
 1
SDP21 – TEAM 23

  

Abstract—As Covid-19 continues to shutdown or limit gyms 
many workout enthusiasts are turning to working out at home. 
Peloton and other internet connected stationary bicycles have 
seen huge success by allowing users to connect and workout with 
others virtually while tracking their workouts and progress. The 
problem with the currently available solutions is that they are 
expensive, difficult to move or transport, and cannot bring their 
experience to the outdoors. Our product, Let’s Ride, solves these 
problems by providing an inexpensive system that can be easily 
installed on a user’s own bike to communicate live ride data to an 
iOS app. Let’s Ride allows users to work out with others virtually 
either indoors on a stationary bike stand or outdoors on any 
terrain.  

I. INTRODUCTION 

Americans are looking for ways to remain active and 
healthy amongst the changes due to the COVID-19 

pandemic. According to the Washington Post, “Bicycle sales 
nationwide surged by 50 percent in March (2020), according 
to the NPD Group, a market research company. It reported a 
121 percent increase in adult leisure-bike sales…” [1]. 
Furthermore, a survey drawn from 1000 reports “nine in 10 
Americans who exercise regularly say they will continue with 
at-home workouts even after they feel comfortable returning 
to a gym in the future” [2]. These two statistics indicate there 
is a large market for new fitness products that are tailored to 
biking and workout enthusiasts 

A. Significance 
Americans are looking for ways to remain active and healthy 

amongst the changes due to the COVID-19 pandemic. 
According to the Washington Post, “Bicycle sales nationwide 
surged by 50 percent in March [2020], according to the NPD 
Group, a market research company. It reported a 121 percent 
increase in adult leisure-bike sales…” (Davies, 2020). 
Furthermore, a survey drawn from 1000 reports “nine in 10 
Americans who exercise regularly say they will continue with 
at-home workouts even after they feel comfortable returning 
to a gym in the future”(King, 2020). These two statistics 
indicate there is a large market for new fitness products that 
are tailored to biking and workout enthusiasts. 

B. Context and Competing Solutions in Marketplace 
There are several other products on the market that allow 

users to track their rides and there are many Internet-
connected stationary bikes available. Strava and other workout 
apps allow users to record their rides and compare stats with 
others. The ride tracking for these apps is done with the  

phone’s GPS and a maps API. Peloton and its derivatives 
track users performance on a stationary bike and connect with 
other workout groups and classes for live workouts. What 
makes our  product different is that it is the same system for 
both stationary stand biking and outdoor rides. Purely 
stationary bikes cannot do outdoor workouts and are large and 
hard to move, as well as expensive. Out product is much less 
expensive and can be installed onto a bike the user already 
owns, saving a considerate amount of space and is much easier 
to move.  

C. Societal Impacts 
Our users are biking enthusiasts who want a way to record 

their rides and have connected rides with friends or random 
players. It also includes general workout enthusiasts who want 
the stationary bike/Peloton/spin class experience in their own 
home but can’t use the competing solutions due to cost, space 
concerns, or wanting to be able to take the experience outside. 
One concern for us is safety for users in cities, where they may 
need to wait at lights during their ride but could be tempted to 
run through them or make unsafe decisions to get ahead in a 
ride. Besides this we believe our system will have no negative 
societal impact, it will serve to provide an alternative to the 
existing solutions that may not work for certain users. Our 
main focus is making a system that is easy to use and much 
cheaper than connected closed systems like Peloton. With 
standard Bluetooth communication and a simple and published 
messaging system anyone could create another app to access 
the bike data, preventing the Let’s Ride system from becoming 
e-waste if the official app and service were discontinued.  

D. System Requirements and Specifications 
For our rider’s experience we want the system to be 

frustration-free and easy to use. The system must be able to be 
set up by a user with little tool skills and bike repair skills in 
less than one hour. A major frustration for users with anything 
that uses Bluetooth are connection issues. When the user 
approaches the bike with attached system and starts a race the 
Bluetooth module should connect to the iPhone on the first 
attempt >90% of the time. Riders should not have to worry 
about rain or dust from the road destroying their system, so the 
completed system must be IP34 complaint. The entire system 
must weight less than 2 lbs and not interfere with the riders 
normal riding motion to keep users from getting annoyed with 
the physical system. 

The power system should keep the users from having to 
worry about whether their system will stay on for a long ride. 

Ali Abdel-Maksoud from Amherst, MA (e-mail: author@ boulder.nist.gov).  
Benjamin Ledoux, from Lowell, MA (e-mail: bledoux@umass.edu). 
Syed Ali, from Chelmsford, MA (email: smali@umass.edu) 
Xavier Farrell from Springfield, MA (e-mail: xfarrell@umass.edu).

Let’s Ride

Ali Abdel-Maksoud, EE, Benjamin Ledoux, CSE, Syed Ali, CSE, and Xavier Farrell, EE

mailto:smali@umass.edu
mailto:xfarrell@umass.edu


 2
SDP21 – TEAM 23

So the power system should be able to keep the system on for 
at least 8 hours, and provide usable electric power at speeds 
over 3.2 m/s (~ 7mph). For the system to be useful it must be 
accurate in its measurements. We define the accuracy 
requirements for our sensors system in Table 1. 

 Table 1: Requirements and Specifications 

Portable: Based on bicycle price ranges and target 
customer skill level, we assume our product consumers will 
own bicycles between the weights of 20 lbs (~9.1 kg) to 25 lbs 
(~11.4 kg) [3], [4]. For this bicycle weight range, our final 
system must not increase the unloaded bike weight by a 
maximum of 7%. The cumulative weight of the entire system 
is < 0.9 lbs and will increase an anticipated unloaded bicycle 
weight by < 5% satisfying this specification. The system is 
also mountable. The generator is mounted on the rear bike 
fork via clamps secured by screws. The PCB and battery are 
placed within an off-the-shelf electrical box and zip-tied to the 
underside of the bike seat. Wiring is zip tied to the frame of 
the bike. Specifications regarding size and shape are aimed at 
minimizing increased drag experienced when riding. 
Therefore, the system must not extend beyond the width of the 
bicycle’s saddle. This requires that the system width must be 
less than 4.7 if centered along the axis of the bicycle’s length 
[5], [6]. As a system that is not intended to contribute to the 
visual experience of the product, discretion is of value. This 
translates to size specifications that maximize discretion 
without prohibiting functionality. Therefore, the power system 
should not exceed 6 inches in height or length. Our system is 
placed within an off-the-shelf 4”x4”x4” electrical box, 
satisfying both requirements.

Safe: Electrical safety measures such as over-voltage 
protection and short circuit protection are implemented. The 
charge control circuit used for the lithium-ion battery is 
dependent on the sensed charge status of the battery which is 
broken into three regions: the over-voltage, nominal voltage 
and under-voltage region. If the battery voltage is in the 
nominal voltage region, power is allowed to flow from the 
generator to the battery and the load. If the battery voltage is 
in the over-voltage region, the electrical power from the 
generator is prohibited from flowing to the battery and load 
and the battery supplies power to the load. In both of these 
operating conditions, power can flow from the battery to the 
load. If the battery voltage is in the under-voltage region, the 

battery is electrically disconnected from the load and no power 
can flow to the load; therefore, the system will shut down. The 
primary functional safety measures are implementing robust 
mounting infrastructure such as metal clamps and zip-ties to 
prevent abrupt stopping events. The box is mounted 
underneath the seat which is above the rear wheel. It is 
advised that in mounting the box underneath the seat with zip-
ties, one side should have twice the zip-ties as the other. This 
has beneficial safety impacts in the event of a zip-tie failure, 
causing the box to swing toward the strong side and away 
from the rear wheel as opposed to falling directly onto the tire. 
It is advised that the strong side be opposite to the side where 
the gears are located. Lastly, under normal system operation, 
power system components near the rider within an enclosure 
with a durability rating of IP34 [7]. Therefore the rider is not 
exposed to the electrical components while they are under use. 
Furthermore, the enclosure does not have sharp edges and is 
mounted to the bike frame in a way that does not obstruct rider 
movement or bike functionality.

Functional Across Ride Variety: The battery size is able 
to supply power to the system under normal operating 
conditions for a minimum of 8 hours. The system is 
anticipated to be able to supply power for longer periods when 
the generator is operating under nominal conditions. Therefore 
the system is insensitive to various ride durations. The power 
system is able to supply usable power over the range of target 
consumer riding speeds at a minimum of 7 mph and upwards 
of 25 mph. Lastly, the system can supply usable power  in 
moderately wet conditions. 

Reusable: The wear item of this system is the rechargeable 
lithium-ion battery with its life expectancy quantified by the 
number of charge cycles before the effective energy capacity 
reduces to 80%. The equations below details the parameters 
used to estimate the number of workouts and full days of use 
our product will offer before replacing the first wear item. 

Assumptions
• Workouts are 30 minutes long  (2 workouts/hour) 
• 200 charge cycles (worst case estimate as compared 
to healthy battery use of 400-500 charge cycles) [8]. 

Using the parameters and assumptions defined above, the 
minimum estimated number of workouts offered by this 
product without buying new equipment is 20,000 workouts 
and 400+ full days of use. Therefore the system is reusable. 



 3
SDP21 – TEAM 23

II. DESIGN 

A.Overview 
Our design can be broken down into three distinct 

subsystems. The power system, the microcontroller and sensor 
system, and the iOS app with Google Firebase backend. 
Figure 1 shows our system block diagram. 

Figure 1:Block Diagram Describing our System.  

The microcontroller and sensor system uses the power from 
the power system. The ATmega328P and hall effect sensor run 
off the 5V rail and the BLE112A Bluetooth Low Energy [9] 
module and BMP388 barometric pressure sensor run off the 
3.3V rail. The ATmega328P controls the handlebar RGB LED 
via three pulse width modulation lines (labeled PWM in 
Figure 1). The hall effect sensor sends its output through a 
Schmitt trigger which then arrives at the ATmega328P in the 
form of a pulse train. On the rising edge of this pulse train an 
internal counter increases in the ATmega328P to count the 
amount of times a magnet on the wheel passes the hall effect 
sensor. 

The battery size will be able to supply power to the system 
under normal operating conditions for a minimum of 8 hours. 
The system is anticipated to be able to supply power for longer 
periods when the generator is operating under nominal 
conditions. Therefore the system is insensitive to various ride 
durations. The power system will be able to supply usable 
power over the range of target audience riding speeds at a 
minimum of 7 mph and upwards of 25 mph. The final design 
will detail power dissipation to internal heat generation and 
ensure temperatures do not induce system failure. Lastly, the 
system will include a slippage reduction component to 
increase friction between the generator and tire sidewall in 
moderately wet conditions.  

 Durability is achieved through the use of high quality 
materials and cushioning. The generator features metal 
encasing and mounting attachments increasing durability. The 
PCB and battery will be enclosed in a high quality off-the-
shelf biking pouch designed to secure phones and other 
possessions.  

 The power system utilizes a rechargeable lithium-ion 
battery. The generator and IC components are purchased and/
or designed with the intent of reusability. The final system has 
an off site charger that can be used to recharge batteries 
overnight. These components have a lifespan that allows for 
multiple ride experiences and therefore the system is reusable.  

 The iOS app communicates with the Bluetooth module 
through Apple’s Core Bluetooth Library [10]. This library is 
the only official way for iOS devices to utilize Bluetooth 
peripherals. Player sign in, matchmaking, and the live game 
are all handled by Apple’s GameKit service. [11] Sign in is 
done with the Apple GameCenter account so users do not have 
to create a new account. GameKit utilizes Apple’s servers to 
do matchmaking and invite other riders, as well as send data to 
all other riders in a race. User data and race history is stored in 
Google’s Firebase database service. The iOS app is 
programmed in Apple’s own Swift programming language 
which is based on Objective-C. None of us knew Swift or UI 
Design with the Xcode IDE so we had to read a lot of 
documentation and go through multiple tutorials provided by 
Apple. 

B. Power System 
The power system used in our project consists of a 

generation source, power electronics for conditioning power 
flow and an energy storage device. The generation source is a 
sidewall bicycle dynamo that outputs AC power and is 
referred to as the generator. The generator converts rotational 
energy from the rotating bike tire during a ride to electrical 
power. A bridge rectifier and capacitor is used to convert the 
AC output to a DC input and a zener diode is used for over-
voltage protection to prevent damage to the following buck 
converter. The DC input is stepped down by a buck converter 
and used to charge the battery through an over-voltage 
protection circuit. The battery is a 4.2V lithium-ion 18650 
battery cell. A boost converter raises the output of the battery 
to a voltage within the input voltage range of the load.  

C.Microcontroller 
We are using the ATmega328P microcontroller [12] with 

firmware written in C++. Our microcontroller reads in data 
from our two sensors and messages from the bluetooth 
module, and from this input data decides how to control the 
handlebar mounted LED and what message to send back to the 
bluetooth module. Designing this block involved reading the 
data sheet for the ATmega328P to learn how to utilize different 
features on the board and communicate with the other parts of 
our system. The microcontroller receives and sends data to the 
Bluetooth module using a serial UART connection. To read 
data from the Bluetooth module the microcontroller pops the 
next available byte from the UART FIFO and decides what to 
do next based on the value of that byte. To send data to the 
Bluetooth module the microcontroller we write a string to the 
serial connection. The microcontroller uses I2C protocol to 
communicate with the BMP388 altitude sensor, the 
microcontroller sends a read request to the sensor and adds the 
float value returned to the message to go to the Bluetooth 
module. To read in the distance traveled data we set the 
internal 16-bit TCNT1 counter on the ATmega328p to 
increment on the rising edge of the PD5 pin. When a magnet 
passes the hall effect sensor the signal from the hall effect 
goes high. We have a Schmitt trigger between the 
microcontroller and the hall effect sensor to convert the output 
of the hall effect into a digital signal. We used the Microchip 
Studio IDE and an Atmel ICE to develop, load, test and debug 
the firmware. 



 4
SDP21 – TEAM 23

D. Sensors 
 For the sensing system we used two main sensors to 

gather all required information, a hall effect sensor and a 
barometric pressure sensor (BMP388). The hall effect sensor 
is able to sense magnetic fields as they pass by its sensing 
area. We took advantage of this effect to measure the distance 
traveled on the bike. We did this by clipping six neodymium 
magnets equidistant from each other on the outer end of the 
spokes. This helped us achieve the initial goal of being ∓0.6m 
of desired accuracy. Since the circumference of the wheel was 
known, as one magnet went by a certain distance was traveled 
and we were able to calculate the overall distance traveled that 
way. We used the SPI protocol to communicate with the sensor 
[13]. 

The BMP 388 was used to measure the change in 
elevation. The change in elevation was used as a form of 
subjective rewarding system to those who decide to bike on 
incline surfaces rather than just a straight line. The BMP 388 
was able to measure the air pressure and the temperature and 
from that it was able to output the local elevation. We used 
I2C protocol to communicate with this sensor [14].

E. Bluetooth Module 
To enable Bluetooth connectivity we are using the Silicon 

Labs BLE-112A-V1 module which utilizes the Bluetooth Low 
Energy standard [15]. This modules includes its own antennae. 
To implement the Bluetooth module we had to learn about the 
Bluetooth 4.0 standard, GATT profiles, and Bluetooth services 
and characteristics. We chose the Bluetooth Low Energy (also 
known as Bluetooth 4.0) protocol because it is the protocol 
that iOS supports for apps to use for connecting to peripheral 
devices (on iOS Bluetooth Classic 2.0 can only be used for 
headphones and speakers). The Bluetooth modules 
communicates with the board through a serial UART 
connection. To test the Bluetooth module we started with 
communicating with a Bluetooth serial terminal on an Android 
phone, and then moved to using an iOS app we developed to 
use as a test bench for the Bluetooth communication between 
the iPhone and the Bluetooth module. Once the Bluetooth 
communication code was functional and tested we integrated 
it into the main iOS app and did additional testing. 

F. Let’s Ride iOS App and Data 
 Our app design is mainly predicated on using developer 

API’s provided by apple, called GameKit, and along with that 
our cloud infrastructure was supported by Google Firebase.  
Our app design was split into 5 main Views, also called 
ViewControllers in Xcode. These consisted of: 

1. SignUpViewController 
2. HomeScreenViewController 
3. ReadyUpViewController 
4. GameViewController 
5. EndGameViewController 

We also designed a gameKitHelper singleton class which 
implemented the necessary methods for communication 
between the ViewControllers and Apple’s gameKit API. We 
will discuss this helper class more towards the end but first 
let’s explore the design and functionality of the 
ViewControllers. 

SignUpViewController is the view that users see when they 
first open the app for the first time. 

Figure 2: iOS app start screens 

First time opening app: If users are not signed into their 
Game Center account on their IOS device they are first asked 
to either log in or sign up for one as it is necessary for 
matchmaking (Figure 2), we will be doing later in the app. 
Once logged into their Game Center, the app will 
automatically take the credentials provided by Game Center 
and create a user account in firebase authentication. This only 
gets done once, the first time the user opens the app. Once that 
is done users are asked to enter the number of magnets on 
their bike, the diameter of their bike tire in inches, their rider 
Weight (optional), and lastly their skill level (Beginner, 
Intermediate, Advanced) (Figure 2). Once users hit sign up 
this information is uploaded the firebase Firestore database 
and assigned to the users UUID that Game Center provides. 
This data is later retrieved automatically from the database 
every time the user opens the app and stored in a bike data 
struct. 

Figure 3: Ride invite process 



 5
SDP21 – TEAM 23

Opening the App after signup: Once users have all the 
information entered the screen the proceeding time, they open 
the app, once game center authenticates with its servers and 
passes the authentication to firebase where the bike data is 
retrieved this screen automatically will transition to the 
HomeScreenViewController. So, users will have no need to 
keep entering their information. 

HomeScreenViewController: This view represents how 
riders can start a match with other users and can configure 
what type of match they would like to start. 

As shown in Figure 3 users are asked how many people, 
they would like to ride with in real time along with the length 
of race they would like. As users scroll through the value the 
text fields above them changes to indicate the number of riders 
they want to ride with and the length of race. Once “Lets Start 
a Ride Event” is pressed, users are shown a matchmaking 
screen (Figure 3). Here they will see the number of users they 
selected to be in the race along with an ADD button next to 
each player. This lets users invite their friends through a 
iMessage invite link that is sent (Figure 3) and also as a push 
notification to the users IOS device alerting them that their 
friend wants to play. Once this invite link is clicked it 
automatically opens the app, authenticates the user, and puts 
them directly in the matchmaking screen shown in figure 4 
along with the other users in the game. However, if the user 
wants to play with any stranger looking to ride with, instead of 
adding a user they can just press start Game and they will be 
automatically paired with other users with similar skill levels, 
race type, and number of users. Once matchmaking is 
complete the users are transitioned to the 
readyUpViewController. 

Figure 4: ReadyUpViewController - ride countdown progress 

ReadyUpViewController: This view occurs after all users 
have been put into the match and allows each to ready up 
before starting the ride. 

As shown in Figure 4, the users first see this view which 
asks them to press “Ready to Ride!” button. Once this button 
is pressed, they get a message saying, “Waiting for Other 
Players to ready up” and the Ready to Ride! Button is greyed 
out so users cannot force start the game (Figure 4). Once all 
users have pressed “ready to Ride!”, a 5 second countdown 
timer start alerting the users that the ride is starting. This 
countdown gets decremented every second so users visually 
know how much time is left before the ride starts. Once the 
countdown ends users are transitioned to the 
GameViewController. 

GameViewController: This view is the main match view 
and shows real time data between the user and other riders. 

As shown in Figure 5, once the match starts users can see a 
countdown timer for the time remaining in the match along 
with their current score that is updated continuously as soon as 
it is received through Bluetooth. We also get the score for the 
opponent that has the highest score so that you know exactly 
how far you’re either from first place or how far the closest 
rider is to you if you are in first place. Once the timer has 
reached 0, the match is over and the EndGameViewController 
is shown to the user with the match statistics.    

Figure 5: Live game view 

  
Figure 6: End game view 

EndGameViewController:  This view shows the match 
statistics after the match is over and provides a way to get 
back onto the home-screen. 

As shown in Figure 6, the user is displayed a custom 
message based on whether they won or lost, as well as their 
game score, distance they traveled in miles, altitude climbed 
during the ride, their position, and the username of the player 
with the highest score. If you lost the match, you are shown 
the same information as when you win but a custom message 
tells you “you lost this one” along with the highest score of the 
user who won. All this data is also processed and uploaded to 
FireBase Firestore database. The “Back to Home” button takes 
you back to the home-screen. 

GameKitHelper class: This class represents the main 
communication between Apple’s Game Center servers and the 
rest of the view controllers. This was designed to be a 



 6
SDP21 – TEAM 23

singleton so that all views could access and write and read 
from the class without instantiating a new class. The main 
purpose of this class is to  

1. Access game center matchmaking 
2. Communicating game data between users 
3. Handling invites (sending and receiving) 

It does this through what swift language calls delegates. 
Delegation is a design pattern that enables a class or structure 
to hand off (or delegate) some of its responsibilities to an 
instance of another type. In our GameKitHelper class we 
inherit different delegates that are invoked by the game center 
servers when a certain specified action occurs. Our 
gameKitHelper specifically extends 
GKMatchmakerViewControllerDelegate, GKMatchDelegate, 
and lastly GKLocalPlayerListener. The 
GKMatchmakerViewControler delegate has us implement 
methods that relate to the matchmaking aspect of creating a 
match. The delegate of a GKMatchmakerViewController 
object implements this protocol to handle when players accept 
invitations, the player cancels matchmaking, or an error 
occurs. Once matchmaking is done it creates a match object. 
This receives connection status and data transmitted in a 
multiplayer game via the GKMatchDelegate. Lastly, the 
GKLocalPlayerListener protocol is used to listen for and 
handle a variety of Game Center events for the local player 
such as the GKInviteEventListener which is what we use to 
handle invites to matches. 

VI. THE REFINED PROTOTYPE 

A.   Prototype Overview 

Figure 7: Refined prototype mounted on bike 

Our refined prototype sits inside a weather proof enclosure 
as seen in Figure 7. It is mounted underneath the seat of the 
bike and then the hall effect sensor comes out as a wire and is 
mounted on a the bar next to the wheel. Magnets adhered to 
clips go on the spokes of the wheel lining up with the hall 
effect. The bike dynamo connects at the top of the wheel and 
its connected to the leads from the system. The RGB LED is 
connected to the system and mounts on the handlebars. 

B.  List of Hardware and Software Used 
Software used: 

• Apple’s Xcode IDE 
• Microchip Studio IDE 
• Swift, C++ programming languages 
• Google Firebase 
• Apple GameKit 

Hardware used: 
• ATmega328P microcontroller 
• Bosch BMP388 Barometric Pressure and Altimeter 
• Silicon Labs BLE112A Bluetooth Low Energy Module 

with Antenna 
• Tung Lin 4 Pole Bike Dynamo 
• LM2596 Buck Converter 
• 8205A Chenbo Battery Charging Board 
• TPS63060 Boost Converter 
• KBP2005G Full Bridge Rectifier 
• Zener Diode 24V 5W 
• EBL 18650 Li-Ion Battery 

C.   Custom Hardware 
The custom PCB layout shown in Figure 8 contains all the 

ICs for the power system as well as the ICs for the data 
collection and communication system as well as the BMP 388. 
From top left to top right it goes bridge rectifier, buck 
converter, a PMOS followed by NMOS and slightly below 
them is the voltage protector. To the right of that stage is the 
boost converter. In Between them is an assortment of 
capacitors, inductors, and resistors. The middle and bottom of 
the board is populated with the bluetooth controller on the far 
mid right and directly below it is the ATmega328p. Below the 
ATmega328p to its farthest right is the BMP388. There are pin 
headers that lead to the Hall effect as well as ones that lead to 
the battery and the dynamo.  

Figure 8: PCB Layout 

D.   Prototype Functionality 
 Our refined prototype at FPR was able to be mounted 

easily to stationary and moving bikes, and came in a robust 
and weatherproof enclosure. The system was able to be 
powered by the battery for extended periods of time and riding 
the bike with the dynamo attached resulted in charging the 
battery. The hall effect sensor collects data from counting the 
amount of magnets passing the sensor detected. The altitude 
sensor reports an altitude but it is stuck at a single altitude 
currently. The microcontroller is able to package this data and 
reliably send it via Bluetooth to the iOS app. The iOS app is 



 7
SDP21 – TEAM 23

able to process these messages, and update scores during the 
game. The iOS app also allows for users to sign in with their 
Apple GameCenter account and authenticate with FireBase to 
download their user settings. Users can then start races and 
either invite their friends or be automatically matched up with 
a stranger that is looking for the same type of race. The app 
sends data in real time to the other riders in the race and sends 
messages to the microcontroller via Bluetooth on how to 
update the handlebar status LED on the bike. The app also 
uploads the match data to firebase after the match is 
completed. 

E.  Prototype Performance 
 At FPR we were able to reach ~87% accuracy of 

counting bike wheel rotations with the hall effect sensor. Our 
tests were slightly undercounting the amount of magnets 
passing the hall effect sensor. Our altitude sensor stopped 
reporting any change in altitude after transitioning to the 
soldered protoboards. Our Bluetooth module was able to 
automatically connect to the app  94% of the time, and when 
not automatically connected would connect the next time after 
toggling power to the system. The RGB LED would change 
within 2 seconds of a place change coming into the local iOS 
app.  

 A timed installation of the system took 22 minutes to 
complete, and the system did not interfere with the rider’s 
motions when biking. The system was able to function after 
being left in the rain for 4 hours. 

 The iOS app ran reliably over cellular data and WiFi 
connections. When losing connections the app would continue 
to connect data from the microcontroller, and send the newest 
data once reconnected to the internet. When the Bluetooth lost 
connection the microcontroller would continue to read in data, 
and then send the latest data once the iOS app was able to 
reconnect with the Bluetooth module. 

 The app supported up to 5 riders in a single ride. 

VII. CONCLUSION 
At MDR we were slightly behind our goals, with the 

microcontroller not being able to communicate with an iOS 
app yet. We were also short on the matchmaking deliverable. 
At CDR we were able to meet all of our deliverables and 
present a fully integrated and usable system that was on 
breadboards. We had the blank PCB available for our first 
revision, however another revision was needed after CDR to 
fix missing address select and mode select lines to our altitude 
sensor. The altitude sensor pads site below the device and are 
extremely small, so another revision was necessary as trying 
to modify the board manually would be very difficult. We 
were able to get part of the board working but we had problem 
getting a switch on the voltage protector to activate so we 
couldn’t supply power to the system. For FPR we had to settle 
for using soldered protoboards in our system. When 
transitioning to the protoboards we started having problems 
with our altitude sensors, where they would only give us a 
constant altitude and not change. Our app and microcontroller 
system worked as planned for FPR, and we were able to use 
the system on both stationary bikes and on road rides. 

ACKNOWLEDGMENT 
We would like to thank our project advisor Professor Soules 

for helping us through this project, and Professor Epstein for 
helping us gather materials and solder our PCB. We would 
also like to thank our project evaluators Professor Kundu and 
Professor Janaswamy. 

REFERENCES 

[1] E. Davies, “What Do Bikes and Toilet Paper Have in  
      Common? Both Are Flying out of Stores amid the  
      Coronavirus Pandemic.” The Washington Post, WP  
      Company, 28 May 2020, [Online]  
      www.washingtonpost.com/local/what-do-bikes-and- 
      toilet- 
      paper-have-in-common-both-are-flying-out-of-stores- 
      amid-the-coronavirus-pandemic/2020/05/14/ 
      c58d44f6-9554-11ea-82b4-c8db161ff6e5_story.html.  
     [Accessed May 3, 2021] 

[2] R. King, “Most Americans Plan to Continue at-Home  
     Workouts Even Once Gyms Fully Reopen.” Fortune,  
      Fortune, 17 Aug. 2020, [Online] fortune.com/ 
      2020/08/17/ 
      covid-workouts-at-home-gyms-reopening-coronavirus- 
      fitness/. [Accessed May 3, 2021]

[3] B. Lin, “How Much Should You Spend on Your First  
      Bike?” The Pro's Closet, 24 Sept. 2019, [Online]  
      www.theproscloset.com/blogs/news/how-much-should- 
      you-spend-on-a-bike. [Accessed May 3, 2021]

[4] T. Whitehouse, “How Much Should a Road Bike  
     Weigh?”  
     Road Bike Basics, 5 Jan. 2021, [Online]  
     roadbikebasics.com/how-much-road-bikes-weigh/.  
     [Accessed May 3, 2021]

[5] BikeFit. “Sit Bones Width Measurement and Bike  
      Saddle  
      Selection.” BikeFit, 16 June 2020, [Online]  
      blog.bikefit.com/sit-bones-width-measurement-and- 
      bike- 
      saddle-selection/. [Accessed May 3, 2021] 

[6] Bikinguniverse. “How to Measure Your Sit Bones –  
      Bike  
      Saddle Size &amp; Fit.” Bikinguniverse, 14 Oct. 2019,  
      [Online] www.bikinguniverse.com/measure-sit-bones- 
      bike-saddle/.  [Accessed May 3, 2021] 

[7] IEC 60529, “degrees of Protection Provided by  
      Enclosures  
      (IP Codes),” Ed. 2.1 (Geneva: International  
      Electrotechnical Commision, 2011), [Online] https:// 
      www.iec.ch/ip-ratings [Accessed May 3, 2021] 

[8] I. Buchmann, “BU-808: How to Prolong Lithium- 
     Based  
     Batteries.” Battery University, 29 Jan 2016, [Online]  
     batteryuniversity.com/learn/article/ 

http://www.bikinguniverse.com/measure-sit-bones-


 8
SDP21 – TEAM 23

     how_to_prolong_lithium_based_batteries. [Accessed  
     May  
     3, 2021] 

[9] BLE112A-V1, Data Sheet, Silabs, https:// 
      www.mouser.com/pdfdocs/BST-BMP388- 
      DS001-01.pdf 

[10]  Developer.apple.com. 2021. Apple Developer    
        Documentation. [Online] https://developer.apple.com/   
        documentation/corebluetooth  

[11] Developer.apple.com. 2021. Apple Developer   
        Documentation. [Online] https://developer.apple.com/  
        documentation/corebluetooth  

[12] ATmega328p, Data Sheet, Microchip, https:// 
       ww1.microchip.com/downloads/en/DeviceDoc/ 
       Atmel-7810-Automotive-Microcontrollers- 
       ATmega328P_Datasheet.pdf 

[13] Unipolar Hall Switch, Data Sheet, Melexis, https:// 
        cdn-  
        shop.adafruit.com/datasheets/US5881_rev007.pdf

[14] BMP 388, Data Sheet, Mouser, https:// 
       www.mouser.com/.    
       pdfdocs/BST-BMP388-DS001-01.pdf 

[15] Bluetooth® Technology Website. 2021. Core   
        Specification 4.0 | Bluetooth® Technology Website.  
        [Online] https://www.bluetooth.com/specifications/ 
        specs/ 
        core-specification/ 
  



 9
SDP21 – TEAM 23

APPENDIX 

A.Design Alternatives 
A different approach for this type of product could be to just 

use the GPS available on smartphones and a maps API to get 
distance and altitude change data over the course of a race and 
not bother with a physical system. While this would be 
cheaper up front maps APIs can become expensive and also 
lack the ability to be used on a stationary bike stand. Maps 
APIs also do not have the data to find more exact altitudes. 
For example, someone biking up a bridge on a bike path that 
goes above a highway will not have that reflected in their 
immediate scoring the way someone with our system would. 

We had also considered different ways for alerting the users 
of their progress in the race/workout. We brainstormed 
mounting the phone itself to the handlebar and having the user 
see their  

The power system also went through many revisions over 
time with different levels of features. Eventually we reached 
the simplified design in the final product. 

B.Technical Standards 
 The Bluetooth standard used is maintained by Bluetooth 

Special Interest Group and is called the Bluetooth Core 
Specification 4.0, and our module specifically uses the 
Bluetooth Low Energy protocol from this specification. 
Bluetooth used to be maintained by IEEE but is now 
exclusively maintained by Bluetooth SIG. 

 The Swift programming language is a standard 
maintained by Apple. It is used for developing applications for 
iOS and macOS. Swift was used to develop the iOS app. 

 ANSI C++ was used to program the ATmega328P 
microcontroller. This is IEEE standard 60599. 

  

C.Testing Methods 
To test the Bluetooth connection between the 

microcontroller and the iOS app we tested initial connection to 
the board by turning the system off then back on multiple 
times and approaching the system with the iPhone and 
checking for a connection.We will also tested moving away 
from the system while running and testing reconnection. Live 
rides were tested  for disconnections via checking the iOS app 
log files for missing or corrupt messages. 

 Extensive testing was be conducted to ensure the system 
is ride variation insensitive. We have tested the system to 
acquire the minimum speed for which the generator produces 
usable power from rotation. The indications of proper 
operation of the system was the LED being fully lit on the 
appropriate PCBAs. The components used are as follows:

• Measurement: tachometer to extract the linear speed 
from rotational speed 
• Rotation Actuator: Drill to rapidly rotate the 
generator head 
• Generator: Bike dynamo to convert rotational 
energy to 

 For testing the sensor system we stationed the wheel and 
spun it for 10 full rotations. We then compared the received 
count through the app to the expected count (which was 60, 10 
rotations and 6 magnets per rotations). We repeated that test 10 
times and got a range of 50-55 detected out of the 60 expected. 
This led to us being able to record distance with a minimum 

accuracy of 83.3% and a max of 91.6%. We didn't get a 
chance to test the BMP388 in the final system due to shortage 
of time for FPR. However, our initial testing that was done for 
MDR did prove that its accuracy of recording the change in 
altitude being with in ∓0.5m was indeed correct. We had a 
meter stick and as we rose in elevation it changed 
accordingly.  

 Much of the testing for the app was done manually as a 
lot of the backend (such as game center communication) is 
already handled by Apple. Each View Controller was tested 
with common cases that the users would perform. We also 
performed testing for matchmaking with multiple users along 
with how communication is handled between all users. Since 
most of the backend is handled by apple’s servers, we did not 
need to write code for unit testing rather we did that part 
manually as specified. 

D.Project Expenditures 
The price per blank PCB with shipping from JLCPCB 

comes out to $3.23 per board. Our bill of materials per unit 
from Digikey was $62.57. 

Our costs for prototyping materials we bought totaled 
$143.57, however we did use many parts from M5 which 
helped keep out project expenditure low. 

E.Project Management 
Xavier was the Team Coordinator, Syed was the Team 

Secretary, Benjamin was the Team Treasurer, and Ali was the 
Altium Lead. Xavier specializes in power systems, Benjamin 
specializes in system software design and verification/testing 
and systems engineering. Syed specializes in backend systems. 
Ali specializes in sensor systems. The specialties lined up 
nicely with the different subsystems of our project, and 
allowed for a very neat organization of work which made the 
transition to mostly online work much easier. We broke our 
project down into modular parts so each member could work 
mainly on our own system and integrate them with little issue, 
which we succeeded in when bringing the integrated system 
together. 

F.Beyond the Classroom 
Benjamin - I was the treasurer for this team and in charge of 

the microcontroller and Bluetooth communication. I also 
worked on the iOS app and assisted with the PCB design. The 
most important skill I worked on during this project was time 
management when there is few exact deadlines and the 
problem and planning was mainly up to me. While SDP did 
have some due dates, it was mostly up to me on how to use my 
time and break the project into pieces and assign priorities. 
Working remotely with a team was also useful experience. 
Doing my own research and reading many different data 
sheets to find the best options for our project and comparing 
options was also a useful skill to practice. These are all skills I 
would know will be very useful in my professional career. 

Xavier - A key skill that I developed through this design 
project was the ability to communicate challenges as they 
affect product timeline. At the start of the spring semester, I 
was displaced from my home and have been displaced for its 
entirety. This caused several unforeseen challenges with 
accessing campus, designing and building a prototype. 



 10
SDP21 – TEAM 23

Although it was challenging, I informed my advisor of the 
hardships I faced and he provided invaluable guidance on how 
to produce a working system given the unique 
circumstances.In this design project I learned the value of 
preliminary research. While presenting a system design in a 
team meeting with our advisor, I was shown that there were 
many critical characteristics of my design that were not 
addressed that could have been accounted for with deeper 
preliminary research. As I progressed in designing the system, 
I learned to be mindful of assumptions, justify engineering 
decisions and document the design process. 

Ali - As the Altium lead and the sensing system engineer 
my job was coming up with data collection methods that gave 
us the information we needed to provide an accurate 
experience for the user. While some of our solutions were 
subjective (like using the BMP 388 to reward incline bikers). 
They achieved the end result of being able to reward the user 
in the way we wanted. I also designed, populated and tested 
both PCBs necessary for our project. When hiccups arised and 
we couldn't use the PCBs in the final project I was the one 
who soldered the ICs and necessary connections for the power 
system and the microcontroller for both protoboards. I'm sure 
the skills acquired regarding debugging and design related to 
PCB design as well as being able to quickly prototype will be 
helpful one day but I have yet to use these experiences outside 
of class. I am however grateful for them and SDP21 as I'm 
sure they will come in handy in my future graduate 
experience. 

 Syed - I was tasked with implementing the front end and 
the backend design of the IOS app. I oversaw the cloud 
infrastructure as well as implementing apple’s gameKit API 
properly with our app so we could pass data between users in 
real time. I received help from Ben on the communication 
aspect of the app as well as calculating the game score aspect 
of the app. I think there were many aspects of real-world 
software engineering that I had to employ to get my work 
done. For one I learned that while preliminary design and 
research is very important it’s also very important to be 
flexible. I realized this when my original plan was to 
implement all the matchmaking code by myself using firebase 
database to communicate between users. I soon realized that 
while I had accomplished matchmaking with strangers, it 
would be much more difficult to implement matchmaking with 
friends along with implementing the invitation handlers for 
such a task. I realized I would not have the time to have a fully 
well tested matchmaking system done and so I had to deviate 
and start overusing apple GameKit api. This ended up being a 
great decision as it handled matchmaking perfectly the way I 
had originally hoped for and since most people already use 
game center on IOS for multiplayer games, they would have 
friends in that system already. This made me realize the 
importance of figuring out how much work a task would take 
initially so that in the future I don’t have to deviate halfway 
through the year. This also made me realize the importance of 
setting weekly goals for myself and a set schedule to work 
throughout the week. Since I was running behind, I set a 9-5 
schedule for myself where I would get all the work, I had laid 
out done for the week and the rest of the time would spend 
working on the app regardless of how much I had gotten done 
that week. This fast tracked me in getting a fully working app 
done as I struggled especially during the first semester in 

setting time aside for working on SDP. Lastly, I really enjoyed 
working on something completely new and something I’d 
never actually done before and had experience with and 
realized how much I loved making apps and will most likely 
pursue this more in my free time after college as well. All in 
all, I learned and honed a lot of my skills that will be vital in 
my future success as a software engineer and working with 
Ben on the app developed my peer programming skills 
exponentially. 


	INTRODUCTION
	Significance
	Context and Competing Solutions in Marketplace
	Societal Impacts
	System Requirements and Specifications

	Design
	Overview
	Power System
	Microcontroller
	Sensors
	Bluetooth Module
	F. Let’s Ride iOS App and Data

	The Refined Prototype
	A.   Prototype Overview
	B.  List of Hardware and Software Used

	C.   Custom Hardware
	Conclusion
	Acknowledgment
	References
	Appendix
	Design Alternatives
	Technical Standards
	Testing Methods
	Project Expenditures
	Project Management
	Beyond the Classroom


