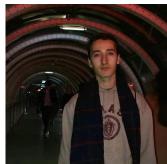
I.S.H.O.P.

Midway Design Review Presentation for Team 5



A. THE

Team Members

Edon Tuli EE

Rohan Sheridan EE

Shaun Ghosh CompE

Neil Wei

EΕ

Advisor Prof. Qiangfei Xia

Problem statement

In the past year the Covid-19 pandemic necessitated curbside pickup orders because individuals tried to avoid contact with the others. With the current online ordering system, there is still the need for employees to go and pick up the items in the store and hand them to the customer, which introduces more person to person contact. This also means that employees need to stop helping the customers in the store to grab online orders, which slows the process of moving inventory.

Current Goals

1. Create an autonomous collection system that efficiently traverses through a space, collecting items it is ordered to.

2. Create a digital interface that allows individuals to order desired items to be collected autonomously and prepared for pick up after collection.

3. Address unexpected obstacles in the environment

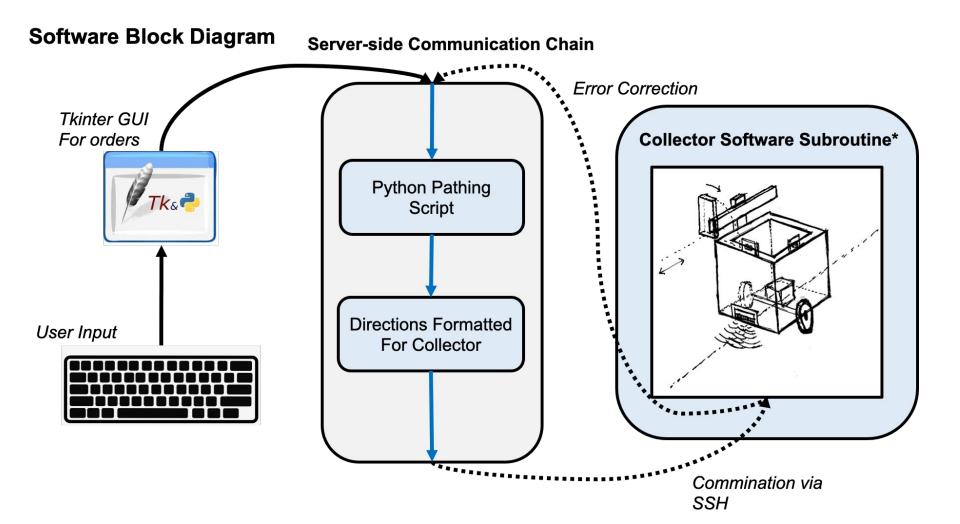
Specifications & Verification

Spec	Description	Verification type	Verification Description
1	Collector will be able get all items from space in 2 minutes or less	Demonstration	Place an order for all items in the space and time the collector from start to finish.
2	Collector will be able to hold a max load of 2lbs. in its internal storage	Demonstration	Place a 2lb. load in collector and have it traverse the guiding path.
3	Collector sensors will scan visual indicator on shelf to obtain nearby product information and update current location*	Demonstrative Test	Create a test program where the collector goes back and forth on the guiding path, stopping to scan the sensor below each item.
4	Collector can pull items off shelf into internal storage with a custom-made electromechanical arm	Demonstration	Show the collector pulling an item off of the shelf into its internal storage.
5	Collector will have 1 cubic foot of internal storage	Inspection	Take photos of internal storage with tape measures to show dimensions.

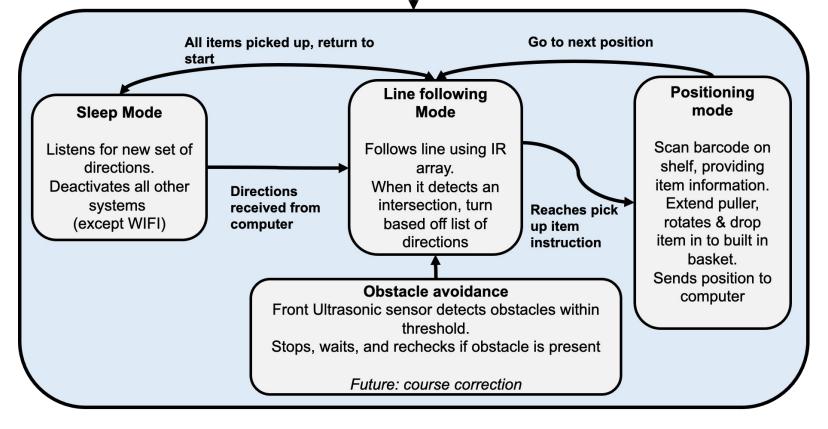
Specifications & Verification

Spec	Description	Verification type	Verification Description
6	Storage environment unit cell will contain 2 shelfs with 4 items on each shelf*	Inspection	Take a photo of the storage environment with stocked shelves to show the arrangement.
7	Guiding path for collector will allow collector to traverse back and forth on either side of shelf in addition to providing a connecting path to both sides.		Create a test program where the collector goes back and forth on one side of the guiding path, then cross over to other side a then goes back and forth on the other side.
8	There will be a designated start and stop location for collector	Demonstration	Place an order for the collector and show it start and stop at the designated location.
9	Individuals will be able communicate with collector wirelessly via a digital interface	Demonstrative Test	Show an individual placing an order on the digital interface and then the subsequent fulfilment of that order.
10	Collector will have sensors that allow for emergency stops when path is obstructed.	Demonstration	Place a cardboard box on the guiding path and then place an order that requires the obstructed path to be used. Then show the collector stoping before the obstruction.

New Specs


Spec	Description	Verification type	Verification Description
11	Collector will follow a guiding path and automatically make locomotive corrections when deviating from path.	Demonstration	Placed the collector so it is deviated from the path and allow it to automatically correct itself
12	Collector will initiate a turn at designated junction and will stop turning when guiding line is centered perpendicular to front of collector	Domonstration	When placing an order, the collector will turn at various designated junctions, demonstrating its ability to turn accurately.
13	The collector will stop in front of ordered items to initiate a collection sequence		After placing an order, collector will only stop at items it is ordered to

Battery Life


4s Lipo Battery	3300	mAh		
Equipment	Usage (mA)	Notes		
Raspberry Pi	1010			
IR sensors	100			
Ultrasonic	15			
		Used		
		intermittently,		
Servo	9	5% of a run		
Total Usage	1134	Running time:	2.91	Hours

Equipment	Usage (mA)	Notes		
		2 motors under		
		load, operating		
DC motors	1600	at 50% speed		
		used		
		intermittently,		
Stepper motor	35	10% of a run		
		negligible to		
drivers/converters	5	DC motors		
Total Usage	1640	Running time:	2.01	Hours

Hardware used

<u>Ultrasonic range finder</u>

- HC-SR04
- Atmega328P

<u>IR array</u>

• 5x TCRT5000 IR Sensors

Locomotion

- 2x L298N Motor Drivers
- 2x BRINGSMART DC Worm Gear Motor
- PLA Printed wheel

<u>MCU</u>

• Raspberry Pi 4B

Collector arm

- DRV8825 Stepper Motor Driver
- Servo Motor
- Stepper Motor
- PTG Printed arm

Power Delivery

- 2x 14.8 LIPO Batteries
- 4x MP1584EN buck convertors
 - 12 V step down (2x)
 - 5 V step down (2x)

<u>QR code Scanner</u>

• Pi Camera V2

Key Hardware - MCU

Raspberry PI

- Powerful
- Integrated wifi
- GPIO
- User friendly OS

Key Hardware - Sensors

Ultrasonic Sensor

- Experience with module
- Cheap and accessible
- Accuracy
- Form factor

IR Array

• Simplifies pathing problem for collector

Key Hardware - Locomotion

Motors

- High torque
- Worm gear
- High power
- Compact
- Easy mounting

Key Hardware: Arm

Stepper Motor

- Nema 17 Spec.
- Accurate positioning
- 200 steps/rev
- Sleep Mode

Servo

- HS-311 Spec
- 4.8-6V operation
- 3.5kg/cm torque
- Holds positioning

www.pololu.com

Software used

Programming IDE

- Microchip studio
- Thony
- Google Collab

Operating system

• Raspbian

Programming Languages

- Python
 - PI GPIO
- C
 - AVR Library

Communication

- Talescale
- VNC

Key Software - Languages

Python

- Object Oriented
- Team experience
- Easy Prototyping
- Compatible with Pi
- С
 - Fast
 - Embedded systems programming

Key Software - Packages

Pi GPIO

- Easy to use abstraction for programming Pi's GPIO
- Well documented

AVR Library

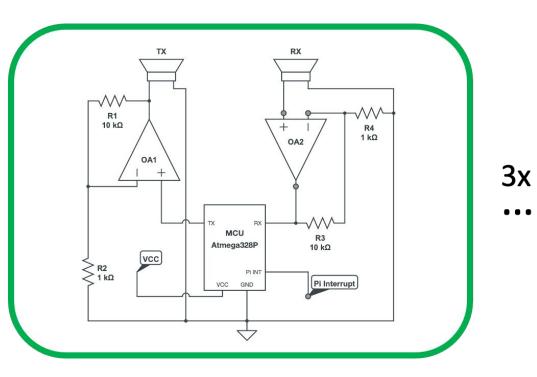
- Easy to use abstraction for programming Pi's GPIO
- Well documented

			pi@raspberrypi:	~/gpio_py	rthon_co	de	_ 0	×
File Edi	t Tabs	Help						
GNU na	10 2.2.	6	File: 9_p	ir.py			Modified	<u>^</u>
#!/usr/b	in/pyth	ont						
import R from tim								
GPI0.set GPI0.set								
GPI0_PIR								
print "P	IR Modu	le Test ((TRL-C to exit	-				
# Set pi GPI0.set		<mark>put</mark> _PIR,GPIO.	IN)					
Current_ Previous								
try:								
∧G Get H ∧X Exit	elp ^0 ^J	WriteOut Justify	<mark>^R</mark> Read File ∧₩ Where Is					

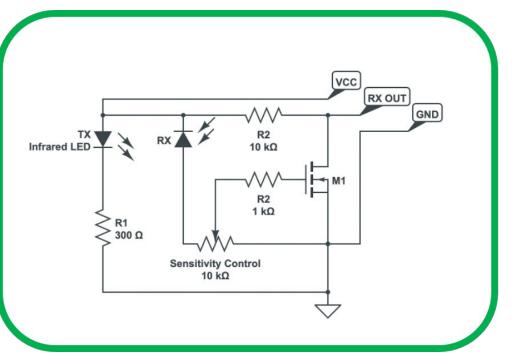
Key Software - Communication

VNC

- Remote Virtual desktop
- Allows for collector mobility
- Collaborative capabilities


TailScale

- Makes SSH with Pi on Eduroam possible
 - Provides new VPN IP for Pi

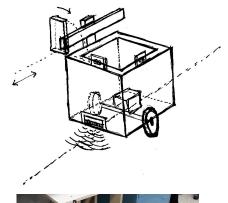

:: tailscale

Ultrasonic PCB

- Two non-inverting Op Amps (~20 dB Gain)
- Amplified Pulse sent to TX transducer
- Atmega listens for return pulse on RX
- TOF calculated on Atmega
 - If obstruction <20cm away, send interrupt

IR array PCB

Three main parts


- Transceiver Infrared LED
- Receiver
 Infrared LED

5X

 RX controlled MOSFET

MDR Deliverables

- 1. Navigation Subsystem
 - a. VInfrared Sensing of the line path
 - b. **V**Junction based direction change
- 2. Obstacle Avoidance Mechanism
 - a. VIIIrasonic sensing subsystem
 - b. VStop when obstacle detected
- 3. Client-Server Server-Robot Communication
 - a. Client sends order to the server
 - b. **V**XServer sends pre calculated path to robot
 - c. **V**Robot receives the path via wifi chip
- 4. Robot Physical Structure
 - a. **V**Collector Chassis
 - b. VArm and hand subsystem
 - c. Mobility drivers
- 5. System Software
 - a. Server Side path Computation
 - b. Microcontroller Operations

Cost analysis Current expenditures

Category	ltem	Name	Price	Cost
Line Following	Ir sensors	TCRT5000	\$8	\$8
system	Item scanner	Pi Camera	\$30	Free
Obstacle Avoidance	Ultrasonic	HC-SR04	\$12	Free
Networking/controlle	MCU	Raspberry Pi 4 Model B+	\$55	Free
r	Wifi Chip	ESP8266	\$7	\$7
	Motor driver	L298N 3PCS	\$8	\$8
	Battery	14.8V 2PCS	\$59	\$59
		12V DC Gear Motor -		
	Wheel motor	2PCS	\$60	\$60
		ALMOCN 6PCS Stepper		
	Servo	Motor Driver Module	\$12	\$12
		DC Voltage Converter		
	Voltage reg	Buck Converter	\$15	\$15
	Battery charger	Tenergy	\$33	\$33
	Plastic Material	PETG, 3D printer plastic	\$28	\$28
Physical	shelves, frame,			
	products, etc		\$20	Free
		Total Cost:	\$347	\$230
			\$270	

Cost analysis Future expenditures

Category	Item	Name	Price	Cost
РСВ	Design		\$80	\$80
	Shipping	-	\$30	\$30
		Total Cost:	\$110	\$110

Gantt Chart

Task	Team members	Winter Break	01/24/2022	01/31/2022	02/07/2022	02/14/2022	02/21/2022	02/28/2022
Hardware		Willer Dreak	01/24/2022	01/31/2022	02/01/2022	02/14/2022	02/21/2022	02/20/2022
Learn Altium	R,S,E & N							
Design and order PCBs	R,S,E & N							
Shelves	R & E							
Pi Camera	R,E & N							
Power Delivery Redesign	E,N & S							
Cumulative test	R,S,E & N							
Software								
Ultrasonic	R							
Pathfinding	S,E & N							
Order GUI	R							
Pi Camera	R,E & N							
Line Following	R,E & N							
Obstacle Avoidance	R & S							

Team Member Responsibilities

Edon Tuli

- Budget Management Lead
- Supporting Fabricator
- Pathing

Neil Wei

- PCB Design
- Locomotion Design
- 3D Printing/Fabricator

Rohan Sheridan

- Team Coordinator:
- On-Board Programming Lead
- Carpenter/Fabricator

Shaun Ghosh

- Software Lead
- Communication Systems
- Actuation Systems

Questions ?

Thank You!