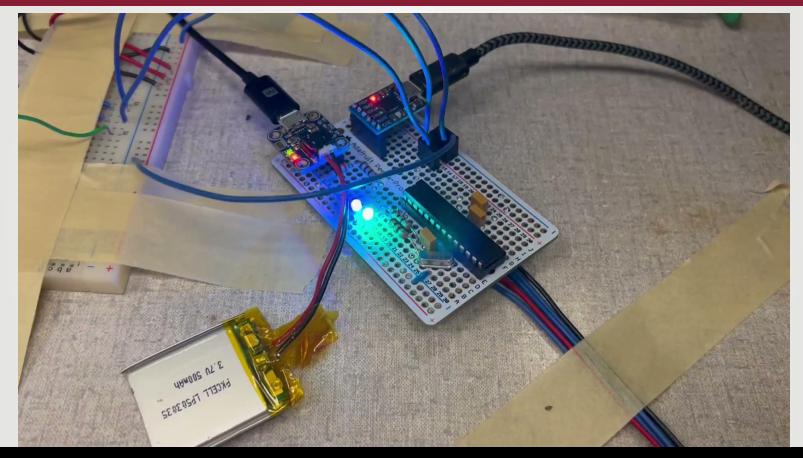
Budget Breakdown


Generic Name	Specific Name	Cost	MDR or FPR			
Reusable EMG Electrodes (80 count)	n/a	\$15	Both			
Sleeve Components	Tape, Snap-pins, Reuseable Pads	\$15	Both			
	Cables, Cable Shields	\$10	FPR			
Bluetooth Module (2 count of each)	HC-05	\$10	Both			
USB-to-Serial Breakout	FT232RL	\$25	FPR			
Rechargeable Battery Setup	2124 Battery Backpack	\$20	Both			
MDR Components (Op Amps, Resistors, Capacitors, etc.)	Misc.	\$10	MDR			
Myoware Sensor (4 count)	Sparkfun Myoware Sensor	\$160	Both			
	Additional Myoware 2.0 Sensors	\$80	Both			
Electrodes (120 count)	Versa-Trode Electrodes	\$36	Both			
Onboard Components (Op Amps, Resistors, Capacitors, etc.)	Misc.	\$30	FDR			
PCB	TBD	\$60	FDR			
TOTAL COST	\$471.00					

Massachusetts Amherst BE REVOLUTIONARY



PROJECT	2	START DATE																								
FPR Presentation				Monday, March 21, 2022																						
User to complete non-shaded fields only.											(Wk 2						l	- 1			Wk 4				
TASKS	TASK OWNER	STATUS		START DATE	END DATE	DAYS	3/21	3/22	3/23	3/24 3/2	25 3/	/28	3/29 3/3	0 3/3	31 4/1	4/4	4/5	4/6	4/7	4/8	4/11	4/12	4/13	4/14	4/15	
PCB Verification	Sam	In Progress	•	03/21/22	04/08/22	15																				
Implement Bluetooth Module into Protoboard	Ryan	In Progress		03/21/22	03/25/22	5																				
Expand Training Dataset	Berke	In Progress	*	03/28/22	04/15/22	15																				
Create Sensor Array Holder	Aidas	In Progress	*	04/04/22	04/15/22	10																				
Software			*	11/01/21	04/15/22	120																				
Host GUI (Data collection, customized gestures)	Berke	In Progress	*	11/01/21	04/15/22	120																				
1-Way Bluetooth Communication	Ryan	In Progress	•	03/21/22	03/25/22	5														_						
Expand ML Model	Sam	In Progress	*	03/21/22	04/15/22	20																				


G ['flick'] ['none']
['none']
['none'] / ['middle'] ['none'] ['FLICK'] ['none']

General Guessian - Guessian - Guessian - Guessian - Guessian init_input1 = Np.sqFt(sun(smp(lambds i: i * i, *)) / 20)
rms_input2 = np.sqrt(sun(smp(lambds i: i * i, v)) / 20)
rms_input3 = np.sqrt(sun(nmp(lambds i: i * i, 2)) / 20)
rms_final = np.areay((rms_input1, rms_input2, rms_input3)).reshape(1, -1)
rms_final = sp.areay((rms_input1, rms_input3)).reshape(1, -1)
rms_final = sp.areay((rms_input1, rms_input3)).reshape(1, -1)
rms_final = sp.areay((rms_input3)).reshape(1, -1)) counce: ... inp.sqrt(sum(map(lambda i: i * i, x)) / 28) if counter == 20: y_pred = classifier.predict(rms_final) if y_pred l= prev: print(y_pred)

🔁 bie Edn View Bawgate Code Between hun Jook Ge Window Hely Con High

COR Smipy

. 1- Let Gates ------ ----

Thank you

Questions?

