Comprehensive Design Review - March 2021

Active Windows Project

Team #15

Michael Chan, Dingbang Chen, Nathan Johnson, Tien Li Shen

Advised by Professor Yao

University of Massachusetts Amherst

Team members

Michael Chan EE Dingbang Chen CompE Nathan Johnson CompE Tien Shen CompE

Problem Statement

Building automation systems can help reduce operational costs and carbon emissions by improving energy efficiency. However, many current solutions are manufacturer specific and expensive, making widespread adoption difficult.

Our Solution

Our project aims to assist the non-profit Manhattan-2 company develop "electrical and communications standards that define how devices interconnect within the building of the future."

This entails:

- Help with the development of an open-source software framework (BuildingBus) to enable easy smart home device development
- Develop a new CAN transceiver circuit that emphasizes smart building network priorities, particularly higher-reliability and lower operational power compared to existing CAN transceivers

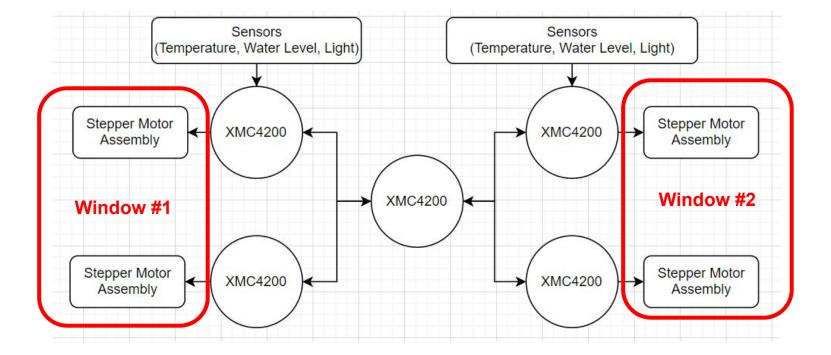
CDR Deliverables

Michael Chan

- Physical Layer
- Transceiver
- Power Supply

Dingbang Chen

- □ Step Motor Logic Implementation
- Website Build


<u>Nathan Johnson</u>

- Implement packetization for data on the network
- Add packet forwarding between non-adjacent nodes
- □ Node-to-node packet addressing

<u>Tien Shen</u>

- Altium Lead
- **Temperature sensor**
- Rain/snow sensor
- Light sensor
- Motion sensor

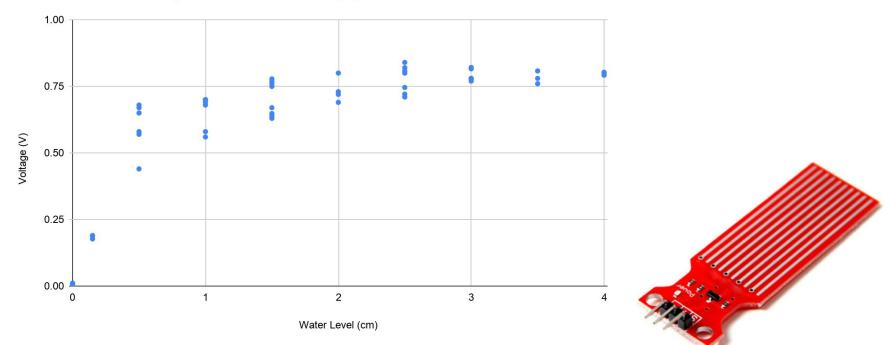
Overall System Diagram

System Specifications

- Custom PCB CAN transceiver for physical layer communication
- 2 mock windows are driven by two stepper motors each
 - One motor drives the window itself
 - The other raises and lowers a cloth blind
 - These two motors are driven by two different microcontrollers
- 5 microcontroller (Infineon XMC4200) nodes in our network
 - 4 edge nodes on 2 different electrical CANBus networks
 - 1 repeater node to connect the two networks together
- Water level sensor, temperature sensor, light sensor provide stimulus to network
 - All three sensors on only 2 edge nodes
 - Other 2 edge nodes have no sensors

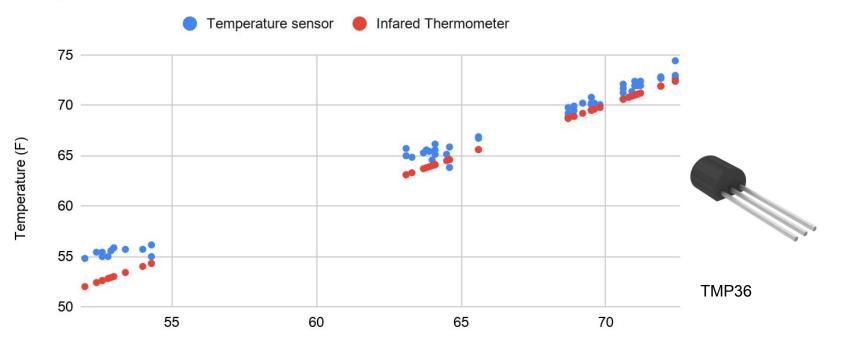
System Specifications

- Satisfied CDR deliverables:
 - Rain/water level sensor
 - Temperature sensor
 - PCB designed, manufactured, in-hand
 - Tree topology CAN bus network (communication between 5 nodes)
 - Motor ouput
- Unsatisfied CDR Deliverables:
 - Node-to-node network addressing
 - Permanent power supply
 - Motion sensor


Hardware List

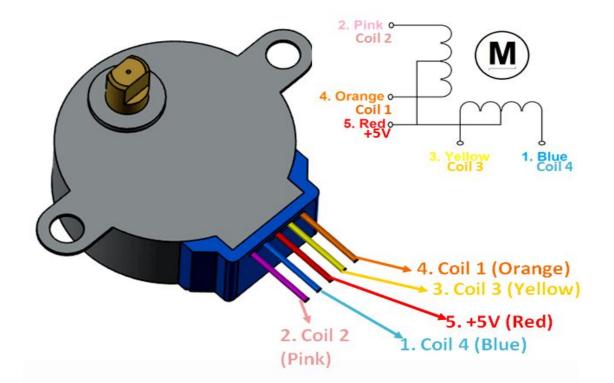
- 5 Infineon XMC4200 development boards
- 6 Custom CAN Transceiver on PCB
- 6 Small breadboards
- 4 Step motors and Drivers
- 2 Photoresistor
- 2 Water Level Sensor
- 2 TMP36 temperature sensor
- Power Adapters
- Lab power supply

Software List


- DAVE IDE (Eclipse based IDE for programing and debugging embedded systems)
- TINA (Toolkit for Interactive Network Analysis Circuit Simulator)
- Altium (PCB design tool)

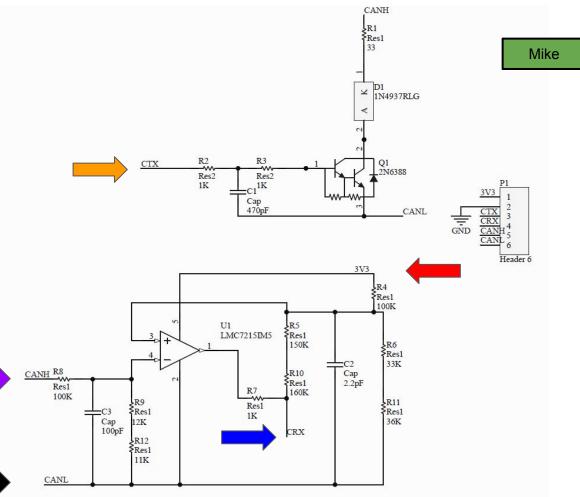
Water Level Sensor (Water Level vs Voltage)

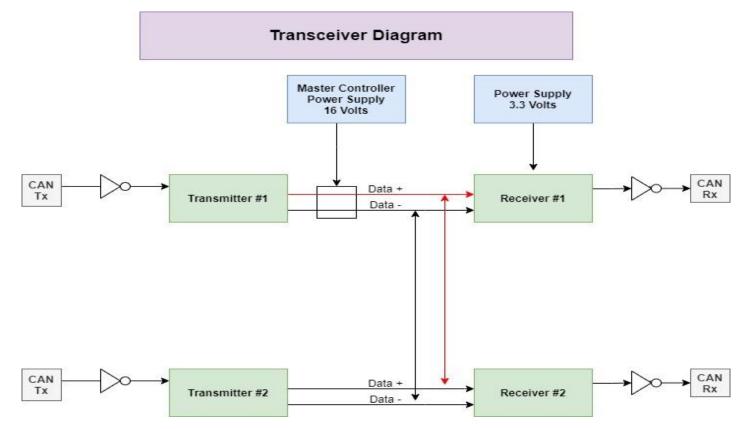
Tien


Temperature sensor vs. Infrared Thermometer

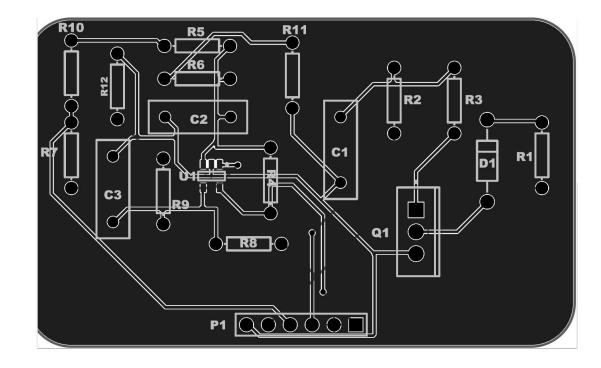
Infrared Thermometer measurement (F)

Tien


Documentation of Current Prototype Step Motor


Chen

PCB Schematic


- CAN bus transceiver
 - Transmitter
 - \circ Receiver
- Altium PCB designer

Transceiver Integration

PCB Design

Tien

PCB in hand

Bare boards received

Soldering completed

*ordered through JLCPCB

Project Expenditures

- 5 XMC4200 Dev. Board \$ 298.10
- Transceiver components \$ 18.92
- PCB Fabrication \$ 23.34
- Step Motors \$ 12.50

Software Plan for FPR

- Modify sensor data acquisition to collect analog values
 - Current system decides if a sensor is in state 0 or 1 based on a decided voltage threshold
 - Binary data was fine for testing out basic network communication, but is very limiting in terms of possible system states
- Add databases to the motor nodes that store most recent sensor data
 from across the network
 - Enables nodes to make decisions based on multiple sensors
 - Current system is only capable of making instantaneous decisions on most recently seen sensor data
- These two improvements will allow for a wider variety of physical reactions with minimal additional coding
- Make data acquisition more robust to noise

Hardware Plan for FPR

- Polish our existing presentation setup
 - Add more realistic water sensor setup to detect simulated rain
 - Drill through board to reroute power supply wires out of the way
- Add permanent power supplies (wall brick or DC voltage regulator) so we no longer need to depend on the lab's adjustable power supply which is cumbersome
- Add wire spools between nodes to emulate longer transmission distance (already tested in lab with our PCB)
- All our PCBs are already soldered, so there's no need to continue work there

FPR Deliverables

Michael Chan

- Team Coordinator
- System Wiring
- □ PCB to XMC4200 Integration

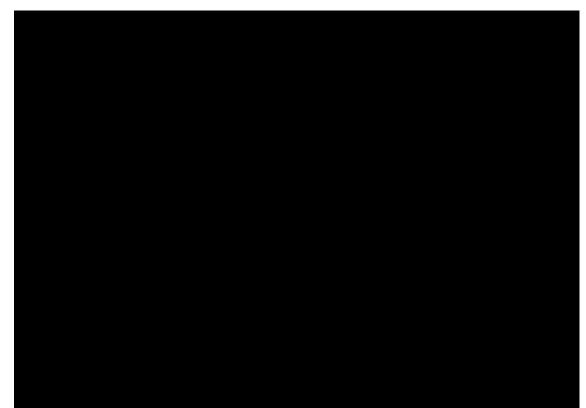
Nathan Johnson

- Analog sensor data collection
- Sensor databases
- □ More sophisticated stimulus/reaction logic
- □ Software Team Lead

Dingbang Chen

- Budget Management Lead
- Team Website
- □ Step Motor Implementation

<u>Tien Shen</u>


- □ Finely calibrate sensors
- Determine voltage/temperature thresholds for multiple output states.
- Design and build a better mounting system for water level sensor

Gantt Chart

	Week 1	Week 2	Week 3
Harden physical system			
- Reroute wires			
- Transition to solid core wire			
- Move to permanent power supply			
Improve software			
- Sensor database			
- Device addressing			
- More sophisticated reaction logic			

All

Back-up Demo Video

All

Thank you for your time

Questions?