

For LOwering Household Water Usage

SDP Team 9

FPR

Anjali Toly Sanjana Kaza Stephanie He Thanathorn Sukprasert Advisor: Professor McLaughlin

Problem Statement

According to the United States Geological Survey, each person uses about 80-100 gallons of water per day for indoor home uses [1]. The majority of the households cannot monitor which home fixture or water outlet dispenses the most amount of water. **The system we aim to create will measure the quantity of by each water outlet**. Users can view their monthly water consumption from an app to which the sensor nodes are connected. The data will allow users to learn their water consumption behaviour.

System Specifications (FPR)

Functional Specification	Characteristic Specification	Performance Requirement	Design Goal
 Measure the quantity of water coming out of each water outlet Web App to display information to user showing water usage for each outlet in real time 	 Installation of the flow sensor nodes by the homeowner, without requiring a plumber Low voltage battery operated system Flow sensor nodes output is communicated wirelessly through the house Data transfer via home WiFi and internet access point to the cloud 	 Flow sensor nodes measure quantity of water with an accuracy of 90% Flow sensor node lifetime exceeds 36 months System capability is up to 6 flow sensor nodes per house 	 Installation on the outside of the pipe and out of view of the user

Unresolved Issues from CDR

- Sensor Accuracy with derived Calibration Factors
- Finalizing PCB
- Packaging

Orientation and Calibration

- Vertical up (water flowing vertically and upward)
- Vertical down (water flowing vertically and downward)
- Horizontal (water flowing horizontally)
- A 4 bit DIP switch is placed on the PCB for users to determine which orientation their sensor is in

$$calibration factor = \frac{pulse \ count}{time \ (seconds)} * \frac{1}{flow \ rate \ (L/min)}$$

Vertical down

Calibration Procedure

- Obtain the calibration for each sensor in each orientation using the equation
- Validate that the accuracy of the sensor with the derived calibration factor is within 95% accuracy
- This process would theoretically be done at the factor before the sensors are sent out to the homeowner

Calibration Factor Derivation

$$Flow Rate = \frac{1000}{msec} * \frac{pulse \ count}{calibration \ factor}$$

$$Flow Rate = \frac{1000}{msec} * pulse * \frac{L}{min} * \frac{second}{pulse} = \frac{L}{min}$$

$$Flow Rate = \frac{1000}{msec} * pulse \ count * \frac{1}{calibration \ factor}$$

$$calibration \ factor = \frac{pulse \ count}{time \ (seconds)} * \frac{1}{flow \ rate \ (L/min)}$$

The pulse count in the original equation is # pulses/second.

Confidence Interval

$$(\hat{p} - \Delta, \hat{p} + \Delta)$$
$$\Delta = \sqrt{\frac{\sigma^2}{N}} \Phi^{-1}(\frac{1-\alpha}{2})$$
$$E[x_i] = p$$

Confidence Interval

	Vertical up	Vertical down	Horizontal	CONF	CONF	CONF
Sensor						
А	8.07	6.61	7.08	1.62	1.83	3.24
В	6.19	6.06	6.3	3.57	2.60	3.07
С	9.25	7.57	8.25	4.43	1.53	0.63
D	8.72	7.39	7.07	1.36	1.24	1.61
E	8.97	7.88	8.15	2.26	3.06	1.86
F	7.23	6.79	6.64	4.90	2.29	1.48

Calibration Factor

How does the switch work

- Back end (i.e. Factory): determine the calibration factors for each hall effect flow rate sensor and configure the PCB accordingly.
- User side: depending on what orientation the flow rate sensor is installed, they flick one of three switches

Back end (i.e. Factory)

User end

Calibrated in three orientations (95% accuracy or higher)

User selects one of the switches to indicate the orientation of installation

Orientation	Vertical Up	Vertical Down	Horizontal		
Switch Number	1	2	3		

PCB Schematic and Board

Packaging

Software Design

Web Application

FL(W

Sensor B: 22192			
Sensor C: 5229			
Sensor D: 2789			
Sensor E: 3768			

Project Expenditures

Item	Cost
Hardware	\$180.73
PCB	\$63.06
PCB components	\$116.14
Misc.	\$26.18
Total	\$386.11

Works Cited

[1]<u>https://www.usgs.gov/special-topic/water-science-school/science/water-qa-how-much-water-d</u> o-i-use-home-each-day?qt-science_center_objects=0#qt-science_center_objects.

[2] <u>https://www.electronicshub.org/arduino-water-flow-sensor-interface/</u>

[3]<u>https://www.energybot.com/electricity-rates/massachusetts/#:~:text=Massachusetts%20Energy%20Market%20Data,-Last%20updated%20February&text=The%20average%20Massachusetts%20residential%20electricity,higher%20than%20the%20national%20average).</u>

[4]https://cavisynth.com/product/ftdi-programmer/

[5] https://www.thespruce.com/diy-washer-repairs-prevent-service-call-2147303

[6]https://structuretech.com/dishwasher-drains/

Thank you! Any Questions?

Self Installation

