Final Project Review

TrueBase SDP 2021 Team 30

University of Massachusetts Amherst BEREVOLUTIONARY

Agenda

- Problem Statement
- System Specifications
- Documentation
- Custom PCB
- Final System Performance

Problem Statement

- Growing number of close-call plays nearly impossible to officiate by the naked eye
- Replay and review systems waste a lot of time human error should not be a part of the game
- What if the need for replay and review was eliminated?
- Even better, what if every close call that was made at first base was almost certainly correct?

Agenda

- Problem Statement
- System Specifications
- Documentation
- Custom PCB
- Final System Performance

System Specifications

- 35ms accuracy, 90% of the time enough for "bang-bang" plays
- 5+ hour battery life enough for extra-inning baseball games
- <150g wrist module weight as much as the average wristwatch
- System will not interfere with gameplay
- Meaningful and easily interpretable output

Agenda

- Problem Statement
- System Specifications
- Documentation
- Custom PCB
- Final System Performance

Hardware List

Base Module	Wrist Module
 1528-4542-ND 20kg load cells AD623Anz instrumentation amplifiers AD823Anz op-amps 	ADXL335 Accelerometer
 CC3220MODASF M MCP7831T 3.7V lithi 	CU um-ion battery charging IC

• LM1086CSX 3.3 V voltage regulator

Block Diagram

Block Diagram

Modules' Software Diagrams

Base Station's Software Diagram

Agenda

- Problem Statement
- System Specifications
- Documentation
- Custom PCB
- Final System Performance

Base PCB Altium Files

Base PCB

- Ability to connect via Launchpad board
- Able to run code on base PCB
- Successful output of data over network
- Added proto-board with pull-down resistor for N_RST
- No micro-USB port

Wrist PCB Altium Files

Wrist PCB

- Able to connect to the MCU
- Unable to program the flash memory

Agenda

- Problem Statement
- System Specifications
- Documentation
- Custom PCB
- Final System Performance

Final Prototype Demo

University of Massachusetts Amherst

"On-Field" Demo

Wrist Module Weight System Spec - Less than 150g

Battery Life System Spec - 5 hours

- Using an 1200 mAh lithium ion battery
- TrueBase base module uses:
 - ~45 mA when gathering ADC readings
 - ~88 mA when transmitting data over TCP
- Highest current draw observed 97 mA
- Lowest current draw observed 45 mA
- Worst case scenario more than 12 hours of battery life

Same Time Trigger Results

- 51/57 trials triggered in both within 35 ms of each other
- 6 millisecond sleep
 function within the code
- 89% of trials within 35 ms specification
- 95 percent confidence interval 63%, 100%

Same Time Trigger Results

Outlier Case 1

Outlier Data 1

Outlier Case 2

Outlier Data 2

Outlier Case 3

Outlier Data 3

Slow Motion Testing - 50 Trials

- Parameters measured:
 - Correct order of events
 - TrueBase estimated time between events
 - Slo-mo video estimated time between events (480 FPS)

Slow Motion Testing - 50 Trials

- Correctness 46/50 (92%)
- When slo-mo time between events is over 35ms:
 - 25/25 trials correct (95% confidence interval of 60%, 100%)
- When slo-mo time between events is under 35ms:
 21/25 trials correct (95% confidence interval of 44%, 100%)
- Of the 4 incorrect:
 - 1 wrong
 - 2 where TrueBase predicted the event at the same time
 - 1 where load cell was not pushed hard enough

Slow Motion Testing - Wrong Incorrect Trial

Slow Motion Testing - Load Cell Pushed Softly

Slow Motion Testing - TrueBase Same Time Prediction

- 2 instances
- Slo-mo estimated times of 6.5 ms and 12.5 ms

Difference between Slo-mo Predicted Time and TrueBase Predicted Time

Slo-mo Testing - Base Module Triggered Wrist Module

Future Directions

- More testing with the wrist module PCB
 - Possible Re-order
- More testing with the voltage regulator on the base module PCB
- New base module PCB with incorporated pull down setup for N_RST
- Make the base module completely unintrusive
- 15 ms beaconing
- More readings from the analog to digital converter
- Seamless zoom on graphed data

SDP'21 - FPR Wrap Up

- Project Cost: \$450
- Product Cost: \$80
- Team Website: <u>www.ecs.umass.edu/sdp/sdp21/team30</u>
- Thank you!

Questions?

Frick Approximation program in the second state and the second

Slow-Mo Trials: Video

PCB Powered on Battery

Difference between Slo-mo Predicted Time and TrueBase Predicted Time - Trials under 40ms

