
For LOwering Household Water Usage

SDP Team 9 CDR

Anjali Toly Sanjana Kaza Stephanie He Thanathorn Sukprasert Advisor: Professor McLaughlin

Problem Statement

According to the United States Geological Survey, each person uses about 80-100 gallons of water per day for indoor home uses [1]. The majority of the households cannot monitor which home fixture or water outlet dispenses the most amount of water. **The system we aim to create will measure the quantity of by each water outlet**. Users can view their monthly water consumption from an app to which the sensor nodes are connected. The data will allow users to learn their water consumption behaviour.

From MDR

From MDR, we broke down the whole system into different subsystems and aspects that we had to fulfill:

- Choice of flow rate sensor
- Power
- Orientation and Calibration
- PCB
- Data visualization

Choice of Flow Rate Sensor

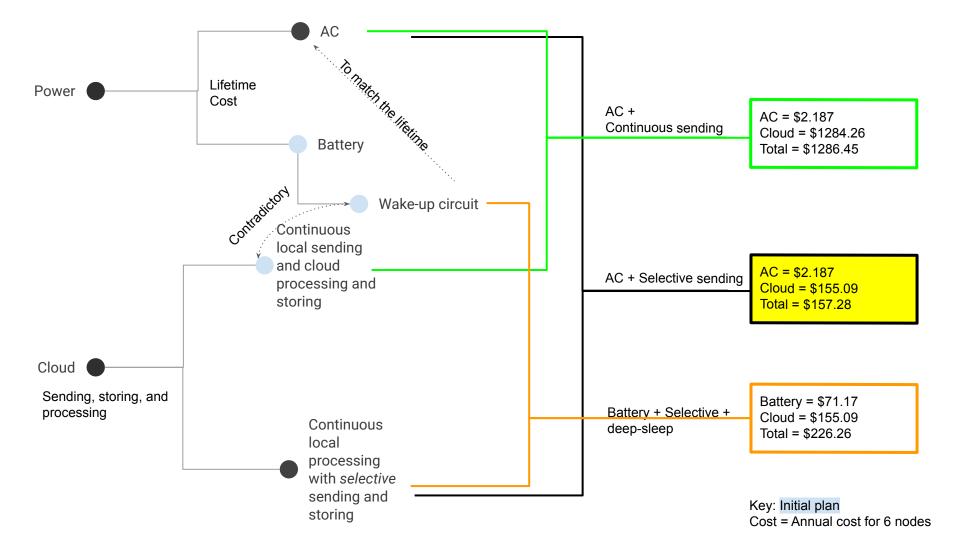
- Work done during winter break
 - Electret Microphone
 - One microphone
 - Not able to relate the sensor signal to water flow rate.
 - Two microphones
 - The time difference was unreliable.
 - Ultrasonic Sensor
 - Ultrasonic sensor with > 1 MHz do not have external circuitry.
 - Very less resources available for making one.
- Survey indicated users are fine with an in-line sensor.

From MDR

From MDR, we broke down the whole system into different subsystems and aspects that we had to fulfill:

- Choice of flow rate sensor
- Power
 - Decision driven by cost
- Orientation and Calibration
- PCB
- Data visualization

Cost Analysis

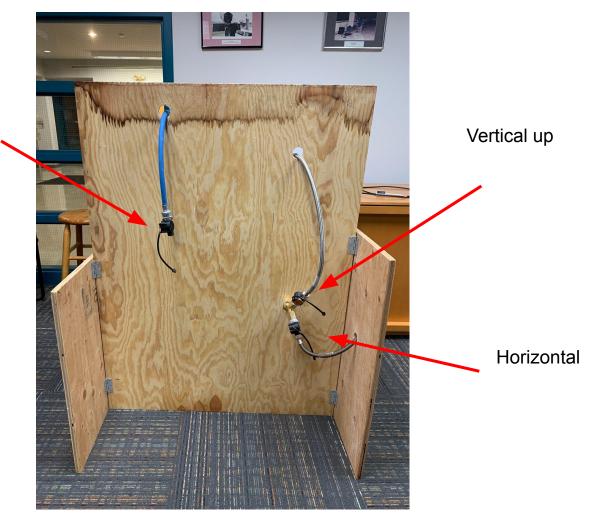

- Initial cost is fixed at \$15 per node.
 - PCB (\$5) + Hall effect flow rate sensor (\$10)
- Design choices will impact the recurring costs:
 - Choice of power supply
 - AC power supply impacts recurring electric bill cost
 - Requires AC adapter to plug into wall outlet
 - Battery cost to replace batteries over time
 - Requires a Wake-up circuit (proposed during MDR)
 - *Choice* of where to do data processing
 - Data sending, processing, storing in the cloud each of these items incurs a cost from the cloud service provider
 - Requires balance between processing vs in the cloud
 - This impacts the way the local processor is operated

Energy-Cost Tradeoff (AC vs. Battery)

Execution	Current Drawn — Energy Consumed	Annual AC Cost – 6 nodes (20 cents / kWh) [3]	Annual Battery Cost – AA batteries, 6 nodes (no deep sleep)	Annual Battery Cost – AA batteries, 6 nodes (with deep sleep)
Local Operation (LO)	32 mA			
Local Operation + Sending data to the cloud (LOC)	115 mA			
Continuous sending for one day (24 hours LOC)	0.0138kWh	\$5.96	 \$2,893.72 8,760 AA batteries/year 4 AA /day/node 	
Selective data sending for one day (3 hours LOC, 21 hours LO)	0.005064kWh	\$2.19	 \$729.38 2,208 AA batteries/year 4 AA /4 days/node 	 \$71.17 216 AA batteries/year 4 AA/40 days/node

Cloud Cost Tradeoff

Execution	Yearly cloud service for 1 node	Yearly cloud service for 6 nodes
<i>Continuously</i> retrieve, process and store (24 hours)	\$214.04	\$1,284.26
<i>Selectively</i> retrieve, process, and store (3 hours retrieval/day)	\$25.85	\$155.09


Survey Results

- We conducted a survey to a group of parents in Acton, MA. A total of 30 people responded to the survey.
- Location of installation
 - Every outlet in the house \rightarrow locations where the water cannot be physically gauge
 - Washer, dishwasher
- Plumbing
 - 50% of people surveyed know how to do basic plumbing.
 - If a tutorial video was provided, people could do the installation by themselves without the need of a plumber.
 - Majority of homeowners have common plumbing tools like wrenches, teflon tape, and vice grips
- Data visualization
 - Total monthly water consumption of each outlet

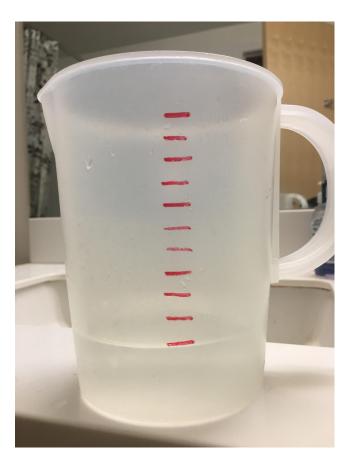
Orientation and Calibration

- Horizontal (start of the line): sensor placed horizontally, near water source
- Horizontal (end of the line): sensor placed horizontally, water comes straight out of the sensor, away from the water source
- Vertical (start of the line): sensor placed vertically, near water source
- We plan to put switches onto the PCB so the user can indicate where they are placing that specific sensor

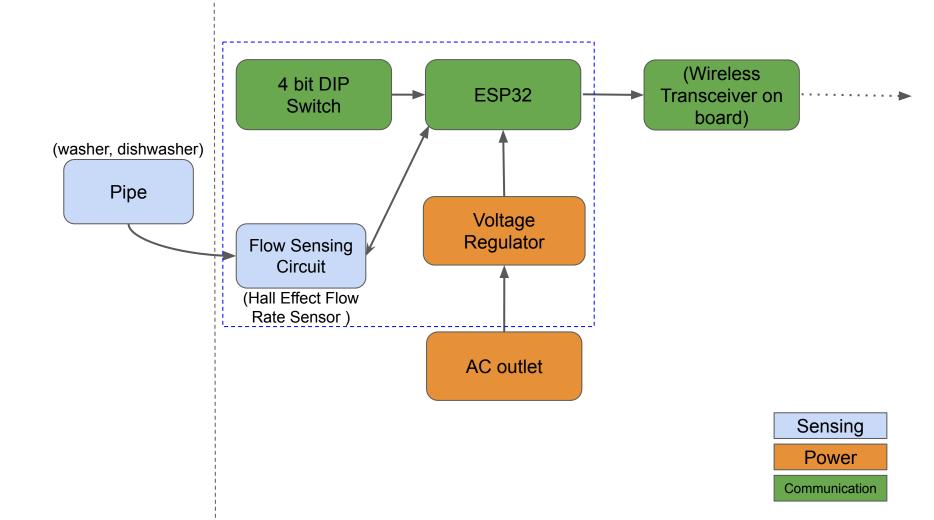
$$calibration factor = \frac{pulse \ count}{time \ (seconds)} * \frac{1}{flow \ rate \ (L/min)}$$

Vertical down

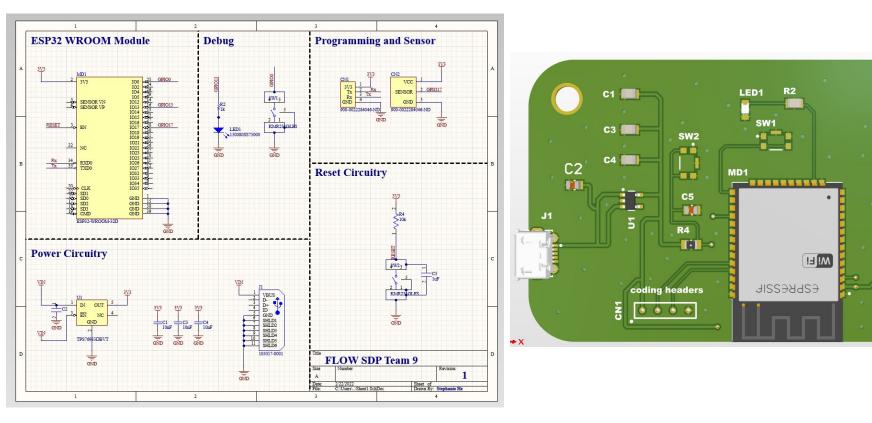
Calibration Factor Derivation


Flow Rate = $\frac{1000}{msec} * \frac{pulse \ count}{calibration \ factor}$ Flow Rate = $\frac{1000}{msec}$ * pulse * $\frac{L}{min}$ * $\frac{second}{pulse}$ = $\frac{L}{min}$ Flow Rate = $\frac{1000}{msec}$ * pulse count * $\frac{1}{calibration factor}$ calibration factor = $\frac{pulse \ count}{time \ (seconds)} * \frac{1}{flow \ rate \ (L/min)}$

The pulse count in the original equation is # pulses/second.

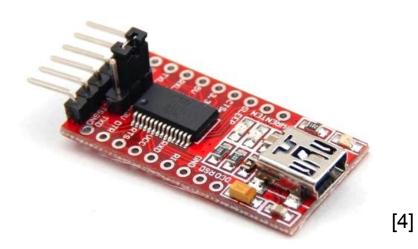

Accuracy

		& latency
		libra
J:08:13.040 -> 0		
3:08:15.040 ->	Output Liquid Quantity: 299.00mL	
3:08:16.027 -> 0		
L3:08:16.027 -> L3:08:17.016 -> 0	Output Liquid Quantity: 299.00mL	
13:08:17.016 ->	Output Liquid Quantity: 299.00mL	
13:08:18.040 -> 0 13:08:18.040 ->		
13:08:19.029 -> 0	Output Liquid Quantity: 299.00mL	
13:08:19.029 ->	Output Liquid Quantity: 299.00mL	
13:08:20.025 -> 0 13:08:20.025 ->	Output Liquid Quantity: 299.00mL	
13:08:21.024 -> 0		
13:08:21.024 -> 13:08:22.043 -> 0	Output Liquid Quantity: 299.00mL	
13:08:22.043 ->	Output Liquid Quantity: 299.00mL	
🗹 Autoscroll 🗹	Show timestamp	
	# presentationplan	ntout u = 0,
		void pulseCounte

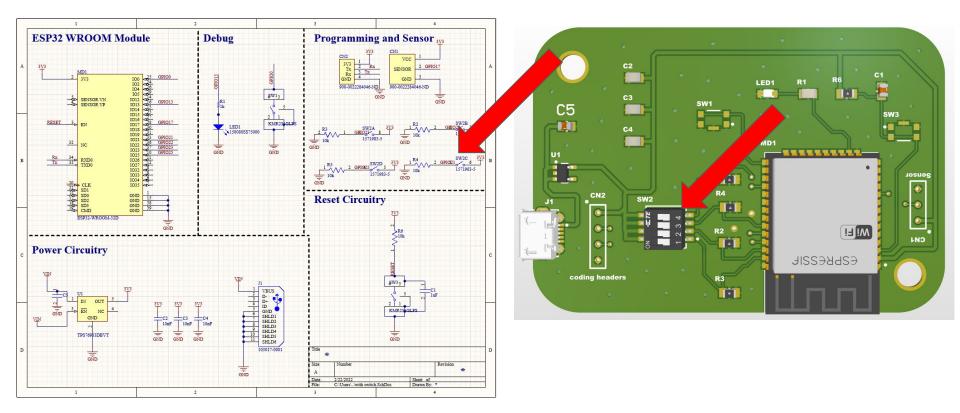

299 mL showing on serial monitor

Jug with 300mL of water

PCB Schematic and Board without Switch



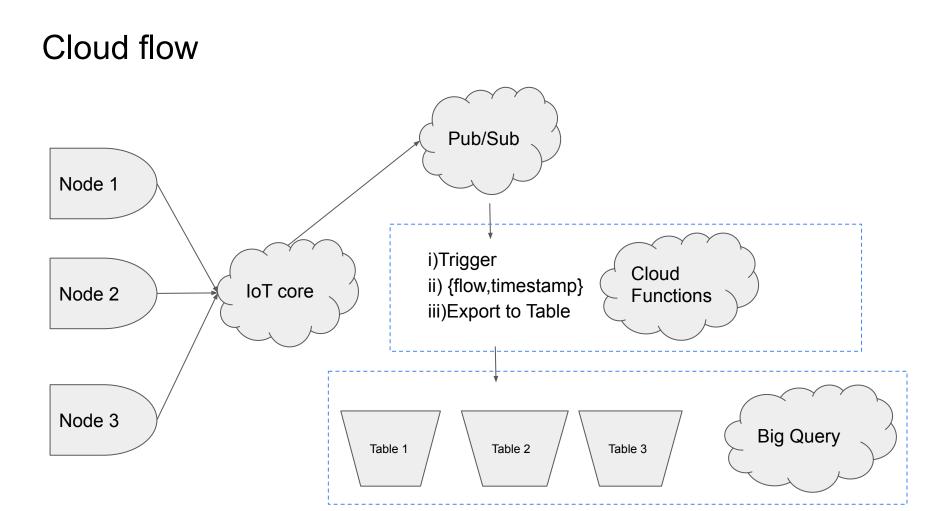
Sensor

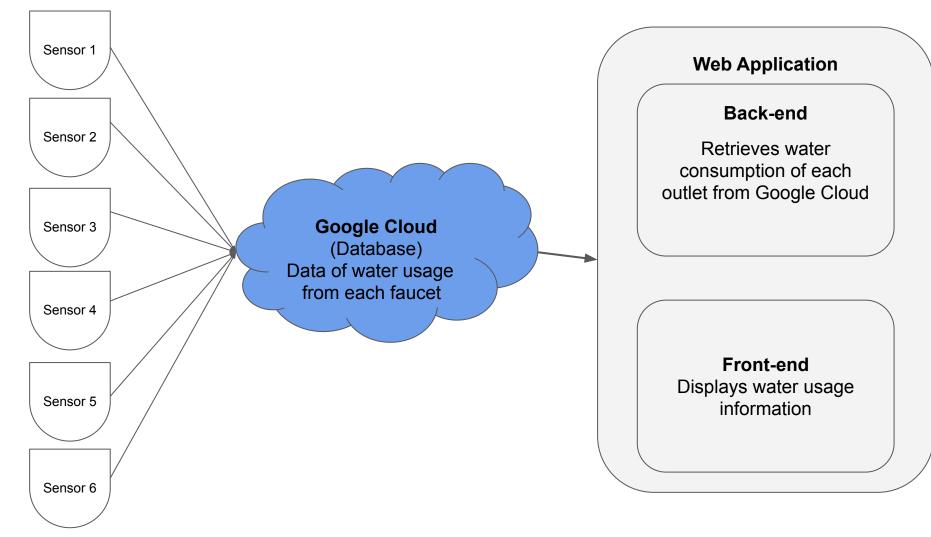

0

CN2

FTDI Serial to USB converter

PCB Schematic and Board with 4-bit DIP SPST Switch




Locations

- Sink + dishwasher
- Washing machine line

Software Libraries

Client-Server	loT messaging protocol	For Google Cloud connection	Backup for Adafruit
WiF_Client.h	MQTT.h	CloudloTCore.h	Adafruit_MQTT.h
Wifi.h		CloudIoTCoreMqtt.h	Adafruit_MQTT_Client.h
WiFiClientSecure.h			

Code Snippet

```
82 /*
83 * - configure and initialize PCNT
84 * - set up the input filter
85 * - set up the counter events to watch
87 static void pcnt_example_init(void)
        pcnt_config_t pcnt_config = {
            .pulse_gpio_num = PCNT_INPUT_SIG_IO,
            .channel = PCNT_CHANNEL_0,
            .unit = PCNT_TEST_UNIT,
            .pos_mode = PCNT_COUNT_INC,
            .neg mode = PCNT COUNT DIS,
            .counter_h_lim = PCNT_H_LIM_VAL,
        pcnt_unit_config(&pcnt_config);
        pcnt_set_filter_value(PCNT_TEST_UNIT, 100);
        pcnt_filter_enable(PCNT_TEST_UNIT);
        pcnt_set_event_value(PCNT_TEST_UNIT, PCNT_EVT_THRES_1, PCNT_THRESH1_VAL);
        pcnt_event_enable(PCNT_TEST_UNIT, PCNT_EVT_THRES_1);
        pcnt_event_enable(PCNT_TEST_UNIT, PCNT_EVT_ZERO);
        pcnt_event_enable(PCNT_TEST_UNIT, PCNT_EVT_H_LIM);
        pcnt_counter_pause(PCNT_TEST_UNIT);
        pcnt_counter_clear(PCNT_TEST_UNIT);
        pcnt_isr_register(pcnt_example_intr_handler, NULL, 0, &user_isr_handle);
        pcnt_intr_enable(PCNT_TEST_UNIT);
        pcnt_counter_resume(PCNT_TEST_UNIT);
114 }
116 void app_main()
        pcnt_evt_queue = xQueueCreate(10, sizeof(pcnt_evt_t));
        pcnt_example_init();
```

Data Visualization

- From our survey, most people want to see total quantity of water coming out of a specific water outlet
 - Ex. Dishwashing machine usage so far this month: 20 gallons
- Total monthly water consumption of each outlet
- Display outlets in order of highest to lowest consumption
 - Highlighting most used
- Allow users to view comparisons of outlet usage for better understanding
 - Pie chart
 - Bar graph
 - Etc...
- If possible, provide usage stats for each outlet
 - For example, track time of usage in the past day
- Make web app more user-interactive and professional

Data Analysis

- Provide personalised suggestions to the user
- Based on the user's use case
- Compare their usage with state's monthly average
- Long term visualisation of their usage
 - Provide insights on their most spending days or times
- Give suggestions for water bill reduction

Self installation by us! Without a plumber!

System Specifications (MDR)

		<u>/</u>	
Functional Specification	Characteristic Specification	Performance Requirement	Design Goal
 Measure the quantity of water coming out of each water outlet Web App to display information to user showing water usage for each outlet in real time 	 Installation of the flow sensor nodes by the homeowner, without requiring a plumber Low voltage battery operated system Flow sensor nodes output is communicated wirelessly through the house Data transfer via home WIFI and internet access point to the cloud 	 Flow sensor nodes measure quantity of water with an accuracy of 90% Flow sensor node lifetime exceeds <tbd> months</tbd> System capability is up to 15 flow sensor nodes per house flow sensor nodes capable of detecting dripping at water outlets, down to a flow rate of <tbd></tbd> 	 Installation on the outside of the pipe and out of view of the user

System Specif	System Specifications (CDR: modified)										
Functional Specification	Characteristic Specification	Performance Requirement	Design Goal								
 Measure the quantity of water coming out of each water outlet Web App to display information to user showing water usage for each outlet in real time 	 Installation of the flow sensor nodes by the homeowner, without requiring a plumber Low voltage battery operated system Flow sensor nodes output is communicated wirelessly through the house Data transfer via home WIFI and internet access point to the cloud 	 Flow sensor nodes measure quantity of water with an accuracy of 90% Flow sensor node lifetime exceeds 36 months System capability is up to 45- 6 flow sensor nodes per house flow sensor nodes capable of detecting dripping at water outlets, down to a flow rate of <tbd></tbd> 	 Installation on the outside of the pipe and out of view of the user 								

FPR Plan

- Combine PCB and mock up together
 - Total 6 PCBs
 - \circ 3 on mock up
 - 3 elsewhere
 - 6 nodes simultaneously sending data
- 3D print a package for the board
- Send data with all 6 sensors to the cloud and display on website
- Finish website
- Make any revisions to PCB
 - Wire voltage correctly
 - Increase hole size for header connectors
- Implement 4 bit DIP switch with wroom module

Team Responsibilities

- Head of Hardware: Stephanie
- Frontend developer: Anjali
- Backend Developer: Sanjana
- Team Coordinator: Thanathorn

TASK NUMBER	TASK TITLE	TASK OWNER	DURATION	1		WE	EK 1					WE	K 2					WEE	(3					W	EK 4					W	EEK 5			
				М	т	W	RF	S	SU	М	Т	W	₹ F	S	SU	M	TV	V R	F	S	SU	М	Т	W	RI	F	s su	М	Т	W	R	FS	s su	M
1	PCB and Sensors																																	
1.1	Integrating PCB with mock up	All	2 weeks									-																						
1.2	PCB modification	TS & SH	2 weeks																															
3	Application																																	
3.1	Completing web application	SK & AT	2 weeks																															
3.2	Data Analysis	SK	2 weeks																															
3.2	Wrapping up	All	2 weeks									•.0.10																						

https://docs.google.com/spreadsheets/d/1W_RimOb7iqgFxVbxXvdJyEs-ZJ6X8mxSJoRQ8jliOiA/edit#gid=1115838130

Project Expenditures (current)

Item	Cost
Components for Flow sensing circuit	\$86.73
PCB	\$42.20
PCB components	\$116.14
Cloud service (free trial)	\$0
Website Hosting	\$0
Previous expenses	\$94
Total	\$339.07

Expected Expenditures

Item	Cost
Flow sensors	\$20
PCB (second iteration)	\$25
PCB components	\$0
Cloud service (free 12-month trial)	\$0
Website Hosting	\$0
Anything else we need	\$115.93
Total	\$150.93

Works Cited

[1]<u>https://www.usgs.gov/special-topic/water-science-school/science/water-qa-how-much-water-d</u> o-i-use-home-each-day?qt-science_center_objects=0#qt-science_center_objects.

[2] <u>https://www.electronicshub.org/arduino-water-flow-sensor-interface/</u>

[3]<u>https://www.energybot.com/electricity-rates/massachusetts/#:~:text=Massachusetts%20Energy%20Market%20Data,-Last%20updated%20February&text=The%20average%20Massachusetts%20residential%20electricity,higher%20than%20the%20national%20average).</u>

[4]https://cavisynth.com/product/ftdi-programmer/

[5] https://www.thespruce.com/diy-washer-repairs-prevent-service-call-2147303

[6]https://structuretech.com/dishwasher-drains/

Thank You!

Any questions?