AI Anything Instrument

Team 20 Matthew Avison, Carley Davis, Ivan Norman, Cory Vandergrift

SDP Team 20 - Spring 2021

The Team - Recap

SDP Team 20 - Spring 2021

UMassAmherst Team 20

Matthew Avison - EE

Hardware Lead - Keyboard Interface

Carley Davis -EE Team Coordinator - Power Supply Subsystem

Ivan Norman - EE Altium Lead - MIDI Control Subsystem

Cory Vandergrift - EE UI Lead - Team Budget and Logistics

Team Responsibilities

Team Coordinator: Carley Davis

• Responsible for building the power supply subsystem and accessing UMass labs if needed. Also responsible for scheduling meetings, keeping meeting minutes, documentation, building the team website, and soldering the final PCBs.

Hardware Lead: Matthew Avison

• Responsible for building the touch-sensing keyboard interface, assembled the integrated system for both prototype and final product. Also designed the custom PCBs and contributed to programming the sound system.

Altium Lead: Ivan Norman

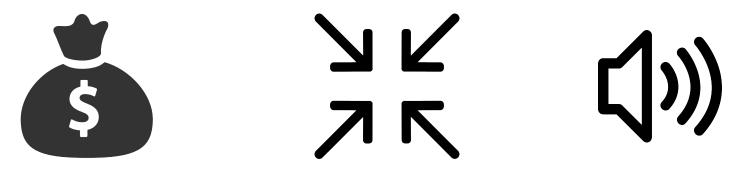
• Responsible for designing the MIDI synthesizer subsystem.

UI Lead: Cory Vandergrift

• Responsible for the LCD user interface subsystem, tracking and placing parts orders, and producing team reports.

The Anything Instrument - Recap

UMassAmherst The Problem


Musical instruments are shown to strengthen memory, reduce stress, inspire creativity, and bring happiness to those who play them. However, the cost, space requirement, and noise produced by most instruments can prevent many people from having the opportunity to play.

Introducing the Anything Instrument

The anything instrument is an ultra-portable musical device allowing one to use everyday conductive objects as playable keys.

This device will bring the many benefits of playing an instrument to more people in more places through its reduced **cost**, **size**, and **noise level**.

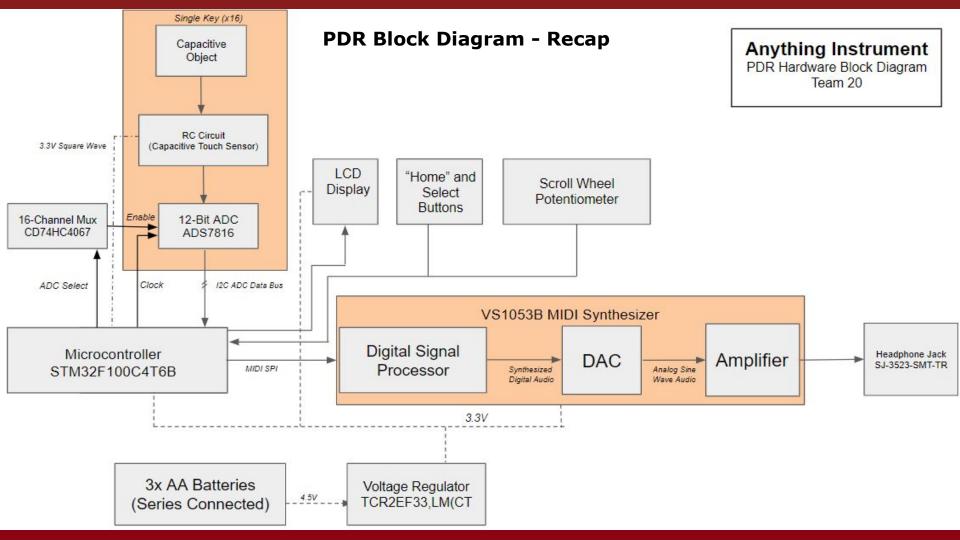
User Operation

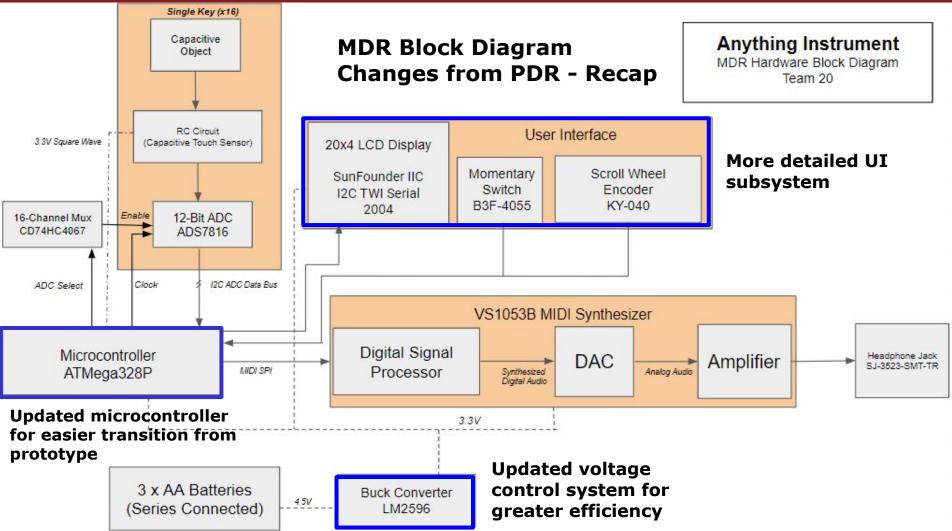
- User will first connect probes to conductive objects to use as musical 'keys'
- 2. User then pushes the tare button to **recalibrate** the Anything Instrument to the chosen objects
- 3. User will **select custom sound options** via the LCD interface
- User proceeds to **touch** the **custom 'keys'** and listens to the corresponding tones through an onboard speaker or 3.5mm AUX port

Original Objectives

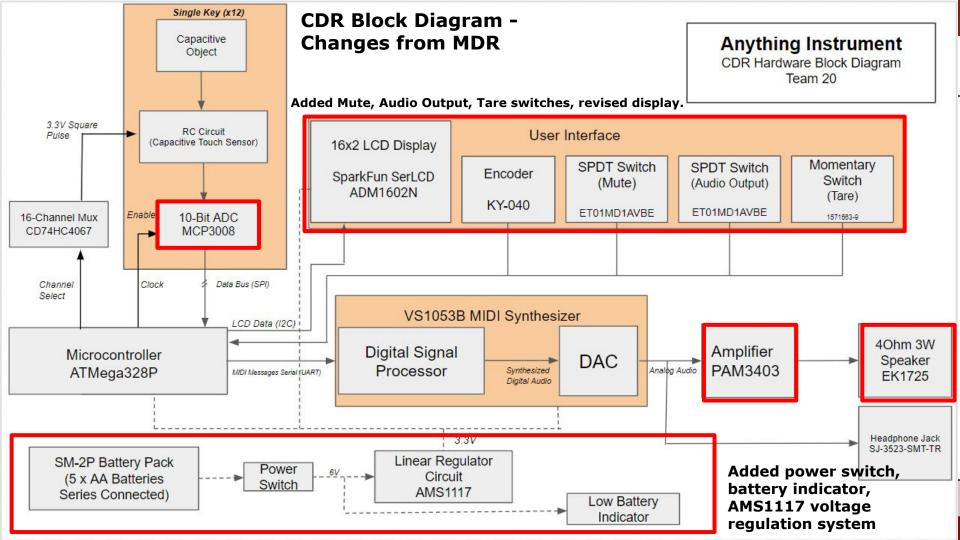
Anything Instrument will **meet or exceed** the following criteria

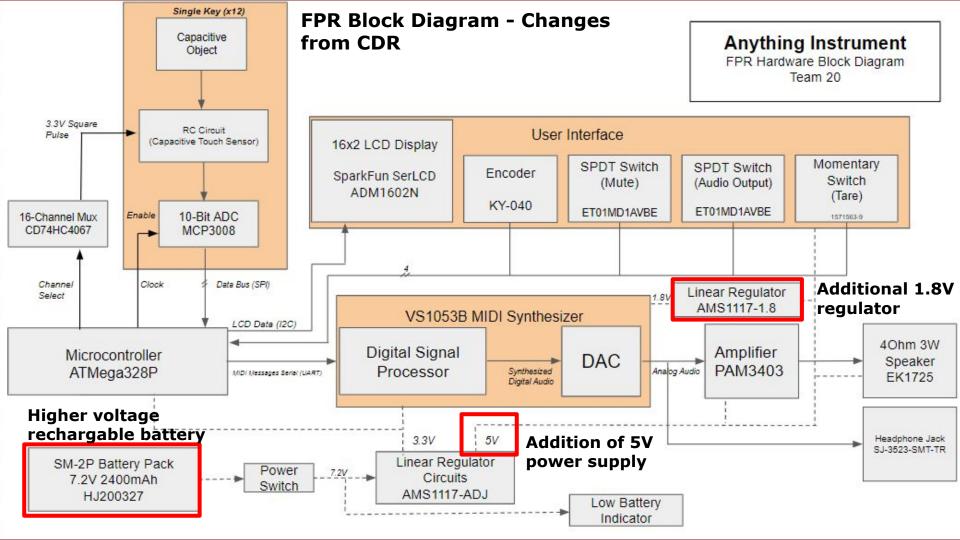
- Offer 8 playable connections
- Have an interchangeable battery
- Offer at least two different instrument modes
- Output audio via a headphone jack
- Weigh 500 grams or less (not including connected objects)

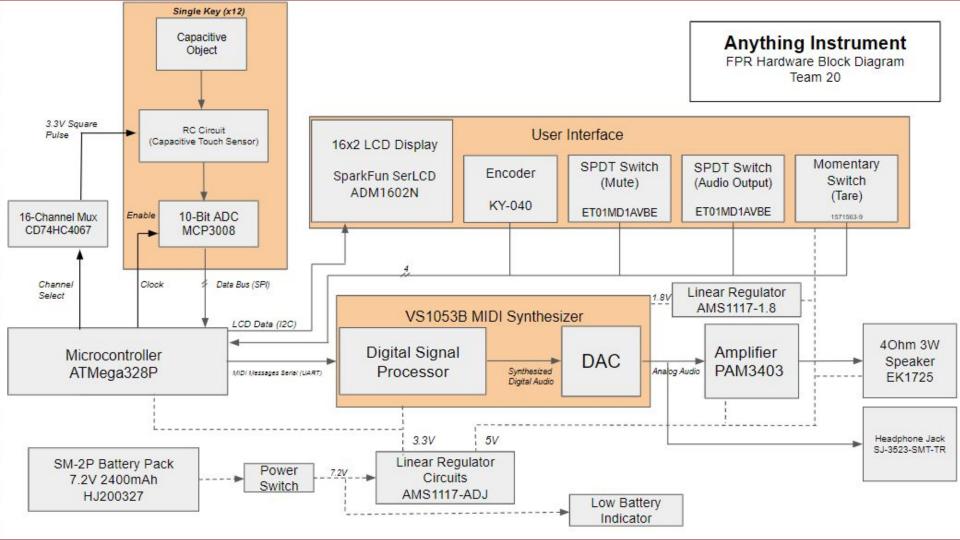




UMassAmherst Proposed FPR Deliverables


- 1. Demonstrate the **complete product** on our custom PCBs
- 2. Demonstrate system housing
- 3. Demonstrate the system meeting **all specifications**
- 4. Live concert demonstration


Design evolution



~

Changes since CDR

Migration to PCB

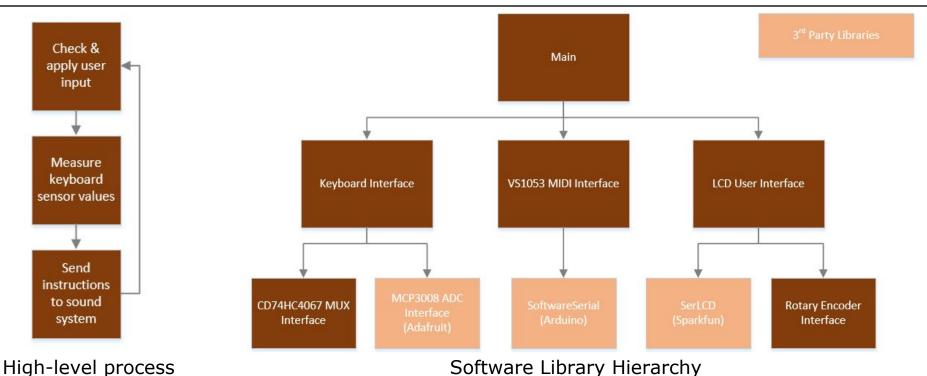
 Microcontroller, sound system, voltage regulation system, battery status system, keyboard touch sensors, and UI controls are now integrated on redesigned PCB

Rechargeable Battery

 HK200327 7.2V 2400mAh Ni-MH battery pack via SM-2P connecton is now used for easy battery swap out and ability to recharge

Power Supply

• Addition of 5.5V and 1.8V supply lines


Optimized Code

Seamless UI transitions, more menu options and a smoother overall user experience

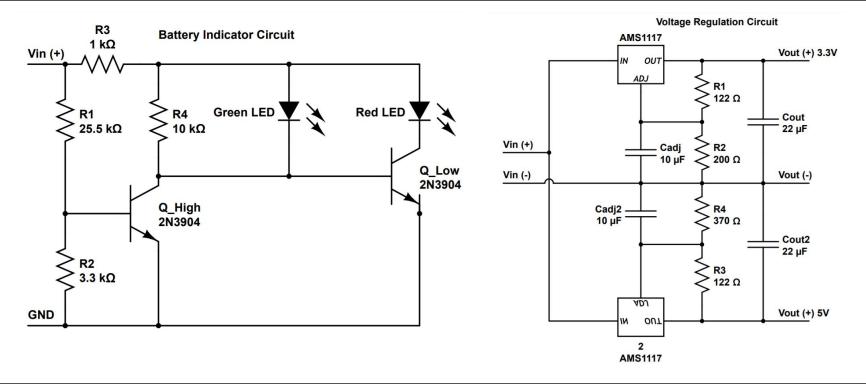
Plastic Case

• A clean & aesthetic 3D printed case has been designed to house the final system

Anything Instrument - Software Visualization

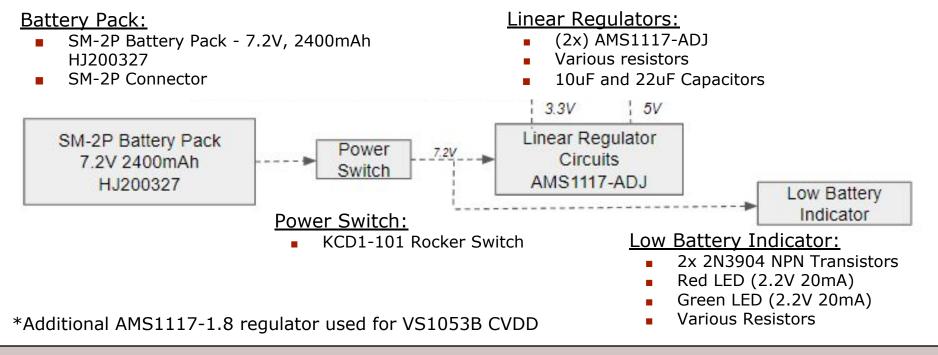
Power Supply

Power Supply - System Specifications

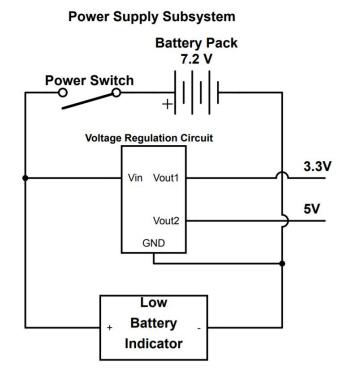

- Needs to be able to power microcontroller, audio synthesizer at 3.3V
- Needs to be able to power LCD display, amplifier and speaker at 5V
- Needs to have 1.8V line for VS1053B CVDD
- Needs to be easily turned on and off
- Needs to have rechargeable and easily interchangeable batteries
- Needs to be able to inform user that power is on and warn user when battery voltage is low

Power Supply - Changes since CDR

- Addition of 5V power supply system to power LCD display and speaker and 1.8V power step-down for VS1043B CVDD
- New 7.2V rechargable battery HJ 200327
- Minor changes to battery indicator circuit to account for new battery



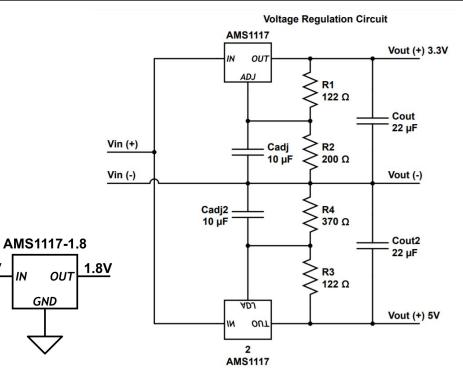
Power Supply - Changes since CDR



Power Supply - System Diagram & Hardware

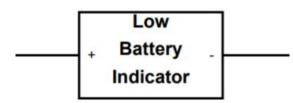
Hardware

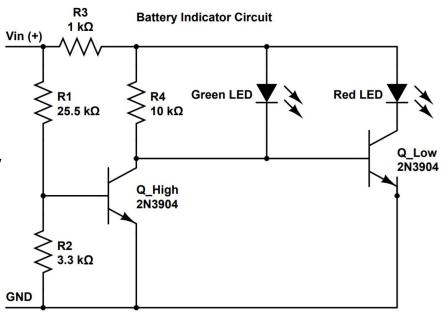
Power Supply - One Line Diagram



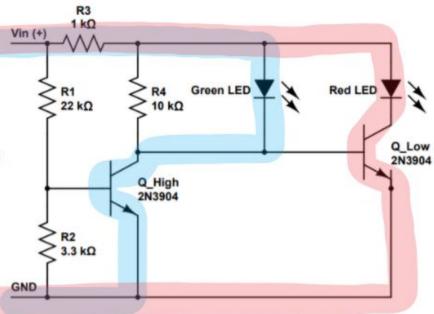
SDP Team 20 - Spring 2021

Power Supply - Voltage Regulaton


5V


- Used to regulate output voltage down to 3.3V and 5V
- Additional regulator used off of 5V line to create 1.8V supply for VS1053 CVDD
- Can be used with battery packs 7.2V-10V
- Needs voltage to be above 6.2V

Power Supply - Low Battery Indicator Recap


- Used to indicate when the battery needs to be recharged
- Green LED will light up when battery is fully charged, switch to red LED when battery nearing 6.2V

Power Supply - Low Battery Indicator Recap

- If the battery voltage is >6 volts, Q_High will be above cutoff voltage, allowing current to flow through path 1 and illuminate the green LED
- If the battery voltage is <6 volts, Q_High will be below its cutoff voltage, causing the current to flow through the Q_Low path and illuminate the red LED

Battery Life - Calculations for FPR Prototype

NiMH Battery Capacity (mAh)	2400
Adjusted Battery Capacity (mAh)	1680

Equipment	Consumption (mA)
ATMega328P	1.5
VS1053B	11
PAM8403 Amplifier (max)	16
Sparkfun Display	164
Capacitive Touch System	2
Speaker (if used, at max)	200
Power Supply Subsystem	12.5

Total Operating Current (mA)	407	
Total Operating Time (hours)	4.13	

- Battery life of FPR prototype estimated to be <u>4+ hours</u> with all subsystems running at maximum capacity.
- Battery being used for FPR has a 2400mAh capacity

Total Operating Current/Adjusted Battery Capacity

SDP Team 20 - Spring 2021

User Interface

SDP Team 20 - Spring 2021

User Interface - Original System Specifications

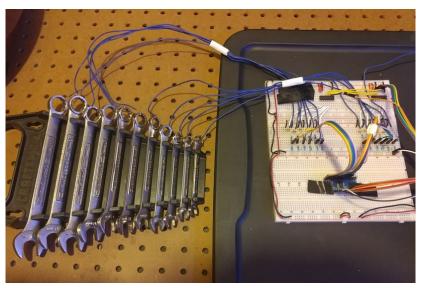
- Must be simple, intuitive, and easy to use
- Focus on most important information
- Room for menu expansion to fit needs of project

Changes Since MDR/CDR

- Removed second encoder, added additional physical inputs
 - Quicker access to often used functionality
- Refined Code
 - Encoder tracking
 - Synthesis with other subsystems
- Populated UI PCB

User Interface - Input Description

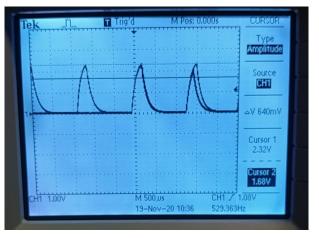
- 16x2 LCD display, one rotary encoder, two SPDT switches and one momentary switch
- UI encoder is twisted to scroll the menu and depressed to make menu selections
- Output source switch used to switch the audio output between the headphone jack and speaker
- Mute switch is used to disable the output of the device
- Tare button is used to tare the capacitance of the key input subsystem.

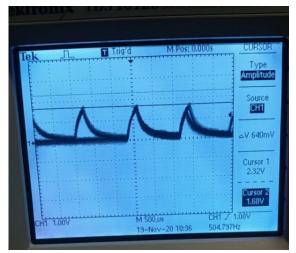

Keyboard Interface

Keyboard Interface - Specifications

- 12 Available keys sensitive to human touch - Able to play full chromatic scale
- Sensor response time under 1ms
- Able to recalibrate/"tare" each key to a unique default capacitance

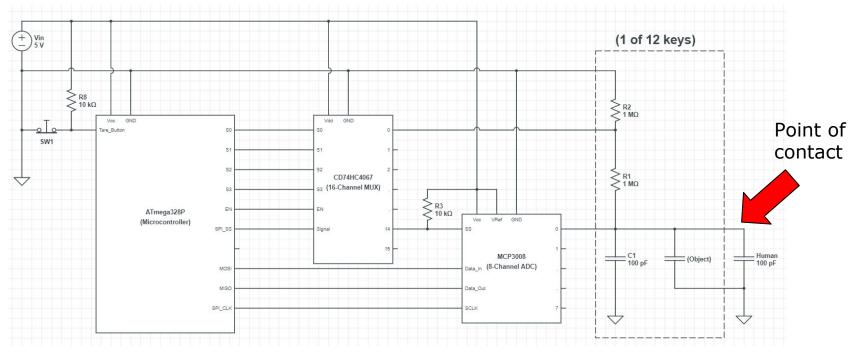
(i.e. from an apple, soda can, screwdriver, etc.)




Keyboard prototype demonstration

Keyboard Interface - Touch Sensor Principles

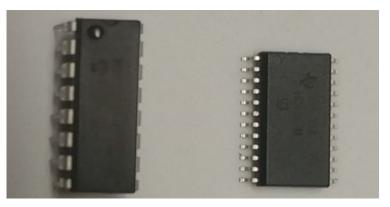
- Touch sensor measures the voltage across its capacitor at Time = Tau
- Adding capacitance to that node drops the "tau voltage" at the same point during charge cycle
- A voltage drop below a tolerance margin (5%) of the default value yields a "touch" response



(Default RC charge cycle)

(Charge cycle upon touching probe)

Keyboard Interface - Simplified Diagram

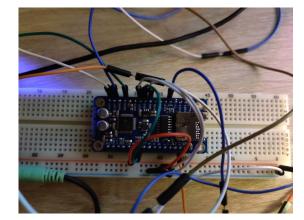


(Full schematic in later slides)

Keyboard Interface - Hardware Details

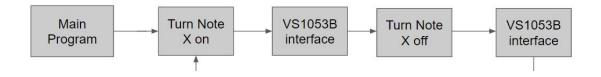
- Multiplexer (x1): CD74HC4067
 - 16 Channels
- Analog to Digital Converter (x2): MCP3008
 - 8 channels per chip
 - 10-Bit resolution
 - 200kHz Max sampling rate
 - Interfaced via SPI

СН0 [1	16	⊐ V _{DD}		24 Vcc
CH1 2	15		17 2 16 3	23 l ₈ 22 l ₉
СН2 □3	S 14	AGND	1 ₅ 4 1 ₄ 5	21 l ₁₀ 20 l ₁₁
СН3 🗆 4	ရ 13	CLK	13 6	19 l ₁₂
СН4 🕁 5	3 12	D _{OUT}	1 ₂ 7	18 l13 17 l14
СН5 □6	08 11		10 9	16 l ₁₅
	10	CS/SHDN	S ₀ 10 S ₁ 11	15 E 14 S ₂
СН7 🗆 8	9	DGND	GND 12	13 S ₃

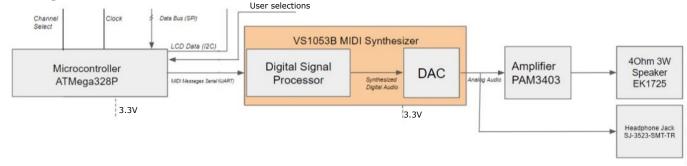


Sound System

SDP Team 20 - Spring 2021

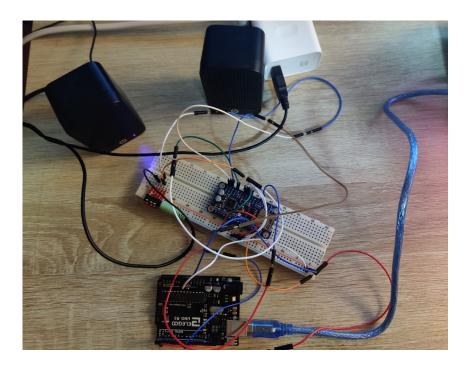

Sound System - Specifications

- Receive MIDI messages via SPI
- Play MIDI messages through a headphone jack



Sound System - System & Hardware Diagram

Software Diagram


Hardware Diagram

Sound System - Hardware

Components

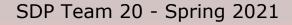
- VS1053 as MIDI decoder
- PAM8403 amplifier
- 3.5mm headphone jack
- 4Ω Speaker

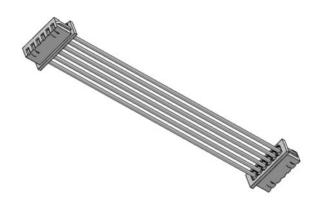
Printed Circuit Boards

SDP Team 20 - Spring 2021

Printed Circuit Board Hardware

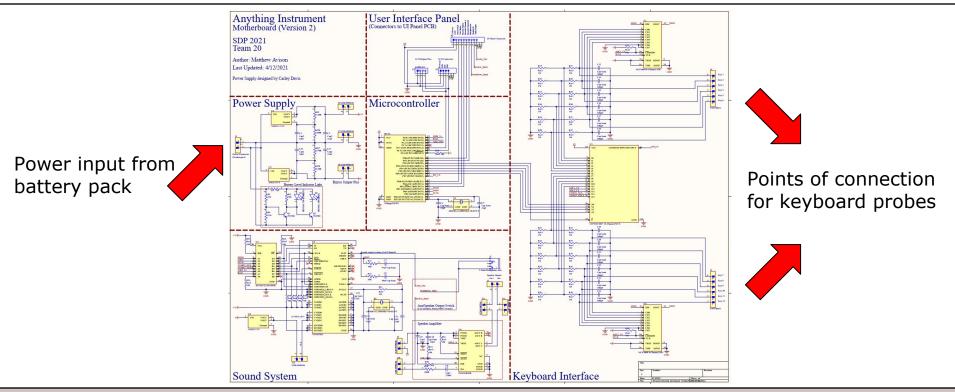
Components on the main **Motherboard PCB**

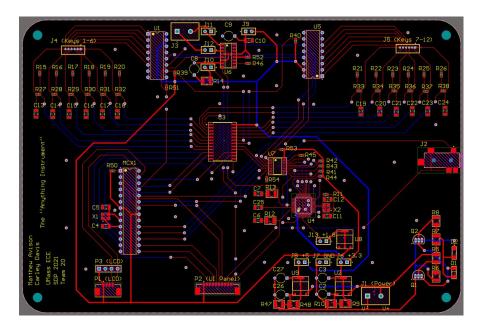

- ATmega328P Microcontroller
- VS1053 MIDI Decoder
- Audio Amplifier
- Keyboard touch-sensors
- Power Supply and Voltage Regulator

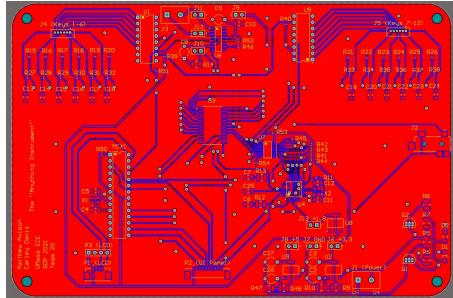

Components on the **UI Panel PCB**

- Rotary Encoder
- SPDT Switches
- Tactile Button

Components externally connected to the Motherboard

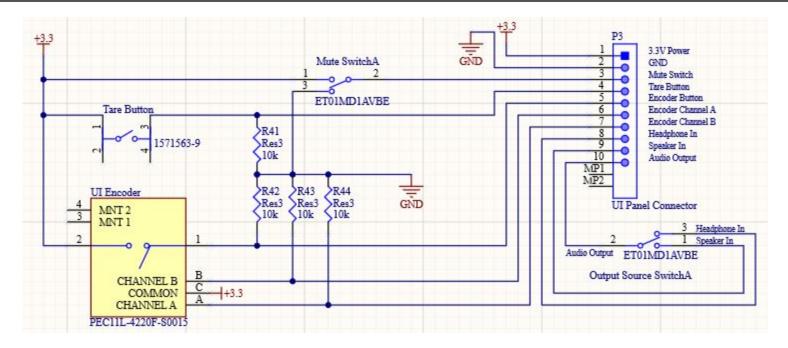

- Battery pack
- 16x2 LCD Display
- Probes for connecting to conductive objects




Example Molex Connector between Motherboard and UI Panel

Motherboard - Full Schematic

Motherboard - PCB Design



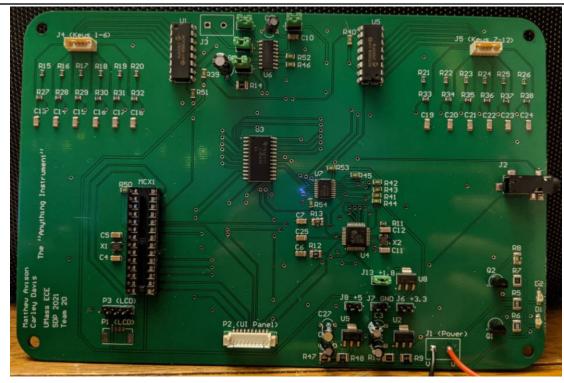
Ground planes hidden

Ground planes visible

UI Panel - Full Schematic

UI Panel - PCB Design

	"Anything Instrument" - UI Panel	
P3 UI Enceder UI Enceder R44 R43		Tare Button
	Cutout for Spa	arkfun 16x2 LCD


Populated PCBs - UI Panel

Questions?

SDP Team 20 - Spring 2021

Populated PCBs - Motherboard

Budget & Logistics

UMassAmherst Budget

- The final cost of our project is \$495.93
- We also have received \$146.09 worth of parts from M5

Cost Breakdown as of CDR

Part Number	Function	Cost (each)	Qty.	Total Cost (USD		
			Fall 2020	<u>)</u>		
VS1053B	Audio Synthesizer	\$12.50	2	\$25.00		
ADS7816P	12-Bit ADC -For each input	\$2.54	4	\$10.16		
CD74HC4067	Multiplexer	\$0.29	2	\$0.58		
STM32F100C4T6B	Microcontroller	\$3.13	2	\$6.26		
SJ-3523-SMT-TR	Headphone Jack	\$0.52	2	\$1.04		
BH3AAPC	AA Battery Holder	\$1.13	1	\$1.13		
LM2596	Buck Converter (2 EA)	\$5.99	1	\$5.99		
STM32 Dev Board	Microcontroller	\$29.15	4	\$116.60		
VS1053B Dev Board	Synthesizer	\$24.95	2	\$49.90		
SunFounder IIC I2C TWI Serial 2004	LCD Display and Controller (2 EA)	\$15.99	1	\$15.99		
KY-040	Encoder (8 EA)	\$12.98	1	\$12.98		
			Spring 20	21		
VS1053B Dev Board	Synthesizer	\$24.95	2	\$60.89		
PCB Order	Both Boards (10 EA) + Stencil	\$112.95	1	\$112.95		
PCB Components	Digikey - per Spreadsheet	\$90.60	1	\$109.41		
PCB Components	Mouser - per Spreadsheet	\$12.06	1	\$20.05		
6V 2200mAh NiMH Battery	Rechargable Battery	\$14.99	1	\$14.99		
			Total Cost:	\$563.92		
*Indicates items recieved entirely from M5			From M5:	\$146.09		
*Indicates items partially recieved from M5			Cost Against Budget:	\$417.83		

FPR - Final Cost Breakdown

art Number	Function	Cost (each)	Qty.	Total Cost (USE			
			Fall 2020	2			
VS1053B	Audio Synthesizer	\$12.50	2	\$25.00			
ADS7816P	12-Bit ADC -For each input	\$2.54	4	\$10.16			
CD74HC4067	Multiplexer	\$0.29	2	\$0.58			
STM32F100C4T6B	Microcontroller	\$3.13	2	\$6.26			
SJ-3523-SMT-TR	Headphone Jack	\$0.52	2	\$1.04			
BH3AAPC	AA Battery Holder	\$1.13	1	\$1.13			
LM2596	Buck Converter (2 EA)	\$5.99	1	\$5.99			
STM32 Dev Board	Microcontroller	\$29.15	4	\$116.60			
VS1053B Dev Board	Synthesizer	\$24.95	2	\$49.90			
SunFounder IIC I2C TWI Serial 2004	LCD Display and Controller (2 EA)	\$15.99	1	\$15.99			
KY-040	Encoder (8 EA)	\$12.98	1	\$12.98			
			Spring 20	21			
VS1053B Dev Board	Synthesizer	\$24.95	2	\$60.89			
PCB Order	Both Boards (10 EA) + Stencil	\$112.95	1	\$112.95			
PCB Components	Digikey - per Spreadsheet	\$90.60	1	\$109.41			
PCB Components	Mouser - per Spreadsheet	\$12.06	1	\$20.05			
6V 2200mAh NiMH Battery	Rechargable Battery	\$14.99	1	\$14.99			
PCB Order 2	Motherboard (5) + Stencil	\$35.65	1	\$35.65			
Final PCB Compnent Order	Various	\$42.45	1	\$42.45			
			Total Cost:	\$642.02			
*Indicates items recieved entirely from M5			From M5:	\$146.09			
*Indicates items partially recieved from M5			Final Cost:	\$495.93			

Current Schedule

			Week of:	3/29/21					4/5/21						4/	12/2	1			4/*	19/2	1				4/26	5/21		
Task Name	Start Date	End Date	Team Member	М	Т	W	Т	F	М	Т	W	Т	F	М	Т	W	Т	F	M	Т	W	т	F	М	т	W	Т	F	s
Hardware and Code																													
Website Updates	4/2/21	4/2/21	CD				С																F		-			D	
Combining Subsystem Prototypes	3/8/21	3/31/21	CD, CV, IN, MA				D																Ρ					Е	
PCB Redesign	4/5/21	4/12/21	MA				R																R					М	
Solder components to PCB	4/20/21	4/21/21	CD, MA																									0	
System Troubleshooting (Critical)	3/15/21	4/22/21	CD, CV, IN, MA																										
Logistics															-														
Order FPR Parts	4/13/21	4/15/21	CV																										
Obtain Parts	4/20/21	4/21/21	CD																										
Order PCB	4/12/21	4/13/21	CV																										
Obtain PCB	4/20/21	4/21/21	CD																										
Complete FPR Presentation Materials	4/7/21	4/22/21	CD, CV, IN, MA																										
Damage Control Meeting	4/20/21	4/16/20	CD, CV, IN, MA																										
Complete Demo Presentation Materials	4/26/21	4/29/21	CD, CV, IN, MA																										

Final Prototype

UMassAmherst Final Prototype

UMassAmherst Proposed FPR Deliverables

- 1. Demonstrate the **complete product** on our custom PCBs
- 2. Demonstrate system housing
- 3. Demonstrate the system meeting all specifications
- 4. Live concert demonstration

Live Demo

SDP Team 20 - Spring 2021