# Team 8: NeverLost

Mid-Year Design Review December 3rd, 2021 - 4pm

Advisor: Professor Arbabi Evaluators: Professor Burleson, Professor Pishro-Nik



6. 10:

### **Meet the Team!**



**Shelby Anderson** Computer Engineering Team Manager



**Eric Anderson** Computer Engineering Budget Lead Software Lead



**Louis Gencarelli** Computer Engineering Embedded Systems Lead



**Eric Sutherland** Electrical Engineering PCB Lead



## **Problem Statement**

When hiking through long trails such as the Appalachian trail, it is not uncommon for a hiker to become injured making it difficult to complete their journey. It is often difficult to gage a loved ones progress on these trails to confirm their location and that they are ok. In addition, many of these hikes are in remote areas with no cell service and no way of contacting emergency services or a loved one. If a hiker is injured, it might be days before anyone is aware.

Our NeverLost survival beacons will provide checkpoints along hiking trails that would include a check-in system and ability for search and rescue teams to begin with exact coordinates within minutes of their emergency. Our beacons would be accessible to everyone, especially to injured hikers that may not be able to walk to the trailhead.



### Goals

- Develop a dependable system that allows hikers to access emergency services.
- Devise a secure check-in system to track hikers progression. Viewable by friends and family







# **System Specifications**

#### **Beacon System**

- Multi-hop linear network topology, **500m** Distance between beacons
- **300ms** avg propagation between beacons
- **97% transmission success rate** at 500m line of sight
  - Reliable Data Transfer, utilizing ACK
- SOS transmitted in (1- number of beacons)(prop delay) + Server delay
- 2.1 Second avg SMS Server Delay

#### **Mobile Application**

- Bi-directional communication
  - Bluetooth module + Mobile application
- Location updated via cloud computing when check-in received by base station

#### **Power Systems**

- Low power consumption allows for **1.5 days battery life** without relying on solar
- Implementation of *2W* solar system with *190mA* output current

#### Cost

- Beacon: \$86.19
- Base Station: \$50.16

### **Embedded Software Diagram**





### **Software Diagram**





# **Cloud Computing**

#### **Base Station to AWS**

- ESP32 connected to AWS IoT sends MQTT message over WiFi publishing entries to topic
- AWS DynamoDB adds entries to EC2 published to IoT topic

#### Webpage Hosting

• AWS EC2 instance running Linux virtual machine hosts web pages containing hiker log data

#### **Cloud Security**

- Base Station is assigned X.509 certificate and RSA keys
- Device connects to AWS IoT over secure TLS connection



### **Hardware Diagram**





# **Proposed MDR Deliverables**

We will produce 1 prototype beacon, and 1 prototype base station for testing

#### **Short Range Communication and Mobile App**

- Working user interface in app to communicate data from smartphone to beacon via bluetooth
- Ability to contact the outside world from base station via SMS in less than 5 minutes

#### **Long Range Communication**

- Send a serial 44 byte message with the LoRa transceiver
- Find the max range of the LoRa and measure the packet received/fail rate (~500 meter goal) **Power Systems** 
  - Prototype including all proposed modules to measure power consumption
  - Set up working solar charging system
  - Confirm min and max power of modules



# **Short Range Communication - Mobile App / BLE**

#### **Short Range Communication and Mobile App**

- ✓ Working user interface in app to communicate data from smartphone to beacon via bluetooth
- Create Comm Socket to enable communication
- Bi-directional communication:
  - Android Application  $\leftrightarrow$  BLE Module (ESP)





### **DEMO - Short Range Communication**





### **DEMO - Short Range Communication and App Backup**





## Long Range - Reliable Data Transmission

- Radio module sends packets and waits for acknowledgement
- Once the packet is received by the base station, an acknowledgement is sent back to the sender
- Reattempts transmission on failed acknowledgement
- 3 ACK, attempts before considered transmission failure

# **Long Range Communication**

#### **Long Range Communication**

- ✓ Demonstrate ability to *send and receive 44 byte serial data* via LoRa
- ✓ Measure the maximum accurate range of the LoRa transceiver (*minimum goal 0.5km*)

Testing Plan:

- Range testing of our LoRa with...
  - line of sight
  - obstructions
  - in the woods
- Packet Loss, Reliable Data Transmission



### Long Range Demo -Line of Sight

500 Sent, 485 Received, 15 Failed97% Success RateAvg. duration: 410.392ms

Rec Center





## **Long Range Demo - Successful Transmissions**

#### Mill River Close



500 Sent, 478 Received, 22 Fails96% Success RateAvg Duration: 427.43ms

**Campus Pond** 



500 Sent, 491 Receive, 9 Failed98.2% Success RateAvg Duration: 421.26ms



# **Long Range Test - Failure Points**

Mill River Far



500 Sent, 356 Received, 144 Fails71% Success RateAvg Duration: 427.43ms

**Campus Failure** 



265 Sent, 60 Received, 205 Failed *22.6% Success Rate* 



# **Improving Transmission Success Rate**

| Location        | Pass | Fail (>0 attempts) | % Success | Attempts for 100% |
|-----------------|------|--------------------|-----------|-------------------|
| Mill River 200m | 461  | 39                 | 0.922     | 13.53937556       |
| Mill River 300m | 319  | 181                | 0.638     | 33.99192973       |
| Puffers 250m    | 492  | 8                  | 0.984     | 8.352644451       |
| Puffers 400m    | 456  | 44                 | 0.912     | 14.21136997       |
| Rec Center 500m | 480  | 20                 | 0.96      | 10.73032259       |
| Campus 600m     | 475  | 25                 | 0.95      | 11.52959371       |
| Campus failure  | 49   | 216                | 0.184906  | 168.9378155       |

- Found success rate for a single transmission at each location
- Used this success rate to estimate number of resend attempts to reach 100% transmission success rate

Using:  $\mu = 1 - (1-\lambda)^N$ 



# Long Range Demo - Range Tests Woods

**Puffers Close** 



500 Sent, 500 Receive, 0 Failed100% Success RateAvg Duration: 399.6ms

**Puffers Far** 



500 Sent, 476 Receive, 24 Failed95.2% Success RateAvg Duration: 428.63ms

### **Demo Video - Puffers 250 m**





### **Linear Repeater Network Demo**





### **Linear Repeater Network Demo Backup**





# **DEMO SMS** $\rightarrow$ **Emergency Services**

#### Cloud

✓ Ability to contact the outside world from base station via SMS in less than 5 minutes

#### SMS

- Published IoT topic triggers AWS SNS action sending contents of beacon message to mobile phone through SMS
- 100% of SMS messages sent under 5 minutes
- 2.1 Second server delay





### **DEMO SMS Emergency Signal Backup**





# **Power Systems**

#### **Power Systems**

- ✓ Test the solar cell efficiency by measuring output current *expect 63mA (190 mA actual)*
- ✓ Measure min system current *302uA* (*12mA actual*) and max system current *142mA*

Moving to bare modules rather than breakout boards and dev boards should allow us to come closer to the power specs stated on respective datasheets



### **Power Demo - Steady States**



ESP and LoRa Sleep Mode



ESP Awake, LoRa in Receive Mode



**ESP** Connected to Bluetooth



### **Power Demo - Active Transmit and Receive**



University of Massachus<u>etts</u>

Amherst BE REVOLUTIONARY

#### **Transmit and Receive Power**

- Active Tx 143 mA
- Active Rx 100 mA
- Idle Rx *43 mA*

29

## **Power Demo - Solar**

Measured solar panel DC output characteristics

- 190 mA output current at 4.2 V
  - measured with some clouds and indirect sunlight
- Produces 0.8 W
- Assuming 8 hrs sunlight (winter months), maximum output 6.4 Wh
- 1.9 Ah at system voltage (3.3V)





# **Timing Scheduling**

- Implement a duty cycle to switch between Sleep and Receive modes
  - When in receive mode look for a message preamble, must receive 2 symbols from preamble to know to begin actively listening for packet data
  - This allows all beacons to be ready to receive a message at all times reduces time for message to reach base station
- Plotted power as function of preamble length to find minimum power
  - From plot, found 8 symbol preamble is optimal
  - Our beacons will sleep for 6 symbols and wake up for 2 meaning system will be asleep for 75% of time, awake for 25%



### **Security of Personal Information**



#### 2 - Check In @ Each Beacon





#### **Security of Personal Information** 3 - Check In Info to Cloud-Based, Mobile Application **Receive Secure Check-In** Information DB TABLE GIVES US HIKER IDENTIFYING INFO CLOUD COMPUTATION HIKER# SUCCESS, Beacon#, Time Stamp →Apply each Personal "KEY" to Inputs until Success. KEY(SECURE INFO) →UNRECOGNIZABLE.. FAIL HIKER1 KEY(SECURE INFO) →UNRECOGNIZABLE... FAIL HIKER2 NEVERLOST HIKER3 KEY(SECURE INFO) → "SUCCESS...INFO" SUCCESS!



# **Scalability Issues**

- As number of beacons increases, so will power consumption as each message must be sent through the system
  - The first beacon in line must transmit and receive (number of beacons) \* (number of hikers) times per day which means that it will use far greater power than any other beacon in the chain
  - To help this we can have multiple beacons between each check in beacon such that there are fewer check ins



### **Custom Hardware Plan for PCB**

Beacon

ESP32-WROOM RFM95C SMA Connector 3.3V Switching Voltage Regulator LiPo Battery Connector Barrel Connector for Solar Panel MCP73831 LiPo BMS IC GPIO Connections to Buttons Base Station ESP32-WROOM RFM95C SMA Connector 3.3V Switching Voltage Regulator Connector for 5V DC Supply



## **Justification of Hardware**

#### ESP32-WROOM

#### RFM95C

- WiFi+BLE MCU
- Sleep Mode ~12mA
- $240 \text{MHz} \rightarrow 80 \text{MHz} \text{ clk}$
- 520Kb on-chip SRAM

- Low power LoRa based packet radio module
- License-free ISM band 915MHz
- 135mA transmit, 43mA receive
- ~600m line of sight

# **Current Expenditures**

| Item                    | Quantity | Cost   |
|-------------------------|----------|--------|
| Lithium Polymer Battery | 2        | 29.9   |
| Solar Panel             | 2        | 58     |
| RFM95C LoRa Breakout    | 2        | 79.8   |
| Charge Controller       | 2        | 19.9   |
| Antenna Connector       | 3        | 7.5    |
| ESP32-WROOM             | 2        | 17.9   |
| Antenna                 | 2        | 25.7   |
| Shipping + Tax          |          | 35.99  |
| Total                   |          | 274.69 |



## **Future Expenditures**

| Beacon                 | Quantity | Price | Total  | <b>Base Station</b>      | Quantity | Price   | Total  |
|------------------------|----------|-------|--------|--------------------------|----------|---------|--------|
| ESP32-WROOM            | 5        | 8.95  | 44.75  | ESP32-WROOM              | 3        | 8.95    | 26.85  |
| RFM95C                 | 5        | 13.44 | 67.2   | RFM95C                   | 3        | 13.44   | 40.32  |
| 3.3V Switching Voltage |          |       |        | 3.3V Switching           |          |         |        |
| Regulator              | 5        | 1.2   | 6      | Voltage Regulator        | 3        | 1.2     | 3.6    |
|                        |          |       |        | Connector for 5V         |          |         |        |
| LiPo Battery Connector | 5        | 0.26  | 1.3    | DC Supply                | 3        | 0.72    | 2.16   |
| MCP73831 LiPo BMS      |          |       |        | 5V AC/DC Wall            |          |         |        |
| IC                     | 5        | 0.74  | 3.7    | Charger                  | 3        | 6.5     | 19.5   |
| Buttons                | 5        | 0.25  | 1.25   | SMA Connector            | 3        | 2.5     | 7.5    |
| Status LED             | 5        | 0.55  | 2.75   | <b>Basestation Total</b> |          |         | 99.93  |
| SMA Connector          | 5        | 2.5   | 12.5   |                          |          | PCB x 8 | 32     |
| Beacon Total           |          |       | 139.45 |                          |          | Total   | 271.38 |

# **Team Responsibilities**

#### **Shelby Anderson**

- Team Manager
- Application Development

#### **Eric Anderson**

- Budget
- Software/Cloud Lead

#### Louis Gencarelli

- Long/Short-range Communication
- Embedded System Lead

#### **Eric Sutherland**

- PCB Lead
- Power Consumption





|          |                                                                 |            |          |         |             |            |            |                         | Contraction of the |             | 10 m m |
|----------|-----------------------------------------------------------------|------------|----------|---------|-------------|------------|------------|-------------------------|--------------------|-------------|--------|
|          |                                                                 |            |          |         |             |            |            |                         |                    |             |        |
|          | Task Name                                                       | Start Date | End Date | Members | 1/24 - 1/28 | 1/31 - 2/4 | 2/7 - 2/11 | 2/14 - 2/18             | 2/21 - 2/25        | 2/28 - 3/04 | CD     |
|          |                                                                 |            |          |         | M T W TH F  | M T W TH F | M T W TH F | M T W TH F              | M T W TH F         | M T W TH F  |        |
| Hardware |                                                                 |            |          |         |             |            |            |                         |                    |             |        |
|          | Design and Prototype Charge Controller                          | 24-Jan     | 2-Feb    | ES + L  |             |            |            |                         |                    |             |        |
|          | Interface battery and solar to Charge Controller                | 3-Feb      | 11-Feb   | ES + L  |             |            |            |                         |                    |             |        |
|          | Design and Order PCB                                            | 12-Feb     | 23-Feb   | ES + L  |             |            |            |                         |                    |             |        |
|          | Test PCB functionalitly                                         | 21-Feb     | 4-Mar    | ES + L  |             |            |            |                         |                    |             |        |
|          |                                                                 |            |          |         |             |            |            |                         |                    |             |        |
| Software |                                                                 |            |          |         |             |            |            |                         |                    |             |        |
|          | Implement Network Security Approach                             | 24-Jan     | 2-Feb    | S+EA    |             |            |            | · · · · · · · · · · · · |                    |             |        |
|          | Add Additional App Features                                     | 3-Feb      | 11-Feb   | S+EA    |             |            |            |                         |                    |             |        |
|          | Web Interface w/ Real User Data                                 | 14-Feb     | 25-Feb   | S+EA    |             |            |            |                         |                    |             | ]      |
|          | <ul> <li>Manufactor and Assess in Prevail 1 (200) 10</li> </ul> |            |          |         |             |            |            |                         |                    |             | 1      |
| Both     |                                                                 |            |          |         |             |            |            |                         |                    |             | 1      |
|          | Translate from Arduino IDE to Professonal IDE                   | 7-Feb      | 11-Feb   | ALL     |             |            |            |                         |                    |             |        |
|          | Design and Create Device Enclousure                             | 14-Feb     | 18-Feb   | ALL     |             |            |            |                         |                    |             | 1      |
|          | Power Optimization                                              | 7-Feb      | 18-Feb   | ALL     |             |            |            |                         |                    |             | 1      |
|          | General Testing & Optimization                                  | 21-Feb     | 4-Mar    | ALL     |             |            |            |                         |                    |             |        |
|          |                                                                 |            |          |         |             |            |            |                         |                    |             | 1      |



# Thank you! Any Questions?



### **Appendix - Budget Calculations: Future Expenditures**

| Beacon                           | Quantity | Price | Total  | Basestation                   | Quantity | Price   | Total  |
|----------------------------------|----------|-------|--------|-------------------------------|----------|---------|--------|
| ESP32-WROOM                      | 5        | 8.95  | 44.75  | ESP32-WROOM                   | 3        | 8.95    | 26.85  |
| RFM95C                           | 5        | 13.44 | 67.2   | RFM95C                        | 3        | 13.44   | 40.32  |
| 3.3V Switching Voltage Regulator | 5        | 1.2   | 6      | 3.3V Switching Voltage Regula | 3        | 1.2     | 3.6    |
| LiPo Battery Connector           | 5        | 0.26  | 1.3    | Connector for 5V DC Supply    | 3        | 0.72    | 2.16   |
| MCP73831 LiPo BMS IC             | 5        | 0.74  | 3.7    | 5V AC/DC Wall Charger         | 3        | 6.5     | 19.5   |
| Buttons                          | 5        | 0.25  | 1.25   | SMA Connector                 | 3        | 2.5     | 7.5    |
| Status LED                       | 5        | 0.55  | 2.75   | <b>Basestation Total</b>      |          |         | 99.93  |
| SMA Connector                    | 5        | 2.5   | 12.5   |                               |          | PCB x 8 | 32     |
| Beacon Total                     |          |       | 139.45 |                               |          | Total   | 271.38 |



### **Appendix - Budget Calculations: Cost Per Device**

| Cost Per Beacon        | Quantity | Price | Total | <b>Cost Per Basestation</b> | Quantity | Price | Total |
|------------------------|----------|-------|-------|-----------------------------|----------|-------|-------|
| ESP32-WROOM            | 1        | 8.95  | 8.95  | ESP32-WROOM                 | 1        | 8.95  | 8.95  |
| RFM95C                 | 1        | 13.44 | 13.44 | RFM95C                      | 1        | 13.44 | 13.44 |
| 3.3V Voltage Regulator | 1        | 1.2   | 1.2   | 3.3V Voltage Regulator      | 1        | 1.2   | 1.2   |
| LiPo Battery Connector | 1        | 0.26  | 0.26  | 5V DC Supply Connector      | 1        | 0.72  | 0.72  |
| MCP73831 LiPo BMS IC   | 1        | 0.74  | 0.74  | Antenna                     | 1        | 12.85 | 12.85 |
| Buttons                | 1        | 0.25  | 0.25  | 5V AC/DC Wall Charger       | 1        | 6.5   | 6.5   |
| Status LED             | 1        | 0.55  | 0.55  | SMA Connector               | 1        | 2.5   | 2.5   |
| Battery                | 1        | 14.95 | 14.95 | PCB                         | 1        | 4     | 4     |
| Solar Panel            | 1        | 29    | 29    | Total                       |          |       | 50.16 |
| Antenna                | 1        | 12.85 | 12.85 |                             |          |       |       |
| PCB                    | 1        | 4     | 4     |                             |          |       |       |
| Total                  |          |       | 86.19 |                             |          |       |       |



# **Appendix - Power / Scheduling Justification**



- Created equation for total power related to preamble length
  - equation is based off of worst case scenario (first beacon from base station which will see a message from each hiker and each beacon)
- minimized equation to find optimal preamble length
- use new preamble length, test Tx and Rx current and time measurements to find actual power consumption

totalPower = [percent.\*24\*Isleep]+[(1-percent).\*24\*Iidle]+[ToA\*hiker\*beacon]\*[activeTx+activeRx]

#### University of Massachusetts Amherst BE REVOLUTIONARY

## **Appendix - Power Measurements**

#### **Peak Transmit**



University of Massachusetts Amherst BE REVOLUTIONARY

## **Appendix - Power Measurements**

#### **Peak Receive**





## **Appendix - Power Measurements**

#### Acknowledgement



