
Team08: NeverLost
Senior Design Project Report

Eric Anderson, CompE, Shelby Anderson,
CompE, Louis Gencarelli, CompE, and Eric
Sutherland, EE

Abstract—

When hiking through long trails such as the
Appalachian trail, it is not uncommon for a hiker
to become injured making it difficult to complete
their journey. It is often difficult to gauge a loved
one's progress on these trails to confirm their
location and that they are ok. In addition, many of
these hikes are in remote areas with no cell service
and no way of contacting emergency services or a
loved one. If a hiker is injured, it might be days
before anyone is aware. Our NeverLost survival
beacons will provide checkpoints along hiking
trails that would include a check-in system and
the ability for search and rescue teams to begin
with exact coordinates within minutes of their
emergency. Our beacons would be accessible to
everyone, especially to injured hikers that may not
be able to walk to the trailhead.

I. INTRODUCTION

A. Significance

Hiking is one of the most common outdoor
activities. From 2014 to 2016 a total of 990 deaths
were reported in national parks which equals to an
average of 330 deaths per year or 6 deaths per week
[1]. Most hikers are traveling solo when accidents
happen. If in a remote location with no cell service it
may be difficult for a Search and Rescue (SAR) crew
to locate that injured hiker and could take hours or
days until that person receives any medical
assistance. Around half of injuries are related to the
ankle which means a hiker might not be able to make

it to a spot where they can call for help. Our system is
designed to address these problems and provide an
alternative for injured hikers to track and call for
help.

B. Context and Competing Solutions in
Marketplace

In the past people have used more traditional
solutions utilizing hiking travel logs and trail
markers, however, these methods provide no means
of communication with emergency services in case of
a life-threatening incident. In recent years, devices
like Personal Locator Beacons and Satellite
Messengers equipped with two-way communication,
GPS navigation, and additional application features
are much more common. Such devices tend to cost
over $300 and require additional subscriptions and
licenses to operate. The use of Long Range Radio
(LoRa) technology has recently become popular in
low-power long-range open-source IoT devices.
Similarly, BLE, WiFi, and LoRa can be used in
indoor/outdoor localization, smart sensing,
agriculture, and healthcare. LoRa has the ability to
adapt to a large number of node devices while
consuming a small amount of power. LoRa devices
can be implemented with a high level of security
making it ideal to use for our problem statement.

Similar solutions like Meshtastic [2] exist as an
open-source mesh communication device and
platform. Several low-cost Meshtastic beacons
combined with a smartphone app enable in-app
communication and live tracking as each beacon in
the mesh is carried by users. Our device, which
differs from others on the market, is designed to send
precise coordinates from a fixed location to
emergency services in a short period of time.
Additionally, we implement a tracking system –
viewable on a private HikerLog webpage – that uses
beacons as check-in locations.

C. Societal Impacts
Our prototype is aimed to help and aid everyone

from beginners to the most experienced hikers on the
trail. The goal of our device is to provide reliable
communication for anyone who might need to
contact emergency services especially injured hikers
that are alone. Our device will be able to operate in
remote locations and will be able to be scaled with

multiple devices to populate entire trail networks.
Our prototype is designed to be installed on trail
systems and stay there to provide infrastructure for
communication to those who may not be able to
afford an expensive device as described previously.

D. System Requirements and Specifications

We broke down our System Requirements and
Specifications into three main subsystems: Beacon
System, Power System, and Mobile Application. For
each subsystem, we have set certain parameters and
requirements that our system should meet in order to
achieve our goals. The Beacon system should consist
of a multi-hop linear networking topology with a
500m distance and a 300ms propagation delay
between beacons. We have chosen to evaluate our
system with two beacons and one base station at a set
distance. Our goal is to reach a 97% success rate
with line of sight in order to reliably send emergency
packets as well as check-in messages. To confirm that
packets are sent correctly in addition to determining
when we need to send re-attempts, a two-way
acknowledgment system is implemented. We vary the
number of retransmission attempts in order to
maximize the probability of a successful packet being
sent while keeping total power consumption in mind.

For the next system, the Power System, we based
our specifications and requirements on the battery
and solar panel we chose for our design. We have
chosen a 2.5 Ah LiPo battery. With low power
consumption, our system will be able to be active for
about 10 days in sleep mode without relying on any
power from the solar. Our solar system should output
2600 mAh under optimal conditions on a sunny day.

The last subsystem is the mobile application which
consists of the app and the backend that receives and
uploads check-in and emergency data to the cloud
platform. The mobile application platform enables
bi-directional communication as well as incorporates
a Bluetooth module. When a check-in message is
received by the base station, a hiker's location will be
updated onto a hiker's logs as well as a real-time map
which is stored on a secure webpage. On the other
hand, when an emergency signal is received, an SMS
message will be sent directly to emergency services
with coordinates showing the exact location of the

beacon where the signal originated to allow a quick
and accurate search and rescue team to arrive.

II. DESIGN

Figure 1: System Overview

A. Overview
We solved this problem by creating a

solar-enabled, low-power system that allows hikers to
either check-in or send an emergency while on the
trail. A hiker can create a profile using our mobile
application so that as they encounter a beacon along
the trail they can either check-in or send a signal to
emergency services if required. AES encrypted
messages are broadcast from the user's mobile device
over Bluetooth. Once the beacon is given data to
transmit it will communicate over LoRa to the next
beacon in the line. Each beacon works together to
forward the data down the line until it reaches a base
station. The base station is connected to power via a
wall outlet and has access to WiFi. Base stations use
WiFi to upload the received data to the cloud where it
is either decrypted and stored on a secure Hiker Log
webpage, or is paired with precise coordinates in a
message to be sent to emergency services.

We considered technologies that would allow us to
communicate with satellites but came across many
roadblocks including budget and complexity when
planning to implement these. We settled on LoRa
which allows for long-range communication with low
power consumption which helps to achieve two of
our major goals for the project. We are balancing a
trade-off between transmission range and power
consumption.

Figure 2: Beacon Hardware Block Diagram

Figure 3: Base Station Hardware Block Diagram

Figure 4: Software Block Diagram

B. Beacon System
The beacon system is designed to reliably forward

data from the point of a check in to the nearest base

station. To do this we used the RFM95W module
which implements LoRa communication to provide
secure, low power, and long-range communication.

Our system operates at 915MHz which is an
FCC-designated Industrial, Scientific and Medical
(ISM) band that allows us to legally communicate
without the need to register our devices. The
RFM95W allows us to set up a system of
acknowledgments so that after a message is sent, the
receiving beacon should send a message back to the
original sending beacon telling it that a message has
been received correctly. If no acknowledgment is
received, then the beacon will make attempts to send
the message again. If power consumption was not an
important specification of our system then we could
try to resend the message as many times as needed
until it is correctly received. However, with power
considered, we must limit the number of
retransmission attempts.

We have two different types of transmissions, those
being check-in data and an emergency signal. We
consider the emergency signal to be more important
and are willing to spend more power to ensure this
message gets through to the base station. With this
said, we have programmed 3 reattempts for the
check-in data, and 7 reattempts for the emergency
signal. These were decided through testing to ensure
that check-in data is received 98.5% of the time while
emergency data is received successfully at a rate of
98.99%.

This limited our project, ideally, we could transmit
at lower frequencies and higher output power to
improve range, but to stay within FCC regulations we
were constrained. Each of these changes would
significantly affect our power system.

C. Power System
Our power system is designed to allow our beacon

system to be self-sustained without the need for
external intervention. The goal of this subsystem is to
prevent the need for a person to go to each beacon to
change the battery. To ensure this was implemented
properly, we designed each beacon to consume low
power as well as be set up with a solar panel and
charge controller to recharge the battery.

We chose a microcontroller that had options to
enter sleep mode to allow for very low power when it
was not necessary to actively transmit or receive data.

Our LoRa module has a feature to create a duty cycle
that allows the MCU and most of the other active
components of our system to sleep until a message is
received. The RFM95W transceiver will wake up
long enough on set intervals to catch any incoming
packet, then send an interrupt to the rest of our
system to wake up and actively receive and process
the message. The amount of time spent sleeping is
determined by the length of the preamble of each
transmitted message. As the preamble length
increases, we can spend more time sleeping, but also
consume more power per message sent. To find the
optimal period of time spent sleeping we created an
equation to model the consumed power versus
preamble length and found the minimum power
consumed when we use an 8 symbol preamble, which
leads to the 75% sleep duty cycle.

Another important component of the power system
is the 2W solar cell and charge controller. To test our
solar system we measured the output current every
hour over the course of a day under various
conditions including sunny, partly cloudy, and under
tree cover. Then plotted each set of points and created
a best fit line so that we could integrate and find the
total power produced over a day in each set of
conditions. See Figure 5 below.

Figure 5: Solar output over one day

As previously mentioned, our system is designed
for situations like the Appalachian Trail. We kept this
in consideration when designing the power system.
Our low sleep current means that the overall power
consumed depends heavily on the number of beacons
in a chain to the base station, and the number of
hikers using this path. We chose to model our system
on a section of the trail in New Hampshire called the
Presidential Range. This 88 mile section would
require 282 beacons, and based on our battery we

could support 480 hikers in a single day on one full
battery charge. To be more conservative, using only
the energy produced by our solar panel in one day, we
could support 306 hikers in a single day. We model
and plot our power using:

(# Hikers)*[(# Beacons)*(8 μAh) + (1.5 mAh)] + Sleep Power

Where 8 μAh is the power used in transmitting a
single message, and 1.5 mAh is the power consumed
in each Bluetooth connection to a beacon. See Figure
6 below.

Figure 6: Power Consumed vs. Number of Hikers

D. Mobile Application

Figure 7: Mobile Application

NeverLost’s accompanying mobile application
allows hikers to update their location as they progress
through the trail, regardless of their access to cellular
service. Neverlost’s frontend is written in Java and
was designed, built, and tested using Android Studio,
in conjunction with AWS Cloud Services (see E.
Cloud) as well as Bluetooth technology on the ESPs.
The mobile application allows hikers to:

(1) Register with the NeverLost Application
(2) Connect to NeverLost Beacons along the

trail without cell service
- Update their location
- Send an emergency SOS signal

(1) Register with the NeverLost Application
Prior to beginning their journey, a hiker

must download the Android application and proceed
to registration, which requires a simple button press.
Upon registration, two unique random strings are
generated by the mobile app: a HikerID that ties the
hiker’s device to their check-in data and a secret key
that is used later to maintain system security. Both
nonce values are then stored locally on the user’s
phone and uploaded to NeverLost cloud servers. In
order to add these values to the cloud, the app
invokes POST requests, directing the two
parameters(“key”, “HikerID”) to a php script running
on our website, https://www.team08neverlost.com.
Once registration is complete, the NeverLost mobile
application provides users with a secure link to their
check-in HikerLog webpage, which they can then
share with friends and family. The registration
process requires a connection to the internet enabling
at home registration prior to beginning a hike.

(2) Connect to NeverLost Beacons along the trail
As a hiker begins their journey through

remote hiker trails, cell service can become unreliable
or completely unavailable. Neverlost’s mobile app
mitigates some risks associated with hiking by
allowing users to update their location and contact
emergency services when in Bluetooth range. When a
hiker arrives at a NeverLost beacon along the trail,
they are prompted to connect to the beacon via
Bluetooth. When a user selects a beacon on their
phone, the mobile app gets the associated device
information and attempts to connect to the selected
address associated with the beacon. Upon success, a

communication socket is established between the
beacon and the individual’s device, allowing
bidirectional communication between the devices. If
a user is checking in, they input the beacon number
they are at. Once the user presses the “Send Msg”
button, the OnClickListener() retrieves the current
date and time of the button press, as well as the
locally stored HikerID and key. NeverLost
concatenates the HikerID, the check-in date/time
information, the beacon number, and pads the
message with 5 zeros, as well as a success message
that indicates successful encryption once received
and decrypted at the base station. The mobile app
then encrypts this concatenated string with the hiker’s
secret key and sends the encrypted message through
the comm. Socket. If there is an emergency along the
trail and they are sending an emergency signal, only
the beacon number is sent through the
communication socket.

E. Cloud

Figure 8: Cloud Computing Platform

The NeverLost system uses a number of
Amazon Web Services as backend infrastructure.
AWS IoT maintains NeverLost’s connection to the
outside world by linking the base station device to the
cloud over the internet. Incoming signals from the
base station are posted to MQTT topics which trigger
cloud actions. The main cloud action is to enter
incoming packets directly into an AWS DynamoDB
table which maintains the list of encrypted messages.

These messages are then read by an Apache
server running on an AWS Elastic Compute Cloud
(EC2) instance. The EC2 instance has four main
functionalities:

1. Maintain Hiker credential records
2. Decrypt incoming messages
3. Serve and maintain a secure HikerLog

website
4. Generate and send SMS messages to

emergency services
To accomplish functionality 1the EC2 server uses

a webpage running PHP scripts to read user
credentials sent as POST requests from the
NeverLost mobile application. Hiker IDs and
symmetric keys are saved to a list of credentials on
the server. Now that credentials are in the EC2
instance, encrypted messages are read into the server
by downloading the contents of the encrypted
messages DynamoDB table using the AWS CLI.

To accomplish functionality 2, a script on the EC2
instance attempts to decrypt each message using the
list of downloaded keys. Upon reading a success
message hidden within the successfully decrypted
string, the message is processed to serve functionality
3.

To accomplish functionality 3, processed
messages containing hiker location information are
paired to the hiker's corresponding HTML file and
are appended to their HikerLog webpage. See Figure
9 below.

Figure 9: HikerLog Webpage

To accomplish functionality 4, scripts on the EC2
instance detect emergency signals, pair embedded
beacon numbers within emergency messages to their
corresponding beacon coordinates. This message to
emergency services over AWS Simple Notification
Service.

To test all four functionalities, the AWS IoT
MQTT test mechanism was used to simulate
encrypted data transfer of signals sent from the
beacon system. On a local machine, messages are

encrypted with private keys and published to the
MQTT test topic. Hiker ID and encryption key
credentials were uploaded to the proper server files.
Upon running server-side scripts, corresponding
webpage entries were generated and viewed in the
server’s webpage directory. Successfully decrypted
page updates were viewed on private web pages. To
ensure proper and robust cloud functionality, random
encrypted messages and random hiker keys were
uploaded followed by real keys and real encrypted
messages to ensure the system would not crash in the
case of ill-formed or invalid entries.

F. Software Security
One of NeverLost’s main purposes is to

provide a sense of safety and security to hikers
utilizing our system. Given that we are transmitting
sensitive location information through long-range
communication, confidence that this information is
being sent and received securely is required. Our
security approach was created and perfected through
the guidance of security experts, notably Professors,
Arman Pouraghily and Wayne Burleson.

Implementation of our security approach
begins at Hiker Registration. When a hiker registers,
the mobile application utilizes Android’s internal
random number generator to produce 2 nonces, or
unique random numbers: a HikerID of 5 characters
and SecretKey of 16 characters. Once these numbers
are generated, they are automatically inputted into a
DynamoDB table; we are able to assume that the
connection to the internet is secure. Connection to the
NeverLost website is also secure through our SSL
(Secure Socket Layer) certification, indicated by the
HTTPS:// prior to our URL. The SSL certification
authenticates the website’s identity and enables an
encrypted connection, enabling our symmetric
encryption and allowing us to share the secret key
without the threat of eavesdropping. Once a hiker is
registered, they are given a link to share with friends
and family; this link will have sensitive location
information once they embark on their journey so it is
vital it is secure. To ensure this security, we utilize
the one-way hash function – SHA-256 – hashing the
user’s secret key and creating a log at
https://www.team08neverlost.com/hash(secret_key).h
tml

Once a user successfully registers, they can
embark on the trail knowing their data is encrypted
when sent from beacon to beacon through our Loras.
We guarantee this security by utilizing the user’s
personal device to implement symmetric encryption.
Both the base station and the individual’s device have
the given hiker’s ID and encryption key; once a
check-in occurs, the information is encrypted on the
mobile application prior to it being sent over
Bluetooth. This ensures that only unrecognizable
ciphertext is being sent over insecure channels (i.e.
Bluetooth, LoRa). Once the ciphertext ultimately
arrives at the base station, the secret key is applied.
Successful decryption is indicated by the “success”
message embedded in the plaintext.

G. Hardware Security
An additional incentive to choose LoRa

technology is dependability and security. LoRa uses
IEEE 802.11 Frequency Hopping Spread Spectrum
(FHSS) and Frequency Shift Keying (FSK) to avoid
eavesdropping and packet sniffing. Essentially the
transmitter “hops” packets between different
available narrowband frequencies within a specified
channel. Unless the adversary is aware of the
pseudo-random hopping pattern or hopping
algorithm, the message will be highly resistant to
jamming. Many private and military applications
implement these technologies as well.

III. The Refined Prototype

A. Prototype Overview

To initially prototype our system, we used an ESP32
development board as well as an RFM95W LoRa
radio module. We constructed 2 beacons and a base
station on breadboards while adding a charge
controller, solar panel, and some LEDs. We based our
custom PCB on this prototype as it was very similar.

B. List of Hardware and Software
Major hardware components include the

ESP32WROOM module which is our microcontroller
responsible for communication to the mobile
application using BLE as well as communication to
the cloud using WiFi. For long-range communication,
our prototype uses the RFM95W which implements

the LoRa communication protocol to allow us to
communicate from beacon to beacon. Our prototype
uses a 2.5Ah battery coupled with a 2W solar cell and
the MCP73831/2 charge controller IC to create our
power system. All of this is housed on our custom
PCBs.

Major software components included interfacing
and coding on various platforms in order to tie our
system and the application together. Languages we
used include: Python, HTML, CSS, php, and C++. In
addition, we made use of libraries such as
Cryptodome, hashlib, os, and RadioHead. A majority
of the backend was handled by AWS. Some of the
AWS features included; Elastic Compute Cloud,
Simple Notification Service, DynamoDB, and
Internet of Things.

C. Custom Hardware

To arrive at our final PCB design we started by
prototyping on breadboards to get our desired
functionalities. We have two slightly different
designs: the beacon and base station, however, they
share the same major hardware components. Once
satisfied with the functionality of the prototype we
moved to Altium where we recreated the schematic
for our designs, here we found our specific parts. Our
designs used mostly size 0603 SMD components and
various through-hole components. From this
schematic, we placed and routed components and
traces in our PCB layout. Following the Altium
tutorials created by Chris Caron, we were able to
order our first revision. When it arrived we quickly
realized that we forgot to repour our ground planes
before creating fabrication outputs and decided the
boards were not worth trying to fix.

We ordered a second revision which included the
ground plane. Using the stencils and hot plate we
were able to solder on all of the SMD components
and make an attempt at testing. While trying to
program the board we found that the reset and boot
buttons were not set up correctly to program the
microcontroller. Cutting a few traces and soldering an
extra button onto our PCB allowed for successful
programming of the ESP32. With this design, we
could successfully send a single message. We forgot a
connection from an IO pin on the RFM95W to the
ESP32, this connection is responsible for sending an
interrupt to the microcontroller when a transmission

is finished. The green wire shown below created the
connection and gave a working prototype PCB.

Figure 10: PCB Revision 2

This second revision was extremely important to
our progression through learning PCB design. Once
we had a PCB working in hand it became a lot more
obvious why you should be so intentional about
routing traces so that they are easy to follow and
ensure reliability. With this learned, our third design
was made with more intention, especially when
designing the power and ground portions. We also
designed the beacon and base station such that they
use the exact same stencil even though they have
slightly different designs. This decision was made in
an attempt to save the budget as we saw possible.
These designs can be seen in Figure 11 and Figure
12.

Figure 11: Beacon PCB Final Revision

Figure 12: Base Station PCB Final Revision

IV. Conclusion

As a team, we have created a prototype system that
securely transfers a hiker’s personal data to a base
station where it can be uploaded to the cloud or allow
an injured hiker to get help from emergency services.
We successfully met all of the system specifications
outlined in our Preliminary Design Review. Our
hardware has been successfully implemented onto a
custom PCB. Our mobile application successfully
encrypts and communicates sensitive data to our
beacon system. The cloud hosted website
successfully decrypts and displays accurate hiker
location information on private web pages. Finally,
emergency services are quickly alerted of all
emergency requests.

Acknowledgment

We would like to thank our advisor, Professor
Arbabi, for guiding us through this year and
remaining patient and positive as we encountered
new challenges. We would like to thank our
evaluators, Professor Burleson and Pishro-Nik, for
introducing new perspectives and providing helpful
critiques to make sure NeverLost reached it’s
potential. We would also like to thank Professor
Goeckel and Pouraghily for providing their expertise
to validate and improve our various subsystems.
Additionally, we greatly appreciated the help of Chris
Caron and Wouter Schievink, they were helpful
guides in navigating this integrative experience

References

[1] “Surveillance.” National Parks Service, U.S. Department of the
Interior, 15 June 2020, https://www.nps.gov/orgs/1336/data.htm.

[2] . (n.d.). Meshtastic. Meshtastic · Open Source hiking, pilot,
skiing and secure GPS mesh communicator. Retrieved May 4, 2022,
from https://meshtastic.org/

Appendix

A. Design Alternatives
We considered using technologies that would allow

us to communicate with satellites rather than using
LoRa for our long-range communication. We were
quickly turned off of this because of how expensive
the components were. Since this project is
significantly limited by budget, we could not pursue
these technologies.

Larger batteries and solar panels were also
considered but similarly, due to budget constraints,
we settled for the equipment listed above.

B. Technical Standards
Bluetooth Low Energy - IEEE 802.15.1
WiFi - IEEE 802.11
Frequency Hopping Spreading Spectrum - IEEE
802.11FHSS
License Free 915Mhz ISM Band
Frequency Shift Keying (FSK)

The ESP32 implemented Bluetooth and Wifi while
the LoRa module used FHSS and FSK. On the
software side, we implemented multiple AWS
standards as well as some application and web
development methodology

C. Testing Methods
To test the long-range communication we created a

loop of 250 messages which were each the 64 bytes
to represent the encrypted data that would actually be
transmitted. Using this setup we went to various
locations and then sent the loop with 500m between
the transmitter and receiver. We recorded the number
of successful transmissions and the number of
reattempts needed to get a success. Images of testing
locations are included below.

To test the power system we measured the total
power consumed while running the loop for the range
test. This was used to find the amount of power
consumed per transmission so that we could plot this
and find the amount of power our system would
consume.

Testing our solar charging system consisted of
making many measurements of output current at
various locations and various weather conditions over
the course of a day. We used these numbers to plot
and find total power produced to run the system. Plot
is included in Figure 5.

D. Project Expenditures

Development Production

Parts Beacon Base
Station

PCB $42.30 $0.79 $0.62

LoRas $123.12 $14.44 $14.44

ESP32s $28.70 $3.60 $3.60

Solar Panel $29.00 $29.00 NA

Batteries $58.90 $14.95 NA

Pelican Case $22.50 $22.50 NA

Misc $372.59 $22.61 $26.36

TOTAL $654.61 $107.89 $45.02

Our project was approved for a $227 budget
increase to accommodate additional PCB revisions,
website and enclosure costs.

E. Project Management
Our team is loosely divided into a software team

consisting of Eric Anderson and Shelby Anderson
and a hardware team consisting of Louis Gencarelli
and Eric Sutherland. As needed, our entire team
worked together to successfully integrate all parts of
the system. Each team member has also stepped up in
a role that may not be their strong suit, especially
during the weeks of MDR and CDR to ensure a
smooth presentation and demo. Team
communication, handling of responsibilities, time
management, and mutual support were strong.

F. Beyond the Classroom
As a team, we learned to work together and

set specific deadlines and deliverables in order to
design and prototype a system.

Eric Anderson: This class taught me a lot about
how to use and connect a variety of AWS services.
Additionally, I found value in making careful local
tests of my programs before running them in the
cloud in order to avoid more tedious debugging down
the line. I learned how to break large projects into

digestible and testable components to ensure the final
system performs as intended.

Eric Sutherland: I believe my most important
takeaway from this course was how to define a
problem and its system specifications. This proved
challenging as it was done in a bit of a rush at the
beginning of the course before knowing the extent of
the work needed to meet each specification. This
course also taught me how to truly work in a team,
finding each member’s strengths and weaknesses and
allowing each person to work to their strengths. Time
management became extremely important, especially
in the second half of the course when waiting for
PCB revisions. Allowing extra time for prototyping
and completing tests or debugging was crucial. If I
was going to do something differently I would have
had a better plan for the enclosure before choosing
specific components for the PCB. Different style
buttons and LED’s could have made that design more
seamless.

Shelby Anderson: Senior Design Project is the first
class experience I had that somewhat emulated what
a real engineering role will look like, working on the
same project for a year, if not more. One of my
biggest challenges, turned to a takeaway, was through
debugging. When you are working with such a large,
comprehensive system, different aspects are bound to
break or run into an edge case that causes the whole
system to crash. We initially found it very difficult,
and often times frustrating pinpointing the root of
many issues. However, debugging and problem
solving so often, taught me to maintain composure
and move slowly and with purpose. We began
changing one thing at a time, working together, and
found great success with this method. I also gained
valuable knowledge and experience within Java and
Application Development. Lastly, I really feel like I
was able to apply the knowledge gained in my
Security courses to not only formulate, but implement
a unique security approach curated to our system.
This project constantly had me thinking about how
attackers could hurt our system, along with ways to
combat that. This mindset is talked about within the
security curriculum, but I really think I developed the
mindset myself through this project, deliberately
trying to think in the same way as an attacker would,
in order to protect the integrity of our system.
Louis Gencarelli: Outside the classroom, this project

has taught me how to choose certain components and

modules based on strict system specifications. I've
learnt to read and navigate datasheets, as well as
program and wire various MCUs and sensors. A large
portion of the project was spent integrating all of the
subsystems and modules into one cohesive system.
This was more challenging than I anticipated at first
when the project was in its early phase. In addition, I
feel like I've learned a lot more about PCBs,
including how to design them and debug them when
a component fails to function properly. Lastly, this
course has greatly helped me enhance my debugging
and programming abilities in general with embedded
systems.

E. A. Author from Westborough, MA (e-mail:
edanderson@umass.edu).

S. A. Author from Wrentham, MA (e-mail:
shelbyanders@umass.edu).

L. A. Gencarelli from Westborough, MA (e-mail:
lgencarelli@umass.edu).

E. S. Author from Charlton, MA (e-mail:
epsutherland@umass.edu).

