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Abstract—This paper investigates throughput scaling laws for
Vehicular Ad Hoc Networks (VANETs). We show that the road
geometry greatly affects the throughput of a VANET. To this end
we introduce the notion of sparseness to capture the geometrical
properties of roads. We then start by addressing scaling laws
for single roads. We shall see that even a single road can have
very different scaling behaviors based on its path trajectory.
Scaling laws for more complex systems such as downtown grids
and general road systems are studied next. Here, the concept
of road-connectivity plays a major role in determining the
scaling behavior. In our analysis we account for a spectrum
of node distributions that represent different vehicular traffic
conditions. We also introduce the distance-limited throughput, a
notion of throughput especially introduced for VANET-specific
applications, and see how it scales in a single road system and
in the presence of infrastructure. Our results are obtained by
combining geometrical analysis, network flow arguments, and
the probabilistic study of VANETs.

Index Terms—Road geometry, scaling laws, vehicular ad hoc
networks (VANETs).

I. INTRODUCTION

TODAY, the impresive perspectives promised by Vehicular
Ad hoc Networks (VANETs) have made it a worldwide

focal area of research. Ubiquitous connectivity on roads, im-
proved safety of driving, and reduced traffic congestion along
with many enterprize applications are just a few to name when
it comes to what VANETs have to offer. Based on the target
region, VANET applications can be classified into one-to-one
(unicast), one-to-a-zone (geocast), or one-to-many (broadcast)
[1]. Unicast communication is mainly used for enterprize
and convenience applications, whereas geocast and broadcast
cover safety applications. Many studies address the routing
challenges that arise in vehicular environments for each of
the above modes of communications [2], [3]. Considerable
efforts have also been dedicated to the study of other layers
of the VANET protocol stack. Physical layer considerations for
vehicle-to-vehicle communications are studied in [4] in which
a MIMO model is used to characterize the physical channel
between vehicles. A multi-channel media access protocol for
general and safety applications has been proposed in [5]. As
for application layer security, [6] studies a privacy-preserving
secure vehicular communications scheme.

Despite the increasing amount of research on protocol
design and development, to the best of our knowledge there
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is currently a void of a rigorous mathematical framework to
study the throughput scaling laws of VANETs. There exists
a considerable amount of literature on the scaling laws of
unicast [7], [8], [9] and broadcast [10] in wireless networks
and some papers further address the effect of mobility [11].
However, our results show that VANETs feature some unique
characteristics that makes their scaling laws different from that
of other wireless networks.

We show that the road geometry plays a significant role
in determining the fundamental scaling laws of VANETs. As
it will be seen, even a single isolated road (e.g. rural road)
can have very different throughput scalings just based on its
path trajectory. Such a phenomenon was not observed in the
ordinary analysis of wireless networks, where it is believed
that as long as the deployment region has smooth boundaries
the scaling laws do not change. Thus, there is a need to
categorize roads based on their geometric properties. To this
end we define road sparseness in section II-A. As we shall
see, sparsity is a measure of how dense a road system is on the
plane. In section III We shall study throughput scaling laws
for sparse single roads, grids and general road systems. For
general road systems we shall see that road-connectivity is an
important element in characterizing the scaling behavior. We
shall also study the throughput scaling of non-sparse general
road systems in the special case where obstacles such as
buildings fill the empty spaces confined by roads.

Another issue is the unique mobility paradigm that exists in
VANETs. Numerous numerical and simulation-based studies
study the effect of vehicle mobility on the performance of
VANETs [12], [13]. In [13] the authors use MITSIMLab
[14] to generate vehicle trajectories which are then fed into
an Integer Programming formulation to derive the maximum
number of concurrent transmissions in a VANET. As for
analysis, the effect of mobility on the capacity of conventional
Mobile Ad Hoc Networks (MANETs) has been studied in [11],
[15]. A common assumption in such studies that report an
increase in throughput due to node mobility is that at each
slot a node is equally likely to be at any location within
its legitimate domain . Hence the network topology changes
over time-scale of packet delivery time. This assumption does
not hold in VANETs where the topology change speed of
the network is restricted by the physically bounded speed of
individual vehicles and also the interdependency of vehicle
movements. In fact we shall argue that vehicle mobility cannot
guarantee improving the throughput scaling of a VANET.

Finally, note that in the study of throughput it is usually
assumed that each source node has a random destination
chosen uniformly from the available nodes in the network. Yet
in VANETs, applications such as safety are more interested
to communicate with vehicles that are in their vicinities.
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TABLE I
SUMMARY OF NOTATIONS AND PARAMETERS

R Road system
L Length (Hausdorff one-dimensional measure) of R
n Expected number of vehicles in R (scaling parameter)
n(t) Number of vehicles in R at time t
κ Vehicle density
u(n) Number of roads in R
m(n) Road-connectivity of R

(number of parallel roads in Grid(m))
h(n) Length of each road in Grid(m)
φ(n) Distance between adjacent roads in Grid(m)
P Per-node transmission power
β Physical model SINR threshold
α Path-loss exponent
N Noise power
W Physical model transmission rate
λ(n) Per-node throughput
λT
D(n) Per-node distance-limited throughput with T (n) RSUs

To address this issue we introduce the notion of distance-
limited throughput and see how it scales with the support
of infrastructure in a sparse single road. In [16], we studied
the distance-limited throughput of single roads and downtown
grids for a set of Poisson distributed nodes and using the
Protocol model for successful transmission. We further studied
the effect of deploying roadside units on the throughput scaling
of single roads in [17]. In [18] we took an initial effort to
address the throughput scaling of straight line single roads
under the Physical model.

The current paper integrates and builds upon our prior work
to study the throughput scaling of a variety of road systems
from single roads to road systems with general geometry under
the more realistic Physical model. We also show that our
results hold true for a wide range of node distributions corre-
sponding to different traffic conditions. Furthermore, we study
the effect of obstacles (such as buildings) on the throughput
scaling of such networks.

The rest of the paper is organized as follows; Section II
embodies the model description and preliminaries. Section
III is dedicated to the study of throughput scaling laws for
VANETs with different road geometries. Later in this section
we study VANETs with infrastructure support. The paper is
finally concluded in section IV.

II. MODEL AND PRELIMINARIES

In this section we introduce the preliminaries of our study
regarding the road geometry, node distribution, and commu-
nications model specifications and also discuss the effect of
mobility on our results. Table I summarizes the notations used
in the paper.

A. Road geometry and node distribution specifications

Here we elaborate on the specifications of the deployment
region. In our model nodes1 are placed on roads. Here we
deal with the extended model [19] for analyzing scaling laws
as opposed to the dense model. In the latter model, the density
of nodes in a bounded region goes to infinity whereas in the

1Due to the context of our study, the terms ”node” and ”vehicle” are used
interchangeably hereafter.

former, network size goes to infinity while the density is fixed.
We use the extended model because at any part of the road,
the density of vehicles is assumed to be a bounded positive
number as in reality the density is limited by the physical size
of the vehicles.

Let n denote the scaling parameter, being the expected
number of nodes in the network. We are interested in the
fundamental limits of the network as n grows large. We define
a road system, R, as a collection of possibly intersecting single
roads, i.e. R = {R1,R2, · · · ,Ru(n)}. In general the number
of roads, u(n), and the length of each road, H(Ri), are both
functions of n. Each road in the set is characterized by a
parameterized smooth continuous curve on the plane denoted
by Ri(s) = (xin(s), y

i
n(s)) where s ∈ [0, 1] is the parameter of

the curve. The subscript n denotes dependence on the scaling
parameter n. The curve represents the trajectory of the road.
The length of each segment of the curve is obtained using the
Hausdorff one-dimensional measure H(.) [20]. For the length
of each road we have:

H(Ri) =

s=1∫
s=0

√
(
d

ds
xin(s))

2

+ (
d

ds
yin(s))

2

ds (1)

We consider nodes to initially be placed on the roads according
to a homogeneous Poisson Point Process (P.P.P) of density
κ. Hence the vehicle spacings between adjacent nodes is
exponentially distributed. Each node then independent from
other nodes and from the initial process, chooses its target
speed from a common distribution function fV (v). Empirical
measurements show that fV (v) follows a truncated Normal
distribution [21]. We assume that vehicles can overtake one
another to reach their targeted speed. Hence, based on [22,
Theorem 9.14], at anytime t the location of the nodes still
form a P.P.P. of the same density.

Available literature in traffic flow theory asserts that the
Poisson node distribution is a justified assumption for low to
moderate traffic conditions [23], [24]. Empirical measurements
conducted on roads also confirm this assertion [21], [25].
Though during heavy flow periods, vehicles behave in a car-
following manner in which at any instant of time the spacing
between them is better represented by a Positive Normal
distribution [26, Ch. 2]. This distribution is used since in this
regime drivers tend to maintain a constant spacing with their
leader, yet driver error would cause some variation about this
constant spacing. Also, for the intermediate state where some
vehicles engage in car-following while others do not interact,
a composite distribution consisting of an exponential and a
shifted exponential distribution for vehicle spacings has been
proposed [27], [28]. We shall show that our results in this
paper hold true for any distribution of vehicle spacings which
does not have a heavier tail than the exponential distribution
i.e. the family of distributions for which P(X ≥ x) = O(e−κx)
where X denotes the spacing between two adjacent vehicles.
As the Positive Normal distribution belongs to the above
family of distributions2, we conclude that our results hold true
under different traffic conditions.

2This is shown using the approximation
∫∞
x

e−
y2

2 dy ≈ 1
x
e−

x2

2 as x →
∞.
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Although our primary assumption in this paper is that all
vehicles are equipped with communication devices, our results
can easily be generalized to when market penetration is in its
early stages. To this end consider a light to moderate traffic
scenario where the process of vehicles is best represented by
a P.P.P. Here if we assume that each vehicle is equipped with
probability p independent from others, then the process of the
equipped vehicles is a thinning of the original process and
hence is also a P.P.P. with parameter κp [29]. Furthermore, it
is shown in [25] through empirical measurements, that even
during heavy traffic the P.P.P. assumption for the distribution
of equipped vehicles is still valid for low market penetration
rates.

For the total length of the road system we have L =
H(R) = n

κ = Θ(n). At any time t, the number n(t) of
vehicles that reside on the road system is n(1 + o(1)). That
is, using the Chernoff bound [30] we can show that for any
ε > 0, there exists a fixed number ξ such that:

P{|n(t)− n| > εn} < e−ξn (2)

To measure how dense the road system is, we introduce the
sparseness condition in Definition 1. In the literature, sparsity
mainly denotes scarceness in terms of node density. However
we use the term to denote that the roads are not highly dense
on the plane. We need to introduce some terminology before
stating the definition. For any point Y on the roads, assume
B(Y, r) and C(Y, r) to be the closed ball and circle with radius
r centered at Y , respectively. Let l(Y, r) denote the Hausdorff
one-dimensional measure (combined length) of the segments
of the roads inside B(Y, r). Further, let z(Y ) be the number of
times that C(Y, r) intersects with the road curves, and Ar be
the segments of the roads consisting of points with z(Y ) > 2.

Definition 1. Let r = Θ(lnn). A road system is sparse if for
all points Y on the roads:

1) z(Y ) is bounded.
2) For any constant σ > 0, there exists a constant cYσ > 0

such that l(Y, σr) < cYσ r.
3) The combined length of Ar is o(L).

Moreover, if z(Y ) ≤ 2 for all Y , then the system is said to
be highly sparse. See Figure 1 for examples of highly sparse,
sparse, and non-sparse roads. As we shall later see, condition
2 is needed in order to have a bounded interference term
from all concurrently transmitting nodes, which shall help us
in deriving achievable lower bounds for throughput. Further,
condition 3 implies that most transmissions occur along the
road trajectory. To make the definitions more clear, here we
elaborate on two special classes of roads systems, namely
single roads and downtown grids.

a) Single roads: The simplest system consists of a single
road such as an inter-state (see Figure 1). Here we have
R = {R1}. The trajectory of the single road is parameter-
ized as R1(s) = (x1n(s), y

1
n(s)) = (anx1(s), any1(s)), s ∈

[0, 1] where a is a constant. Here (x1(s), y1(s)), s ∈
[0, 1] is a bounded-length parameterized curve which is
then scaled with n to transform into the extended road
R1(s), s ∈ [0, 1]. Replacing this in (1) we have, H(R1) =

an
s=1∫
s=0

√
( d
dsx

1(s))
2
+ ( d

dsy
1(s))

2
ds = abn, where b is a

r

r

sX dX

r

sX

dX

Fig. 1. (top) A single highly sparse road with throughput Θ( 1
n
). (middle) A

single sparse road with throughput Ω( 1
n
). (bottom) A single non-sparse road

with throughput as high as Θ( 1√
n lnn

). Here Xs is the source node and Xd

the destination node.
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Fig. 2. Grid(m).

constant denoting the value of the integral. On the other hand
we saw earlier that H(R1) = n

κ . Hence a = 1
κb .

b) Downtown grids: We now consider a case in which
the road system consists of several roads. In particular, we
consider a grid geometry that can appear in downtowns of
cities such as Manhattan. We define Grid(m) as a group
of m(n) parallel roads each of length h(n) and distance
between adjacent roads φ(n), intersected with another group
of m(n) parallel roads with the same length per road and
distance between adjacent roads. We assume that the two
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groups of roads are orthogonal to each other (see Fig-
ure 2). Moreover Grid(m) can be represented as a set
R = {R1, · · · ,Rm(n),R1⊥ , · · · ,Rm⊥(n)}. If the leftmost
vertical road is placed on the y axis, the ith vertical road
can be parameterized as Ri(s) = (xin(s), y

i
n(s)) = ((i −

1)φ(n), sh(n)), s ∈ [0, 1]. For the special case of sparse
grids, we shall later see that h(n) = ω(

√
n lnn) and

φ(n) = ω(lnn). Note that all other roads in the grid can
be parameterized in a similar manner3.

B. Communications model specifications

Within the road system, each source vehicle chooses a
destination vehicle which is the node closest to a uniformly
chosen random location on R. If the destination vehicle moves
out of the road but the first vehicle is still on the road, it
will choose another target vehicle at random. A throughput
of λ(n) denotes the number of bits per second that every
source node can send to its destination with high probability
(w.h.p.)4. We are interested in the scaling of λ(n) as n
grows arbitrarily large. Throughout the paper when addressing
random values, we adopt the following probabilistic variation
of order notation. That is f(n) = O(g(n)) if there exists a
positive constant μ such that:

lim
n→∞P(f(n) ≤ μg(n)) = 1

Further, f(n) = Ω(g(n)) if g(n) = O(f(n)). Finally f(n) =
Θ(g(n)) if f(n) = O(g(n)) and f(n) = Ω(g(n)).

In our analysis we consider the Physical model [7] for
successful transmissions. This model assumes that all nodes
employ a common transmission power P for all their trans-
missions. Node Xi can successfully transmit to node Xj at
time t, if the signal-to-interference-plus-noise ratio (SINR) at
the receiver is no less than a threshold β, i.e. assuming τ(t)
is the set of simultaneously transmitting nodes at time t, we
must have:

P |Xi −Xj|−α

N +
∑

k∈τ(t),k �=i

P |Xk −Xj |−α
≥ β (3)

Where N is the noise power and α the path-loss exponent. If
the above condition is satisfied, every successful transmitter-
receiver pair can communicate at a rate of W bits/second.

C. Effect of mobility

Here we elaborate on the effect of mobility on our results.
As discussed before, vehicles move with an arbitrary speed
that is a bounded real number. In [11] it is shown that for a
scaling network a constant per-node throughput is attainable
if as well as having large buffer sizes and allowing for
unbounded delays, the process of each nodes’ location over
time is stationary and ergodic with stationary distribution
uniform on the plane. This means that at each slot, each node
is equally likely to be at any location in the network. The idea
there is to exploit the multiuser diversity. There, the packets

3We shall hereafter drop the dependency of u(n), m(n), h(n), and φ(n)
on n for ease of representation.

4Note that λ(n) is a random value since the node locations and the choice
of destinations are random.

of a source node are distributed among all other nodes of the
network acting as relays. Since at each instant at least one
node is close enough to the destination, a constant per-node
throughput is achievable.

However, the location of a vehicle at time t does not follow
a stationary uniform distribution on the road. To clarify this
consider a road system which consists of only a single road.
Two arbitrary vehicles have a distance of Θ(n) at a specific
time. Further, the bounded speed assumption ensures that this
distance is preserved over time in the scaling sense. Hence,
such vehicles shall never get close enough which hinders
utilizing multiuser diversity in this network. For general road
systems, the same argument holds for vehicles on the same
road. Thus in our model, mobility cannot guarantee increase
in throughput.

Moreover due to the bounded speed of vehicles, the topol-
ogy of the scaling network changes much more slowly than the
packet delivery time. This way and by allowing for dynamic
routing protocols in which the routes need to be slowly
adjusted as the vehicles move, we are still able to use the same
methodology introduced in [7] for static networks. This strat-
egy of analyzing the equivalent static topology in networks
where nodes do not move significant distances during packet
transmit times has been used in many prior studies such as in
[31].

III. THROUGHPUT SCALING OF ROAD SYSTEMS

In this section, we present our main results regarding
throughput scaling laws of single roads, grids, and general
road systems. We shall derive tight Θ(.) scalings for sparse
single roads and grids by proposing both an achievable scheme
and an upper bound. For general sparse road systems we shall
prove an achievable lower bound. We then study the effect
of roadside units on the distance-limited throughput of sparse
single roads. The proofs are brought in the Appendix at the end
of the paper. Generally, our results are obtained by combining
network flow arguments, geometrical tools that capture the
road structures, and also the tools developed in the analysis
of scaling laws of wireless networks such as in [32].

Before stating the results we need a lemma that is used
throughout our paper in proving the achievable throughput
scalings. The lemma addresses spatial reuse in the network. It
basically states that in a sparse road system, per-hop transfer
of packets can be scheduled at a rate which does not go to
zero as n→ ∞.

Lemma 1. Consider a sparse road system R =
{R1, · · · ,Ru} where H(Ri) = �i, i ∈ {1, 2, ..., u}. Suppose
that roads are divided into segments of lengths η lnn, where
η is a positive constant. Then there exists a positive constant
integer M such that one node from each segment can transmit
to a node in an adjacent segment at a rate of W

M .5

A. Throughput scaling of single roads

Here we initially address the throughput scaling of the
single road system R = {R1}. The throughput of the highly

5Note that M depends on the Physical model parameters β and α, and
also the road geometry but not on the scaling parameter n.
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Fig. 3. Throughput of Grid(m). The throughput increases linearly with

m until m = Θ(
√

n
lnn

). After that the throughput remains constant with
respect to m.

sparse and sparse single road VANET (Figure 1 (top) ,
(middle) ) is characterized by the following theorem.

Theorem 1. Consider the road system R = {R1}. If the road
is highly sparse then λ(n) = Θ( 1n ). If the road is sparse, then
λ(n) = Ω( 1n ).

This result may seem somewhat trivial, as it brings to mind
the throughput of a line network. Nevertheless, it is important
to note that the road trajectory can significantly affect the
scaling law. Indeed, if the sparseness condition does not hold,
the throughput of a single road can be as large as Θ( 1√

n lnn
).

Figure 1 (bottom) shows an example of such roads.
Note that in highly sparse single roads as a packet is

always routed along the road trajectory from the source to
its destination, and since the source-destination distance is
Θ(L), the same scaling result proposed by Theorem 1 for
a randomly chosen destination, also holds true for broadcast
communications.

B. Throughput scaling of grid road systems

The following theorem addresses the throughput scal-
ing of Grid(m) defined earlier as the road system R =
{R1, · · · ,Rm,R1⊥ , · · · ,Rm⊥}.

Theorem 2. Consider Grid(m):

• If it is sparse, then m = O(
√

n
lnn ) and λ(n) = Θ(mn ).

• If m = Ω(
√

n
lnn ), then λ(n) = Θ( 1√

n lnn
).

Theorem 2 states that the throughput increases linearly with
m until m = Θ(

√
n

lnn ). After this point the throughput
scaling is equivalent to that of random ad hoc networks. Figure
3 shows the throughput of a grid road system as a function of
m.

C. Throughput scaling of general road systems

So far we discussed single roads and downtown grids. We
now discuss a general scenario that includes downtown grids
as a special case. To state the result, we need to develop a
new concept. In particular, we define the concept of road-
connectivity. This is somewhat similar to edge-connectivity in

sX

dX

1R
2R

Fig. 4. A general road system with 6 roads. There are 3 road-disjoint paths
between Xs and Xd.

graph theory. Note that edge-connectivity shows the size of
the minimum cut in a graph. It also relates to the number of
disjoint paths that exist between two nodes.

Consider two vehicles Xs and Xd located on roads R1

and R2 respectively (see Figure 4). We call two different
paths from Xs to Xd road-disjoint if the only common roads
between them are R1 and R2. We say that a road system has
road-connectivity m if there are at least m road-disjoint paths
between any two points in the network. In what follows, we
initially show via Lemmas 2 and 3 that when the road system
is sparse, road-connectivity cannot grow faster than Θ(

√
n

lnn ).
Theorem 3 then presents the main result on the throughput
scaling of sparse general road systems.

Lemma 2. Let L be the subset of R
2 containing the road

curves and H(.) be the Hausdorff one-dimensional measure.
Let A1, A2, ..., Ai ⊆ L be sections of the roads satisfying the
following property: For all I ⊆ {1, 2, ..., i} with |I| > c, we
have

⋂
j∈I Aj = ∅. Then

i∑
j=1

H(Aj) ≤ cH(

i⋃
j=1

Aj).

Lemma 3. Consider a sparse road system R =
{R1, · · · ,Ru} with road-connectivity m. Let H(Ri) = �i,
i ∈ {1, 2, ..., u} where δ < �i

�j
< γ for some fixed constant

numbers δ and γ and for any i, j ∈ {1, 2, ..., u}. Then:

m = o(

√
n

lnn
)

Theorem 3. Consider a sparse road system R =
{R1, · · · ,Ru} with road-connectivity m. Let H(Ri) = �i,
i ∈ {1, 2, ..., u} where δ < �i

�j
< γ for some fixed constant

numbers δ and γ and for any i, j ∈ {1, 2, ..., u}. Then:

λ(n) = Ω(
m

n
)

As we shall see in the proof, the constructive lower bound
is achieved by deploying a probabilistic routing strategy. The
above theorem simply states that the throughput is determined
by the road-connectivity of the system. Thus, Figure 3 can
be used for general systems, where m shows the road-
connectivity. Note that when the road system is sparse, it
is shown that the road-connectivity cannot grow faster than
Θ(

√
n

lnn ). Thus, the throughput does not have to grow faster
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than λ(n) = Θ( 1√
n lnn

).
We now consider the case where the faces of the road

system, i.e the empty spaces confined between roads, are filled
with obstacles such as buildings. Note that the bandwidth allo-
cated by the FCC for Dedicated Short Range Communications
(DSRC) in VANETs has a center frequency of 5.9 GHz and
a bandwidth of 75 MHz. Waves in this range typically suffer
high penetration loss when passing through obstacles [33].
Hence we can argue that when obstacles fill the empty spaces
between roads, transmissions occur along the roads no matter
how dense the road system is on the plane. This way the
sparseness condition does not need to hold and we can prove
the following theorem:

Theorem 4. Consider an obstacle-filled road system R =
{R1, · · · ,Ru} with road-connectivity m. Let H(Ri) = �i,
i ∈ {1, 2, ..., u} where δ < �i

�j
< γ for some fixed constant

numbers δ and γ and for any i, j ∈ {1, 2, ..., u}. Then:

λ(n) = Ω(
m

n
)

When
m = o(

n

lnn
)

As we shall see in the proof, here the restriction on m is not
a result of applying the sparseness condition but from the need
to bound the number of information paths that pass through
an arbitrary segment of the road in the probabilistic routing
strategy.

D. Effect of RoadSide Units (RSUs) on distance-limited
throughput

At this point we allude to an extension of our analysis which
specially gains importance in a practical VANET setting. We
first introduce the notion of distance-limited throughput and
then study how the deployment of RoadSide Units (RSUs),
affects this notion of throughput in a sparse single road system.

Up until now we have considered the case in which it
is assumed that every source node communicates with a
randomly chosen destination which, in the case of single
roads, is a distance Θ(n) away. In many applications of
VANETs, however, nodes usually need to communicate with
other nodes that are within a certain distance D(n) from
them. For example, in accident warning systems, a vehicle
would need to exchange messages with vehicles that are in its
vicinity. To this end we define the distance-limited throughput
as the per-node feasible throughput when vehicles need to
communicate with others that are within distance D(n) from
them. Moreover, let λTD(n) be the distance-limited throughput
of a system with T (n) RSUs. Some studies in the literature
discuss the throughput of wireless networks with infrastructure
[34]. Theorem 5 addresses λTD(n) for a sparse single road
system. The corresponding analysis for a general road system
is analytically involved and left for future work. Here we
assume that the RSUs do not generate new information and
only serve to help the communication between vehicles. It
is assumed that the nodes can communicate with each other
using a channel with a bounded bandwidth W1 < ∞, and
they can communicate with the RSUs using a channel with a
bounded bandwidth W2 <∞ that does not interfere with W1.

)(nT

)(nD

n
nTnT

D
)()(

)(
1)(
nD
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Fig. 5. Throughput regions of a single road system with T (n) RSUs.

Theorem 5. Consider a sparse single road system R = {R1}
with T (n) RSUs. Assume r = Θ(lnn). Then,

• If D(n) = Ω(r) and T (n)D(n) = O(n), then λTD(n) =
Θ( 1

D(n) ).
• If D(n) = O(r) or T (n) = Ω( n

lnn ), then λTD(n) =
Θ( 1

lnn ).
• If D(n) = Ω(r) and T (n)D(n) = Ω(n) and T (n) =

O( n
lnn ), then λTD(n) = Θ(T (n)

n ).

In Figure 5 we have illustrated the throughput regions for
a single road VANET with T (n) RSUs. Based on this result,
having more than Θ( n

lnn ) RSUs cannot increase the capacity
beyond Θ( 1

lnn ). Along the same lines as this theoretic result, a
recent trace-driven simulation study of taxis in urban Shanghai
[35] reveals that the delivery ratio increases with the number
of RSU up until a threshold value beyond which the addition
of extra RSUs has little effect on performance.

IV. CONCLUSION

In this paper we studied throughput scaling laws for unicast
communications in VANETs. We showed that the VANET
throughput scaling differs significantly from the known results
obtained for MANETs. In particular, it was observed that the
road geometry plays an important role in determining the
throughput of VANETs. We studied scaling laws for various
road geometries such as single roads, grids and general road
systems. We further defined the distance-limited throughput
and studied how it scales in the presence of RoadSide Units
(RSUs) in a single road system. The effect of RSUs on the
throughput scaling of general road systems is an interesting
open problem as is the throughput scaling of geocast and
broadcast communications for such systems. We believe that
although the present work is a theoretical study of VANETs’
scaling behavior, it nonetheless provides useful insights on
practical issues such as the design of efficient routing algo-
rithms, optimal deployment of RSUs, and the effect of traffic
flow conditions on the achievable throughput of such wireless
networks.
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APPENDIX

Proof of Lemma 1
Proof: Construct the interference graph G in the fol-

lowing way. Let the vertex set χ be the set of midpoints
of segments of length sn = η lnn on R. Clearly, as we
are using the extended model, the cardinality of χ grows
unbounded with the size of the network. Now centered at the
vertices, draw circles with radius σsn where σ is a positive
constant (see Figure 6 (top)). Connect vertices in χ that are
in the same circle. Due to condition 2 of sparseness, for
every vertex Yi ∈ χ, l(Yi, σsn) < cYi

σ lnn where cYi
σ is a

positive constant. Hence the degree of vertex Yi can be at
most Δ(Yi) = 
 c

Yi
σ lnn
η lnn � = bi. Now let M = sup

Yi∈χ
Δ(Yi)+1 =

sup
Yi∈χ

bi + 1. M is a bounded number as bi’s are all bounded.

It is shown in [36] that every graph can be colored with one
more than the maximum vertex degree. Hence the graph G
is M -colorable. What is left to show is that for large enough
M , concurrent transmissions from nodes within segments of
the same color group are successfully received at the receiver
in the neighboring segment (when only one node per segment
transmits). Then, as there are M color groups, one node per
segment can transmit at a rate of W

M using a TDMA strategy,
which marks the end of the proof.

To this end we find the maximum interference and show
that, for a sparse road system, it can be kept bounded even
when the number of interferers goes to infinity. Figure 6
(bottom) shows a worst case configuration of concurrently
transmitting nodes from an arbitrary color group that leads
to maximum interference (and hence minimum SIR6) at the
receiver node Xj corresponding to the transmitter node Xi in
the center. The minimum SIR as given by (3), is:

P (2sn)
−α

6P (σsn − sn)−α +
∑∞

k=1 12(2k + 1)P (
√
3kσsn − sn)−α

=
1

6( 2
σ−1 )

α + 12( 2√
3σ

)α
∑∞

k=1
2k+1

(k− 1√
3σ

)α

Where the first term in the denominator denotes the con-
tribution of the first tier of interferers and the summation
represents the contribution from the rest of the tiers. Now if
the summation in the denominator converges, then by choosing
σ sufficiently large (and hence M sufficiently large), the SIR
can be made larger than the threshold β and hence successful
reception is guaranteed due to the Physical model assumption.
We can show that the summation converges for α > 2. Note
that:

∞∑
k=1

2k + 1

(k − 1√
3σ
)α

=
∞∑
k=1

1

(k − 1√
3σ

)α
+

2(
∞∑
k=1

1

(k − 1√
3σ
)α−1

+
1√
3σ

∞∑
k=1

1

(k − 1√
3σ

)α
)

In which each of the summations individually converge. For

6Here we consider an interference-limited network where the power of
noise can be neglected compared to the power of interference. This is a
justified assumption for vehicular networks that are not faced with power
limitations. Hence the Signal to Interference Ratio (SIR) is addressed instead
of SINR.

nsn
sn

ln

ns3

ns

iX

iX

Fig. 6. (top) Sketch of the proof of Lemma 1. Single transmitters within
segments of the same color group can successfully transmit at the same time.
(bottom) A worst case configuration of all concurrently transmitting nodes
of the same color group (here black) used in deriving the least SIR for the
center node Xi’s transmission.

example:

∞∑
k=1

1

(k − 1√
3σ

)α
≤ 1

(1 − 1√
3σ

)α
+

∞∫
1− 1√

3σ

dx

xα

=
1

(1 − 1√
3σ

)α
+

(1− 1√
3σ

)−α−1

α− 1

Proof of Theorem 1
Proof: Let us first consider highly sparse single roads.

Here we consider a general case where the vehicle spacings
has a non-heavy tail distribution i.e. is asymptotically bounded
above by the exponential distribution with density κ. To prove
a Θ(.) scaling for highly sparse roads we need to prove an
achievability and an upper bound. To show the achievability
we provide a routing strategy. Divide the road into segments of
length lnn

κ . With this selection, each segment contains at least
one node with high probability. To show this let Qi denote
the event that any specific segment is empty. Then we have
for Q, the event that there exists at least one empty segment:

P(Q) = P(

n
lnn⋃

i=1

Qi) ≤
n

lnn∑

i=1

P(Qi) ≤ n

lnn
e− lnn =

1

lnn
= o(1)

Where the first inequality follows from the union bound and
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the second inequality is due to the non-heavy-tail distribution
of inter-vehicle spacings and the void probability of Pois-
son processes [29]. Now, divide the segments into M non-
interfering groups. As the road geometry is sparse, based on
Lemma 1 one node in each segment gets to transmit at a rate of
W
M . For each source-destination pair, route the messages along
the road through adjacent segments7. As a standard method
of analysis (which we shall also use for grids and general
road systems), we find the number of routes that pass through
each segment. For a sparse single road, each segment has to
support at most Θ(n) routes. Hence each segment can handle
a rate less than Θ(nλ(n)). This can be accommodated by all
segments if Θ(nλ(n)) ≤ W

M and hence the claimed scaling is
achievable.

The upper bound results from the fact that transmissions
consume length along the roads. Suppose Xi is transmitting
to Xj , while Xk is transmitting to Xl at the same time. For
Xi’s transmission to be successful we must have:

|Xj −Xl| ≥ |Xk −Xj | − |Xk −Xl| (4)

≥ β
1
α |Xi −Xj | − |Xk −Xl| (5)

Where the first inequality is due to the triangle inequality and
the second due to the Physical model assumption. Similarly
for Xk’s transmission to be successful we must have:

|Xj −Xl| ≥ β
1
α |Xk −Xl| − |Xi −Xj | (6)

Adding the (5) and (6) we obtain:

|Xj −Xl| ≥ β
1
α − 1

2
(|Xi −Xj|+ |Xk −Xl|)

Which means that segments of R within circles of radius
β

1
α −1
2 times the transmitter-receiver distances and centered at

the receivers are disjoint8. As the road system is highly sparse,
transmissions occur along the roads. This way and using the
notation dij = |Xi −Xj|, we have:

∑
(i,j)∈τ(t)

2(
β

1
α − 1

2
)dij ≤ L

Here τ(t) represents the set of active transmitter-receiver pairs
at time t. Hence the total bit meters per second transported in
the network satisfies:

W
∑

(i,j)∈τ(t)

dij ≤ WL

β
1
α − 1

As there are n nodes in the network and the average distance
between each source-destination pair is L − o(1), the result
follows:

λ(n) ≤ W

(β
1
α − 1)n

As we shall later see, deriving the throughput upper bound for
grids follows from the same argument except that the distance
between each source-destination pair is different there.

7Traffic passing through each segment can be handled by any node in that
segment.

8We consider a straight road in our derivation. Since we are finding an
upper bound, the result holds for other trajectories of highly sparse roads as
well.

For sparse single roads the above achievable bound still
holds. However, the upper bound is not necessarily true as
information paths can take other routes rather than just along
the road trajectory like the path shown in Figure 1 (middle).

Proof of Theorem 2
Proof: Note that the total length of the roads is L = 2mh

(see Figure 2). If m = O(1), then the result is trivial and can
be shown similar to the proof of Theorem 1. Thus we assume
m = ω(1). Note that the sparseness condition implies that
φ = h

m−1 = ω(lnn). This is because, if φ = Θ(lnn), then
the combined length of the segments of road with z(Y ) > 2
would be O(L) which contradicts the sparseness condition
3. Also note that due to the geometry of the grid we have
n
κ = 2mh. Hence we conclude:

m = o(

√
n

lnn
).

We now derive the achievable rate. Each road is divided into
segments of length lnn

κ . In the intersections, the segments
consist of four parts of length lnn

4κ . Again, it can be shown
that there is at least one node in each segment9. The routing
strategy is deterministic and works as follows. Assume a
source vehicle located at point Xs chooses another vehicle
located at Xd as its destination. The information is transferred
through the closest vertical road to Xs, and the closest
horizontal road to Xd (see dashed route in Figure 2). The
packets are transferred from each segment to the neighboring
segments until they reach the destination. To find the achiev-
able throughput, we need to obtain the number of paths that
pass through an arbitrary segment w.h.p. Based on the routing
strategy, the number of information paths traveling through the
segment is at most Θ( n

m ). Also as the grid is sparse, due to
Lemma 1 we can divide the segments into M non-interfering
groups such that one node in each segment can transmit at
a rate of W

M . This way, through similar reasoning as in the
achievability proof of Theorem 1, we have λ(n) = W

MΩ(mn ).
For the upper bound, note that two randomly chosen points

have a distance of Θ(h) = Θ( L
2m ). Hence through similar

steps as in Theorem 1, we have that λ(n) = O(mn ). In sum
from the achievability and the upper bound we conclude that
when m = o(

√
n

lnn ), λ(n) = Θ(mn ). This corresponds to the
first part of the throughput curve given in Figure 3. For the
case where m = Ω(

√
n

lnn ), divide the plane to the cells as
in [32]. It follows from similar arguments as in [32] that the
throughput is Θ( 1√

n lnn
).

Proof of Lemma 2
Proof: Consider a square S0 with side b that embodies

the set L. Define shb(.) : R2 �→ R
2, as shb(x, y) = (x+b, y).

For any measurable set Ξ ∈ R
2, we have H(shb(Ξ)) = H(Ξ).

Define

L1 =
⋃i

j=1 Aj , L2 = shb(L1),

L3 = shb(L2) = sh2b(L1), · · · , Lc = shc−1
b (L1)

9Note that it can be shown that starting from a non-heavy-tail distribution
of density κ, node deployment shall preserve its stochastic properties over
time based on grid mobility models such as the Manhattan mobility model
[37].
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Now define functions fj : R2 �→ R
2, j ∈ {1, 2, ..., i} in the

following way. fj(x, y) = (x+ tb, y), where x belongs to t of
the sets A1, A2, ..., Aj−1. We conclude from the assumptions
of the lemma that

i⋃
j=1

fj(Aj) ⊆
c⋃

k=1

Lk. (7)

For all j = k, we have fj(Aj)∩fk(Ak) = ∅. Moreover, since
i is a countable number, we have H(fj(Aj)) = H(Aj). We
conclude

H(
i⋃

j=1

fj(Aj)) =
i∑

j=1

H(fj(Aj)) =
i∑

j=1

H(Aj). (8)

Combining Equations (7) and (8), we obtain

i∑
j=1

H(Aj) ≤ H(

c⋃
k=1

Lk) = cH(L1) = cH(

i⋃
j=1

Aj).

Proof of Lemma 3
Proof: Since the system has road-connectivity m, we

conclude that each road intersects with at least m other roads
and also u ≥ m. Thus the number of intersections in the
system is i(n) ≥ m2. Number the intersections in the system
from 1 to i(n). Remember that for any point Y on a road, we
say that Y is contradicting point if z(Y ) > 2. Note that any
intersection will create a segment of length at least Θ(lnn)
consisting of contradicting points. For the jth intersection let
Aj be the segments of the road consisting of the contradicting
points due to the intersection. Then Aj = Ω(lnn). since we
assume that z(Y ) is bounded at any point in the network, there
exists a constant c > 0 such that z(Y ) < c for all Y . That
means that for all I ⊆ {1, 2, ..., i(n)} with |I| > c, we have⋂

j∈I Aj = ∅. Now using Lemma 2 we conclude

i(n)∑
j=1

H(Aj) ≤ cH(

i(n)⋃
j=1

Aj). (9)

However, from the sparseness condition we conclude that
H(

⋃i(n)
j=1 Aj) = o(n). Thus, we have

i(n)∑
j=1

H(Aj) = o(n). (10)

On the other hand, we have
∑i(n)

j=1H(Aj) ≥ i(n)Θ(lnn).
Thus we have:

i(n)∑
j=1

H(Aj) = Ω(m2 lnn). (11)

combining Equations (10) and (11), we conclude m =
o(
√

n
lnn ).

Proof of Theorem 3
Proof: We first study the achievability. First note that

by the definitions of road-connectivity we have u ≥ m. The
algorithm works in the following way. First, as usual, divide
the road into segments of length Θ( lnn

κ ). For any source-
destination pair consider a set ofm road-disjoint paths. Choose
one of the paths at random and use multi-hop communications

between the segments to send the messages from the source to
the destination. Following our general method of analysis, we
address the number of paths that pass through each segment
w.h.p. To this end, define Boolean random variables ψij in the
following way. ψij = 1 if and only if the routing path starting
at node j uses at least one segment of road i in the network.
We claim that P{ψij = 1} = O( 1

m). Indeed, if node j or
its destination are on road i, then ψij = 1 with probability
one. This event occurs with probability Θ( 1u ). On the other
hand, if node j and its destination are not on the road i, then
P{ψij = 1} ≤ 1

m , because road i can be in at most one of the
m road-disjoint paths from node j to its destination. Thus,

P{ψij = 1} ≤ Θ(
1

u
) + (1 −Θ(

1

u
))

1

m

= O(
1

m
)

where we used u ≥ m. Thus we conclude that Eψij = ρ(1+
o(1)) 1

m , where ρ is a positive constant number. Define the
random variables ψi as

ψi =
n∑

j=1

ψij .

We have Eψi = ρ(1 + o(1)) n
m . This is the expected number

of information paths which pass through any segment of
road i. As the routing strategy is probabilistic we need to
show that the actual number of paths does not asymptotically
diverge from the expected value. To do this define the event
Ei = {ψi ≤ (1 + 1

ρ)Eψi}. Hence we need
⋂u

i=1 Ei to occur
with high probability. Define Fi = Ec

i . Using a form of the
Chernoff-Hoeffding bound [38], we have:

P{Fi} = P{ψi > (1 +
1

ρ
)Eψi} < exp

(
− Eψi

3ρ2

)

= exp

(
− n(1 + o(1))

3ρm

)

≤ exp

(
− n

6ρm

)
.

Using the union bound:

P{
u⋃

i=1

Fi} ≤ n exp

(
− n

6ρm

)

By Lemma 3, we can write m =
√

n
lnn

1
w(n) , where w(n) →

∞ as n goes to infinity. Thus we conclude

P{
u⋃

i=1

Fi} ≤ n exp

(
− n

6ρm

)
(12)

= n exp

(
−

√
n lnnw(n)

6ρ

)

≤ n exp

(
− lnnw(n)

6ρ

)

= nn−w(n)
6ρ = o(1)

Since we have P{⋂u
i=1Ei} = 1 − Prob{⋃u

i=1 Fi}, we con-
clude

⋂u
i=1 Ei occurs with high probability. This shows that

each segment of the roads has to support at most Θ( n
m ) paths.

Using the coloring Lemma 1, we can divide the segments
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into M non-interfering groups such that one node from each
segment gets to transmit at a rate of W

M . Thus we conclude
λ(n) = W

M Ω(mn ).
Proof of Theorem 4

Proof: The proof goes along the same lines as the proof
of Theorem 3. Though this time the road-connectivity m does
not need to satisfy the sparseness condition but rather should
be such that P{⋃u

i=1 Fi} = o(1) which according to (12)
happens when:

m = o(
n

lnn
)

Proof of Theorem 5
Proof: There are several factors limiting the throughput

and in each region the dominant factors determine the achiev-
able throughput.

Consider the first region. Note that each source is a distance
Θ(D(n)) from its randomly chosen destination. However
since T (n)D(n) = O(n), we do not necessarily have an
RSU in all sections of length Θ(D(n)) of the road. So in
this case what limits the distance-limited throughput is the
ad hoc throughput of the network, which can be shown to
be Θ( 1

D(n) ) similar to the proof of Theorem 1. The second
region represents the case where the distance of each source
node from its randomly chosen destination or the nearest RSU
is O(r). Note that here, a throughput higher than Θ( 1

lnn )
is not achievable since there is always a segment of length
Θ(r) that has Θ(lnn) receiver nodes. In the third region, each
source has a distance of Θ(D(n)) from its randomly chosen
destination. However since T (n)D(n) = Ω(n), each receiver
can always reach an RSU distance Θ( n

T (n) ) away. Hence
through similar reasoning as in Theorem 1, the upper bound of
λTD(n) = O(T (n)

n ) follows. Further, note that each segment of
length Θ(lnn) has to support at most Θ( n

T (n) ) routes. Since

the road is sparse, Lemma 1 asserts that λTD(n) = W1

M Ω(T (n)
n )

is achievable. Thus in sum λTD(n) = Θ(T (n)
n ).
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