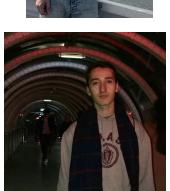
I.S.H.O.P.

Comprehensive Design Review Presentation for Team 5



C TRE

Team Members

Edon Tuli EE

Rohan Sheridan EE

Shaun Ghosh CompE

Neil Wei

EΕ

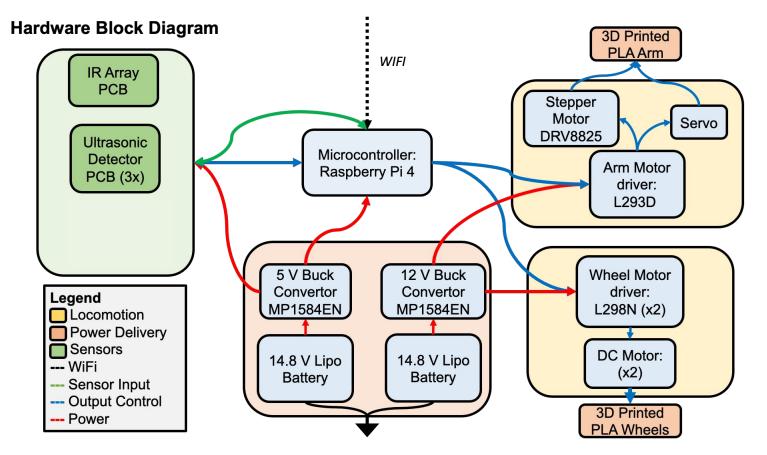
Advisor Prof. Qiangfei Xia

Problem statement

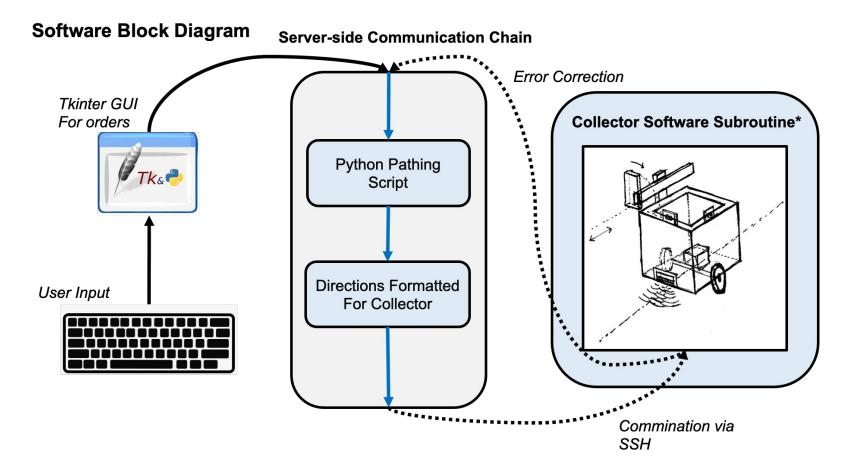
In the past year the Covid-19 pandemic necessitated curbside pickup orders because individuals tried to avoid contact with the others. With the current online ordering system, there is still the need for employees to go and pick up the items in the store and hand them to the customer, which introduces more person to person contact. This also means that employees need to stop helping the customers in the store to grab online orders, which slows the process of moving inventory.

Specifications & Verification

Spec	Description	Verification type	Verification Description
	Collector will be able get all items from space in 2 minutes or less	Demonstration Test	Place an order for all items in the space and time the collector from start to finish.
2	Collector will be able to hold a max load of 2lbs. in its internal storage	Demonstration	Place a 2lb. load in collector and have it traverse the guiding path.
3	Collector sensors will scan visual indicator on shelf to obtain nearby product information and update current location*	Demonstrative lest	Create a test program where the collector goes back and forth on the guiding path, stopping to scan the sensor below each item.
4	Collector can pull items off shelf into internal storage with a custom-made electromechanical arm	Demonstration	Show the collector pulling an item off of the shelf into its internal storage.
5	Collector will have 1 cubic foot of internal storage	Inspection	Take photos of internal storage with tape measures to show dimensions.

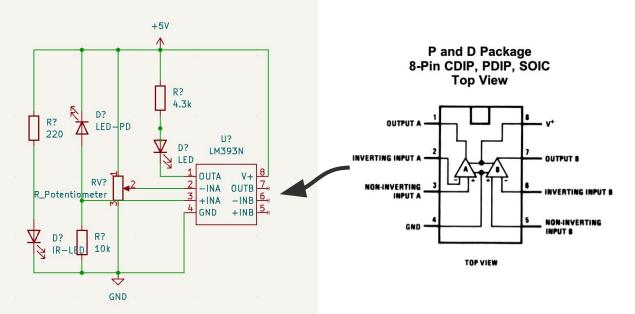

Specifications & Verification

Spec	Description	Verification type	Verification Description	
-	Storage environment unit cell will contain 2 shelfs with 4 items on each shelf*	Inspection	Take a photo of the storage environment with stocked shelves to show the arrangement.	
	Guiding path for collector will allow collector to traverse back and forth on either side of shelf in addition to providing 8a connecting path to both sides.		Create a test program where the collector goes back and forth on one side of the guiding path, then cross over to other side a then goes back and forth on the other side.	
8	There will be a designated start and stop location for collector	Demonstration	Place an order for the collector and show it start and stop at the designated location.	
	Individuals will be able communicate with collector wirelessly via a digital interface		Show an individual placing an order on the digital interface and then the subsequent fulfilment of that order.	
10	Collector will have sensors that allow for emergency stops when path is obstructed.	Demonstration	Place a cardboard box on the guiding path and then place an order that requires the obstructed path to be used. Then show the collector stoping before the obstruction.	

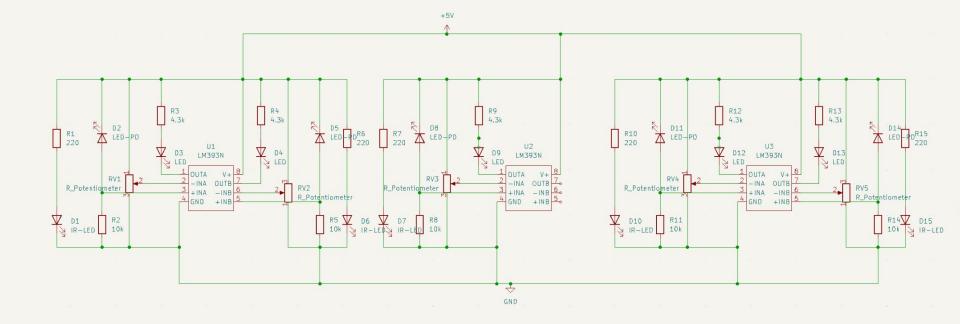

Specifications & Verification

Spec	Description	Verification type	Verification Description
11	Collector will follow a guiding path and automatically make locomotive corrections when deviating from path.	Demonstration	Placed the collector so it is deviated from the path and allow it to automatically correct itself
12	Collector will initiate a turn at designated junction and will stop turning when guiding line is centered perpendicular to front of collector	Demonstration	When placing an order, the collector will turn at various designated junctions, demonstrating its ability to turn accurately.
	The collector will stop in front of ordered items to initiate a collection sequence	Demonstration	After placing an order, collector will only stop at items it is ordered to

System Overview

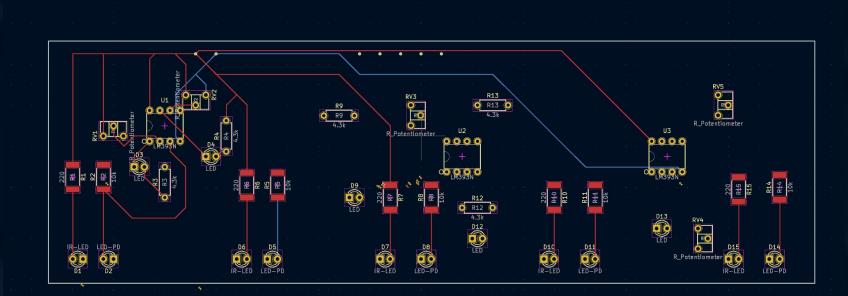


System Overview Continued



IR sensors

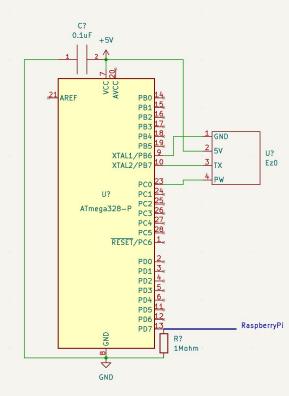
- LM393N
 - Comparator
- IR LEDs
 - Emitter
 - Receiver
- Potentiometer contro voltage reference



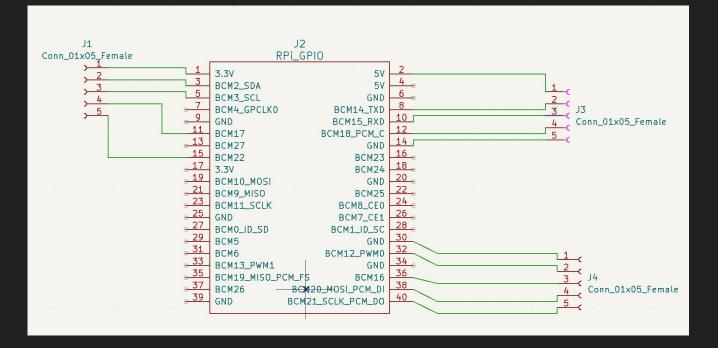
IR sensors - Schematic

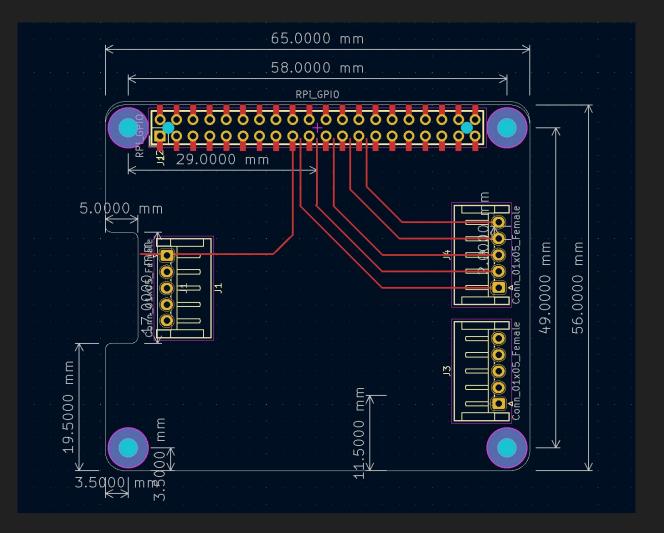
1.

IR sensors - Layout Board

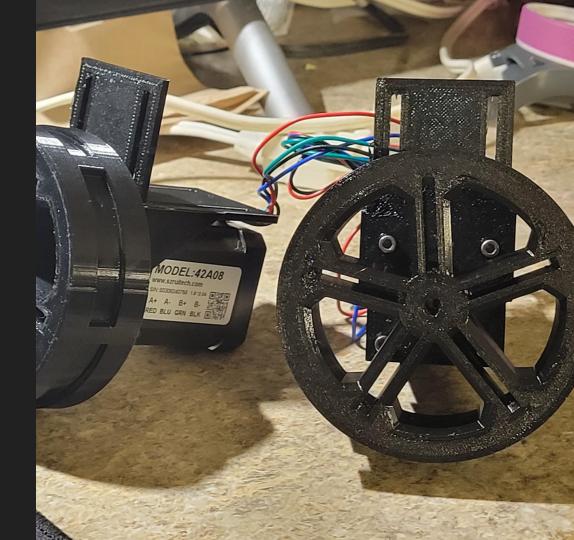


Ultrasonic Sensor


- MB1000, LV-MaxSonar-EZ0
- Atmega328P
- Interfacing with Raspberry Pi 4

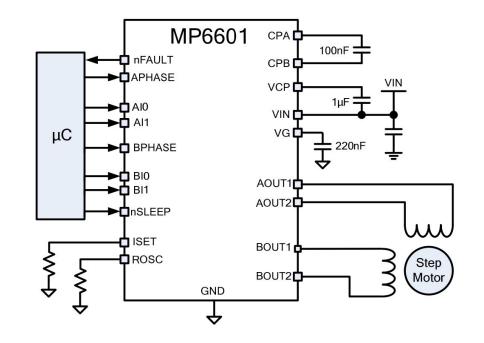


Raspberry Pi Hat Schematic



Pi Hat PCB*

Wheel Motors


- Stepper Motor on the Wheels
 - Accuracy and Control on rotation
 - 2.5A max Current
- Stronger
- Easier to mount
- Easier to change

Motor Drivers

Bipolar Stepper Motor Driver

- Current Control
- Enable/Fault Detection
- Power Control
- Phase Control

- 3.3V and 5V Compatible Logic Supply
- Step Modes from Full-Step to Quarter-Step
- 2.5A Output Current

Controlling Stepper Motors

Step	Aout1	Aout2	Bout1	Bout2	APhase	BPhase
1	1	0	1	0	1	1
2	0	1	1	0	0	1
3	0	1	0	1	0	0
4	1	0	0	1	1	0

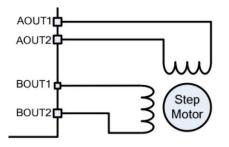
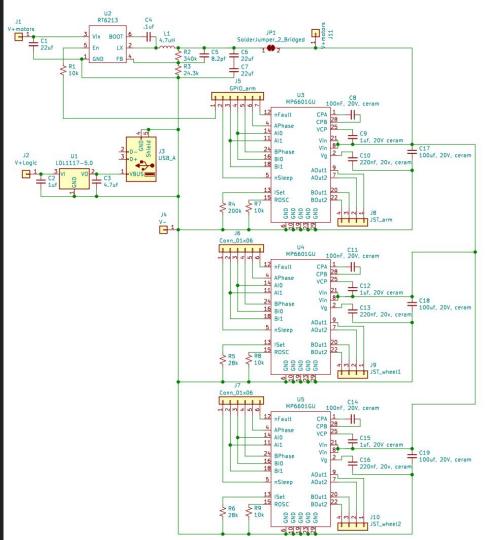
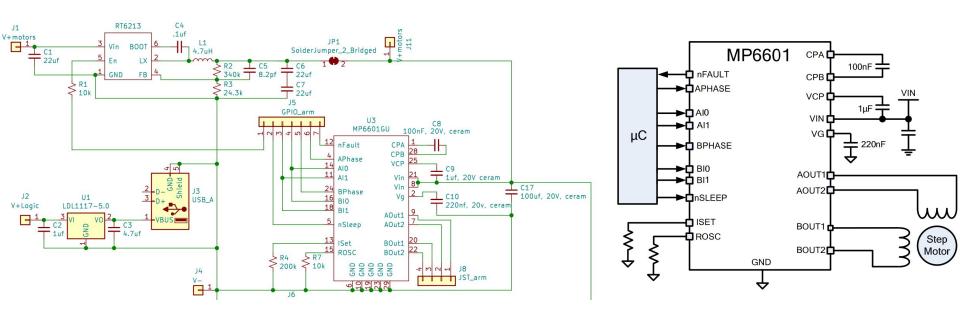


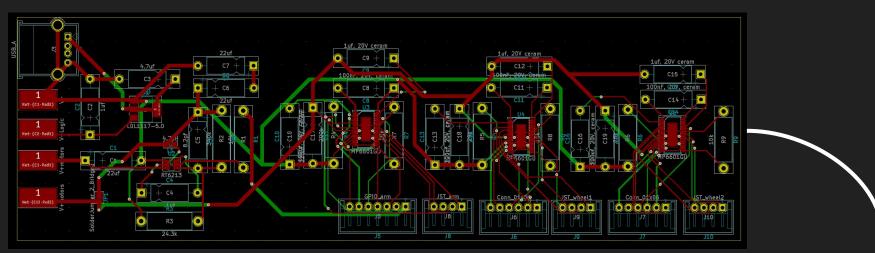
 Table 1: Input Control Truth Table

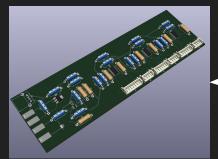

xPHASE	xOUT1	xOUT2		
0	L	Н		
1	Н	L		

```
def stepCW(ADIR, BDIR, steps):
    for i in range(0, steps):
        GPI0.output(ADIR, GPI0.HIGH)
        GPI0.output(BDIR, GPI0.HIGH)
        sleep(.05)
        GPI0.output(ADIR, GPI0.Low)
        sleep(.05)
        GPI0.output(BDIR, GPI0.Low)
        sleep(.05)
        GPI0.output(ADIR, GPI0.HIGH)
        sleep(.05)
        GPI0.output(ADIR, GPI0.HIGH)
        sleep(.05)
```


```
for i in range(0, steps):
    GPI0.output(ADIR, GPI0.HIGH)
    GPI0.output(BDIR, GPI0.HIGH)
    sleep(.05)
    GPI0.output(BDIR, GPI0.Low)
    sleep(.05)
    GPI0.output(ADIR, GPI0.Low)
    sleep(.05)
    GPI0.output(BDIR, GPI0.HIGH)
    sleep(.05)
```

PCB Schematic


- Modular
- Clean Power
- Access to control pins
- Alternative Motor source


PCB Schematic

Order once, Support future changes

THT: Easy to solder, Parts availability, Easy to configure, Easy to test

PCB Design

Order Has Not Arrived

TRACK: EXPRESS

Enter your tracking number	4630205672	Track
(i) Shipment is a	on hold	
March, 08 2022 18:30 Lo	cal time NEW YORK CITY GATEWAY, NY - USA	
This shipment is handled by: DHL Ex Tracking Code: 4630205672	press	
Tracking Code. 4650205672		
Estimated Delivery Date		
March, 14 2022 - E	y End of Day	
Further Detail		
The shipment has arrived at DHL fac	lity.	
Next Step	e next planned cycle. If you are the consignee a	nd would like to change your delivery
preference, please visit https://delive		and would like to change your derivery
Carries Anna CHENTURN CHIN	A MAINLAND 🍝 Service Area: WEST H	HARTFORD CT. UCA
Service Area: SHENZHEN - CHIN	A MAINLAND - Service Area: WEST I	HARTFORD, CT-USA
Shipment notifications 4	Print 🚔	
More Shipment Details		~
All Shipment Updates		

Cost analysis Current expenditures

Category	ltem	Name	Price	Cost
Line Following system	Ir sensors	TCRT5000	\$8	\$8
	Item scanner	Pi Camera	\$30	Free
Obsticle Avoidance	Ultrasonic	HC-SR04	\$12	Free
Networking/controller	MCU	Raspberry Pi 4 Model B+	\$55	Free
	Wifi Chip	ESP8266	\$7	\$7
	Stepper Motor	Motor Drivers	\$16	\$16
	Bipolar Step Motor	RTELLIGENT Nema	\$42	\$42
	Motor driver	L298N 3PCS	\$8	\$8
	Battery	14.8V 2PCS	\$59	\$59
	Wheel motor	12V DC Gear Motor - 2PCS	\$60	\$60
	Servo	ALMOCN 6PCS Stepper Motor Driver Module	\$12	\$12
	Voltage reg	DC Voltage Converter Buck Converter	\$15	\$15
	Battery charger	Tenergy	\$33	\$33
	Plastic Material	PETG, 3D printer plastic	\$28	\$28
Physical	Gaffer Tape		\$20	\$20
	shelves, frame, products, etc		\$20	Free
РСВ	Design		\$8	\$8
	Shipping	-	\$20	\$20
	\$453	\$336		
		\$164		

Gantt Chart

Task	Team members	03/14/2022	02/21/2022	02/29/2022	04/04/2022	04/11/2022	04/18/2022
Hardware		00/14/2022	00/21/2022	00/20/2022	04/04/2022	04/11/2022	04/10/2022
Design and build PCBs	R,S,E & N						
Shelves	R & E						
Power Delivery Redesign	E,N & S						
Cumulative test	R,S,E & N						
Upgrade wheels	Ν						
Chassis redesign	R,S,E & N						
Software							
Ultrasonic	R						
Pathfinding	S,E & N						
GUI	R						
Line Following	R,E & N						
Obstacle Avoidance	R & S						

FPR Plan

- Change prototypes with PCBs
- Upgrade wheels
- Modified Chassis
- GUI
- Website
- Optimization
 - Power
 - Algorithms

Team Member Responsibilities

Edon Tuli

- Budget Management Lead
- Supporting Fabricator
- Pathing

Neil Wei

- PCB Design
- Locomotion Design
- 3D Printing/Fabricator

Rohan Sheridan

- Team Coordinator:
- On-Board Programming Lead
- Carpenter/Fabricator

Shaun Ghosh

- Software Lead
- Communication Systems
- Actuation Systems

Questions ?