LoadOut: PDR

SDP21 Team 12
The LoadOut Team

Neyissa Exilus
CompE

Smeel Milien
CompE

Joshua Teixeira
CompE

Wilson Tran
CompE
Tired of forgetting something at home or packing it in the wrong bag? Tired of losing your valuables? Tired of TSA or malicious agents opening and rummaging through your checked bags without your knowledge?

LoadOut offers a convenient way to pack while maintaining organization, security and peace of mind about your belongings. Using RFID technology, items can easily be tracked by attaching a tag and registering it into an application. LoadOut seeks to eliminate the hassle of micro-managing a checklist by tracking and monitoring travel essentials as you pack. It also offers peace of mind with travel logs notifying you if your bag has been tampered or compromised.
Competing Solutions in the Marketplace

The T-Track Anti-Theft backpack: This backpack device provides GPS tracking and item tracking via keychain tags. However, it seems to have not made it to market and does not offer precision tracking.

TrackerPad: This item claimed to provide GPS tracking support via an app using only a small sticker GPS unit. It was shut down during the planning phase for not providing any proof of functionality.

LUMZAG: This bag claims to provide GPS and item tracking, but never quite explains how they do it. It also has failed to deliver any items to backers.

Tile: Tile well known for its tracking products. However, they rely on bluetooth connection and each of the tracking instruments are expensive and have a non rechargeable battery.

TrackerPad: This item claimed to provide GPS tracking support via an app using only a small sticker GPS unit. It was shut down during the planning phase for not providing any proof of functionality.
System Specifications
PHYSICAL SPECIFICATIONS

• No more than 4lbs

• Device should be resilient to outside RFID interference and attacks

• Final Prototype will be non intrusive and easy to store and pack
HARDWARE SPECIFICATIONS

- Must have at least 24 hours of battery life
- Must be capable of tracking ~20 items without substantial error
- LoadOut should work in the presence of metals and liquids
- Device should be able to determine if the container has been opened, and if so, if anything has been disturbed
SOFTWARE SPECIFICATIONS

• User should be able to dynamically add/remove items from database

• Device should be capable of recording and storing information about the status of the items and bag while out of wireless range of the user
 – An interaction log will be recorded onto a SD card and uploaded to the cloud
Real Life Representation

- Laptop Missing
 - Last logged:
 - Last location:
 - Status:

- All items packed
PRELIMINARY SOFTWARE DESIGN FLOWCHART:

Azure Cloud

Raspberry Pi as IoT Hub Device

Post Item Data

Send read request!

Raspberry Pi2

Process Data in Python

Send interaction logs

Accelerometer & Gyroscope

RFID Reader

Send scanned data via UART

Issue Read request / Wake up Signal via UART

REST API

App Interface

- Register Item
- Remove Item
- Check Bag
- Check Log
Our Solution: LoadOut

• RFID Tracking Module
 – Passively tracks if items are in your suitcase
• Sensing Suite
 – Records key safety and security data about your items
• User Interface
 – Can add and remove items on the fly from mobile device
• Processing Suite
 – Handles sensor and RFID data, digests and delivers it to the cloud
PRELIMINARY SOFTWARE DESIGN FLOWCHART:

1. **RFID Tracking Module**
2. **Sensing Suite**
3. **Processing Suite**
4. **User Interface**

Azure Cloud

- **Raspberry Pi as IoT Hub Device**
 - SQL database for Raspberry Pi
 - Azure Function

- **Graphical User Interface**
 - Register Item
 - Remove Item
 - Check Bag
 - Check Log

- **RFID Reader**
 - Issue Read Request / Wake up Signal via UART
 - Send scanned data via UART

- **Raspberry Pi2**
 - Process Data in Python

- **Accelerometer & Gyroscope**

REST API

- **Post Item Data**
- **Send read request**
- **Send interaction logs**
Subsystem: RFID Tracking Module

- RFID Tracking Module
 - Passively tracks if items are in your suitcase
- Hardware Used
 - ThingMagic Far Field RFID Reader
 - RFID Tags
 - Antenna
Subsystem: Sensing Suite

- This module pertains to implementing a security aspect to LoadOut. To ensure the safety of the belongings and user’s peace of mind.
- Hardware used
 - Accelerometer
 - Gyroscope
 - Microswitch
Subsystem: Processing Suite

• Processing Suite
 – Handles sensor and RFID data, digests and delivers it to the cloud
• Hardware Used
 – Embedded Computer
Subsystem: User Interface

• User Interface
 – Can add and remove items on the fly from mobile device

• Hardware Used
 – Smartphone/Virtual Phone
 – Embedded computer
Cost Estimates

- **ThingMagic Far Field RFID Reader ~$240**
 - Development Boards LOANED
 - Antennas $50
 - Coaxial Cable $6
- **RFID Tags**
 - 25 Tags $9
- **Bluetooth/Wifi enabling connection device** - $7
- **Raspberry Pi** - $35
 - 16GB SD Card $6
- **Suitcases - PURCHASED**
- **RFID shield blocker Aluminum/RF Foam $3/$15**
- **Accelerometer(s) $3/each**
- **Gyroscope(s) $3/each**
- **Breadboards $2.5/each**
- **PCB Design and Soldering Kits**

Total Estimated Cost: ~$385 w/o PCB
Remaining budget: ~$115
Proposed MDR Deliverables

Joshua Teixeira
- Configure RFID reading module to read and write to item tags, display information legibly for computing module
- Create PCB prototype (shared task)

Wilson Tran
- Accelerometer & Gyroscope sensor extraction + processing
- Create PCB prototype (shared task)

Smeel Milien
- Process and store data on embedded computer
- Configure IoT Hub on Azure to integrate Raspberry Pi with cloud

Neyissa Exilus
- Write a script for uploading data to a cloud database
- Implement azure function to compare two SQL databases
Project Management

<table>
<thead>
<tr>
<th>TASK</th>
<th>August</th>
<th>September</th>
<th>October</th>
<th>November</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Early</td>
<td>Mid</td>
<td>Late</td>
<td>Early</td>
</tr>
<tr>
<td>Brainstorming</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Finding an Advisor</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Identifying Core Engineering Challenges</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Designing system</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deliverable for 2nd Check in</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PDR</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Obtain Parts</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Learning Technologies</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RFID System R/W to Embedded Computer</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sensor Data Extraction and Formatting</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Embedded Computer Data Processing</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Configure System for IoT Hub Integration</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sync Data To Cloud</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Designing PCB</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>System Integration/Debugging</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Finalizing MDR Deliverables</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MDR</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Thank you!