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Results on Finite Wireless Sensor Networks: Connectivity
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Many analytic results for the connectivity, coverage, and capacity of wireless networks have been reported
for the case where the number of nodes, n, tends to infinity (large-scale networks). The majority of these
results have not been extended for small or moderate values of n; whereas in many practical networks, n is
not very large. In this article, we consider finite (small-scale) wireless sensor networks. We first show that
previous asymptotic results provide poor approximations for such networks. We provide a set of differences
between small-scale and large-scale analysis and propose a methodology for analysis of finite sensor net-
works. Furthermore, we consider two models for such networks: unreliable sensor grids and sensor networks
with random node deployment. We provide easily computable expressions for bounds on the coverage and
connectivity of these networks. With validation from simulations, we show that the derived analytic expres-
sions give very good estimates of such quantities for finite sensor networks. Our investigation confirms the
fact that small-scale networks possess unique characteristics different from their large-scale counterparts,
necessitating the development of a new framework for their analysis and design.
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1. INTRODUCTION

In the past, many analytic results on the connectivity, coverage, and capacity of wireless
ad-hoc and sensor networks have been obtained. In almost all of the results, it is
assumed that the number of nodes, n, in the network tends to infinity (large-scale
networks). In other words, these results are asymptotic. Asymptotic results are very
important for two reasons. First, they give us good estimates for large-scale networks.
Second, they show some fundamental trade-offs in the network. However, in many
practical wireless networks, the number of nodes may be limited to a few hundred
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(small-scale/finite networks). As it is shown in this article, the asymptotic results cease
to be valid for these networks. Thus, it is very crucial from the practical point of view to
analyze finite networks. These analytic results will essentially help us to understand,
design, and analyze practical wireless networks, and also to design more suitable
communication protocols.

For example, consider the capacity analysis of wireless networks, which has been
studied extensively (e.g., [Balakrishan et al. 2004; Gupta and Kumar 2000, 2003;
Grossglauser and Tse 2001; Li et al. 2001; Perevalov and Blum 2003; Liu et al. 2003]).
Today we have a good understanding of scaling laws for the capacity of wireless net-
works. However, suppose we need to design a wireless sensor network consisting of an
arbitrary deployment of a hundred sensor nodes. Some fundamental questions are as
follows. What is the transport capacity? What are the connectivity and coverage prob-
abilities of such networks? How do network parameters, such as the communication
radius of nodes, number of nodes, and so on, affect these properties? Unfortunately, the
available asymptotic results fail to give answers to these questions.

To address the aforementioned issues in small-scale networks, we need to address
some inherent problems. First, in large-scale networks, we use asymptotic estimates
that make the analysis much simpler. These estimates are not available in small-scale
analysis. Thus, small-scale analysis is usually more difficult. Second, even if we can
perform the small-scale analysis, we usually obtain very complicated formulas that
are not very useful practically. In this article, we want to circumvent these problems
and provide bounds for small-scale-analysis. In particular, we are looking for easily
computable but acceptable estimates for fundamental network quantities. The main
goal of this article is to initiate small-scale analysis of wireless sensor networks. To the
best of our knowledge, this is the first work to analytically and systematically study
this issue.

The main idea is the following. The first key point is to aim at simple and very good
approximations instead of trying to find complicated exact formulas. To do so, we first
consider asymptotic analysis. Some of the estimates in asymptotic analysis are still
good for small-scale networks, while others are not. We identify those which are not
valid and replace them with better estimates. However, this must be done carefully
in order to obtain simple and easily computable formulas at the end. Specifically, in
this article we list a few important differences between small-scale and large-scale
analysis.

As a special case of finite sensor networks, we first study unreliable sensor grids in
which the sensors are deployed in a grid and each sensor is active with a probability
p. This probability is used to account for both sensor failures and sleeping sensors. A
fundamental question is that given an area to be protected, how many sensors should
be deployed so that every point in the region be covered by at least one sensor (more
generally, we may require that every point in the region be covered by at least ksensors).
Equivalently, one can ask, if n sensor nodes are deployed in an area, what should be
the sensing radius of nodes to ensure coverage (or k-coverage)? The same question
can be repeated for other network properties, such as connectivity and diameter. In
this article, we study the behavior of the different parameters in finite sensor grids.
We prove that all graph-theoretic properties of these networks, such as connectivity,
network diameter, and capacity, follow a piecewise constant behavior, and this is even
true for the coverage which is not a graph-theoretic property. This result shows a
key difference between the behavior of sensor grids and that of randomly deployed
sensor networks and has some important implications from the practical point of view.
(1) It shows that increasing the communication and sensing radii does not necessarily
improve coverage, connectivity, or any other graph-theoretic property. (2) It suggests
that we could completely determine the behavior of a vast class of network properties
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by knowing their values for only a finite number of points. We then find simple lower
and upper bounds for the k-coverage probability of sensor grids and show that these
bounds are adequately close to the real value, as an estimate of the coverage probability.

Next, we consider finite sensor networks in which nodes are randomly distributed
in the unit square. We study k-connectivity and coverage of these networks. We
give several results pertaining to these properties. We first show that the previous
asymptotic results on coverage and k-connectivity are not accurate for the finite case.
We then provide a very simple formula for the k-connectivity probability of finite
sensor networks and show that the formula is very precise. We also study the coverage
probability of random networks where we prove simple lower and upper bounds for
the coverage probability.

The remainder of the article is organized as follows: the next section provides an
overview of the related work. In Section 2, we study connectivity and coverage of
finite sensor grids. Section 3 investigates the fundamental properties of random sensor
networks, such as connectivity and coverage. Finally, Section 4 concludes the article.

1.1. Related Work

Related problems have been studied in the context of random graph theory [Bollobás
2001], continuum percolation, and geometric probability [Meester and Roy 1996;
Penrose 2003], as well as the study of wireless network graphs [Gupta and Kumar
1998, 2000; Xue and Kumar 2004, Booth et al. 2003, 2005; Shakkottai et al. 2003;
Dubhashi et al. 2003; Li et al. 2003; Wan and Yi 2004; Kumar et al. 2004]. In random
graph theory, the model G(n, p) is extensively studied, in which edges appear in a graph
of n vertices with probability p independent of each other. In continuum percolation
theory, usually infinite graphs on R

d are studied. Finally, in geometric probability and
the study of graphs of wireless networks, large-scale graphs over the plane are usually
studied.

In Franceschetti and Meester [2008, 2006] studied connectivity and critical node
lifetime for a model of random networks in which the density of nodes is kept constant
while the area of interest tends to infinity. Furthermore, the throughput scaling of
wireless relay networks is studied in Dousse et al. [2006] for this model. However, the
results in these papers are all based on asymptotic analyses, thus their method cannot
be applied to the case of finite networks, that is, networks with a finite number of nodes
(e.g., less than 1,000) on a finite plane. In the analysis of these networks, boundary
effects and constant factors (see Section 3.2) cannot be neglected, as can be for the case
of asymptotic analysis.

The connectivity and k-connectivity of large-scale wireless networks have been in-
vestigated [Gupta and Kumar 1998; Li et al. 2003; Wan and Yi 2004; Pishro-Nik et al.
2004; Dousse et al. 2002]. Dousse and Thiran [2004] examined the trade-off between
connectivity and capacity of dense networks. The transport, information-theoretic, and
MAC-layer capacities have been investigated extensively (e.g., [Balakrishan et al. 2004;
Gupta and Kumar 2000; Grossglauser and Tse 2001; Gupta and Kumar 2003; Li et al.
2001; Perevalov and Blum 2003; Liu et al. 2003]. The grid model for sensor networks
has also been investigated. In particular, connectivity, coverage, and diameter of sensor
grids were studied [Shakkottai et al. 2003]. Kumar et al. [2008] and Janson [1986],
considered the k-coverage problem for sensor grids and other deployment methods.
Balister et al. [2009] and Balister and Kumar [2009] also studied coverage for sensor
networks in the presence of failures and placement errors. However, almost all previous
analytical results are asymptotic, since they consider large-scale networks.

Analysis of wireless networks with a modest number of nodes recently has generated
a lot of interest [Bai et al. 2006; Desai and Manjunath 2002; Gore 2006; Karmachandani
et al. 2006; Yen and Yu 2004; Ghasemi and Nader-Esfahani 2006]. Desai and
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Fig. 1. A sensor grid is shown where the active sensors are shown by black nodes. Communication and
sensing radii, rt and rs, are also shown.

Manjunath [2002] investigated the problem of connectivity for one-dimensional net-
works (i.e, line networks). Using probabilistic methods, they obtained the exact formu-
lation for the probability of connectivity. Gore [2006] presented corrections and exten-
sions to Desai and Manjunath [2002]. It is noted that both papers connsidered a line
network, and the extension to two-dimensional networks was achieved by obtaining a
loose bound using the results from the former case. Ghasemi and Nader-Esfahani [2006]
also consider the line network and obtain connectivity results for one-dimensional net-
works. The threshold phenomena for finite wireless networks on a line is studied in
Eslami et al. [2010]. The authors also find lower and upper bounds on the MAC-layer
capacity for such networks. It should be noted that the main challenges in finite analy-
sis arise in the two-dimensional case. Karmachandani et al. [2006] examined mobility
and more realistic models. The authors obtained results on the connectivity for both
finite and asymptotic cases in one-dimensional networks. Yen and Yu [2004] some sim-
ple local network characteristics, such as the link probability (occurrence of a link) and
average node degrees. Their paper also obtained formulas for the average covered area.
Balister et al. [2007] studied connectivity and coverage for networks on a thin strip of
finite length. The authors provided reliable density estimates for achieving coverage
and connectivity, assuming a Poisson distribution for the nodes.

2. FUNDAMENTAL PROPERTIES OF FINITE UNRELIABLE SENSOR GRIDS

In this section, we present properties of finite unreliable sensor grids. In particular,
we prove that a large class of network properties, such as connectivity, coverage, and
capacity, can be represented as a piecewise constant function of the communication
and sensing radii, rt and rs, respectively. We also discuss the implications of this result
and show the importance of boundary effects in finite networks. We then find an upper
bound for coverage which can be used to approximate the exact value of the coverage.

Here, we consider the sensor network model introduced in Shakkottai et al. [2003].
In particular, it is assumed that n sensor nodes are arranged in a grid over a square
region of unit area. This region is called the deployment region and it is assumed to be
the unit square centered at the origin. Such a grid is depicted in Figure 1. We show
the deployment region by S0. The separation between adjacent nodes is assumed to be

1√
n units. Each sensor node can detect events within some distance from it, called the
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sensing radius rs. Each sensor is active with probability p independently from other
nodes. The transmission radius of each node is assumed to be rt. In other words, if the
distance between two sensor nodes u and v is less than rt, then they can communicate
with each other, thus the edge {u, v} belongs to edges of the graph. It is worth noting
that our results apply to any deterministic placement of finite sensor networks and
also any finite deployment region with smooth boundaries. However, for simplicity, we
consider the preceding grid model in this article. We are interested in connectivity and
coverage, in particular, we assume pdisc(n, p, rt) is the probability that the sensor grid
with parameters n, p, and rt constructs a disconnected graph. We also assume that
pcov(n, p, rs, k) is the probability that each point of the unit square (i.e., the deployment
region) is covered by at least k sensors in the sensor grid with parameters n, p, and
rs. Thus, pcov(n, p, rs, 1) is the probability that the whole unit quare is covered by the
sensor nodes.

2.1. Sensor Grids: Asymptotic versus Finite Analysis

We now present some evidence to show that previous asymptotic results diverge signifi-
cantly from actual values for finite grids. To show this, we consider connectivity and cov-
erage. Let us first consider coverage. The asymptotic coverage probability pcov(n, p, rs, k)
has been found in Kumar et al. [2008]. In particular the following fundamental result
has been obtained.

THEOREM 1. (Kumar et al. 2008). Let ε be an arbitrary constant positive real number
and k be a constant positive integer. Then, for n chosen large enough, we have the
following two cases.

—If rs(n) ≥
√

(1+ε) log(np)
πnp , then the unit square is almost always k-covered completely, that

is, pcov(n, p, rs, k) = 1 − o(1).

—If rs(n) ≤
√

(1−ε) log(np)
πnp , then pcov(n, p, rs, k) = o(1).

Using simulations, Kumar et al. [2008] have shown that this theorem results in accu-
rate estimation of pcov(n, p, rs, k) when n is large (say n > 10,000). Thus, the theorem
is very useful in the design of large-scale sensor networks. Let us now consider a sen-
sor grid consisting of 100 unreliable sensor nodes with p = 0.2. If we want to use the
asymptotic result for this network, choosing ε = 0.1, we conclude that if r ≥ 0.229, then
pcov(n, p, rs, k) ≈ 1 and if r ≤ 0.207, then pcov(n, p, rs, k) ≈ 0. We have used exhaustive
simulations to obtain an accurate estimate of pcov(n, p, rs, k). In Figure 2, we compare
the results obtained by exhaustive simulations and Theorem 1. It is observed that the
two results differ considerably. For example, at rs = 0.25, the asymptotic result pre-
dicts that the unit square is covered with probability close to one. However, simulations
show that this probability is only pcov(n = 100, p = 0.2, r = 0.25, k = 1) = 0.018. It
is clear that for this network, the asymptotic analysis cannot provide results that are
sufficiently accurate. Figure 3 shows that the same situation exists when we consider
k-coverage for k > 1. Thus, it is very important to provide finite-size analysis. We also
observe that the coverage probability obtained by simulations shows several disconti-
nuities. We prove this phenomenon in Section 2.2. We performed many simulations for
different values of n, p, and k to further validate the insufficiency of asymptotic results.
However, we omit them for brevity.

2.2. Discontinuity in Properties of Sensor Grids

Here we prove that a vast class of network properties can be represented by piecewise
constant functions of rt and rs. We stress that the piecewise property is one of the
key differences between sensor grids (i.e., deterministic deployment) and randomly
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Fig. 2. Comparison of asymptotic results and simulation results for the coverage probability of a sensor grid
with p = 0.20. For simulations we picked n = 100, while the asymptotic result holds when n tends to infinity.

Fig. 3. Comparison of asymptotic results and simulation results for two-coverage probability (k = 2) of a
sensor grid with p = 0.20. For simulations we picked n = 100, while the asymptotic result holds when n
tends to infinity.

ACM Transactions on Sensor Networks, Vol. 9, No. 4, Article 51, Publication date: July 2013.



Results on Finite WSNs: Connectivity and Coverage 51:7

deployed sensor networks. Consider a right-continuous function f (x) : [0,∞] → R.
The function f is said to be piecewise constant if there exists a set of real numbers
0 = x1 < x2 < x3 < . . . , and c1, c2, . . . , such that f (x) = ci for all x ∈ [xi, xi+1). In this
article we only deal with functions for which the number of xi ’s is finite.

Let Q be a property for sensor grids, such as coverage, that is, we say that a grid
has the property Q if it covers the deployment region. Coverage is an example of
geometric properties. Another category of properties is graph-theoretic properties, such
as connectivity. In particular, any sensor grid with parameters n, p, and rt corresponds
to a graph that can be shown by g(V, E), where V and E are the set of vertices and edges
in the graph, respectively. The sensor nodes construct V , that is, the set of vertices of
the graph. There exists an edge between two vertices if their corresponding sensors
are within the communication range of each other. Any property of g(V, E) is a graph-
theoretic property for the sensor grid. Thus, two different sensor grids will have the
same graph-theoretic properties if they have isomorphic (identical) graphs. We note
that coverage is not a graph-theoretic property.

Let X = {X1, X2, . . . , Xk} be a set of points on the plane. Define g(X , rt) as the graph
obtained by the following method. The vertices of g are the points in X , and there is
an edge between two vertices Xi and Xj , if their distance is less than or equal to rt. We
prove the following theorem.

THEOREM 2. Let Q be a graph-theoretic property of sensor grids with parameters n,
p, rt. Let n and p be fixed numbers and pQ(rt) be the probability that the sensor grid with
communication radius rt has the property Q. Then pQ is a piecewise constant function.
In particular, there exist 0 = r0 < r1 < r2 < · · · < rm ≤ 1√

2
, and c1, c2, . . . , cm such that

pQ(rt) = ci if rt ∈ [ri−1, ri).

PROOF. Let X = {X1, X2, . . . , Xk} be the set of points in the sensor grid. Let also
Xa ⊂ X be the set of active sensors. Assume that g(X , rt) is the corresponding graph.
Let p(Xa) be the probability that Xa is the set of active sensors, then we have

p(Xa) = p|p(Xa)|(1 − p)n−|p(Xa)|, (1)

where | p(Xa) | is the number of active sensor nodes. Then

pQ(rt) =
∑

g(Xa,rt) has Q

p(Xa). (2)

It suffices to find 0 = r0 < r1 < r2 < · · · < rm < 1√
2

such that the network graphs
g(Xa, rt) remain constant for rt ∈ [ri−1, ri) for any choice of Xa and any i ∈ {1, 2, . . . , m}.
Let D = {d1, d2, . . . , dl} be the set of distances between the points in X , and assume

that 0 < d1 < d2 < · · · < dl ≤ 1√
2
. In our grid model, we have di =

√
i
n, i = 1, . . . , l. Then,

the network graph remains the same when rt ∈ [di, di+1) for any i ∈ {1, 2, . . . , m}. This
is because changing rt within [di, di+1) will not add or remove any edges. This means
that we can choose ri = di. Thus pQ in Equation(2) remains constant for rt ∈ [ri−1, ri).
It is also easy to see that pQ is right-continuous because the edges in the graphs are
formed when the distance between two nodes is less than or equal to rt. This completes
the proof.

Note that the preceding discussion shows that any graph-theoretic quantity is a
piecewise constant function of rt. This includes diameter of the network, MAC-layer
capacity [Balakrishan et al. 2004], k-connectivity, etc. We now prove that coverage
probabilities are piecewise constant functions of the sensing radius. Note that this
cannot be concluded from Theorem 2, since coverage is not a graph-theoretic property.
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THEOREM 3. Consider a sensor grid with parameters n, p, rs. Let n and p be fixed
numbers. Then pcov(n, p, rs, k) is a piecewise constant function of rs. In particular, there
exist 0 = r0 < r1 < r2 < · · · < rm ≤ 1√

2
, and c1, c2, . . . , cm such that pcov(n, p, rs, k) = ci if

rs ∈ [ri−1, ri).

PROOF. For simplicity, we prove the theorem for k = 1; the extension to k > 1 is
straightforward. Let pcov(rs) = pcov(n, p, rs, 1). We need to show pcov(rs) ia a piecewise
constant function of rs. It is clear that pcov(rs) is a nondecreasing function. In particular,
we have pcov(0) = 0 and pcov(rs) = 1 for rs ≥ 1√

2
. For a point X in the plane, let circ(X, r)

be the closed ball that is centered at X and has radius r. Define cov(X, rs) to be the
area that is covered by a sensor node located at X with sensing radius rs. In other
words, cov(X, rs) is the portion of circ(X, rs) that lies within the deployment region.
Again assume that X = {X1, X2, . . . , Xk} is the set of points in the sensor grid and that
Xa ⊂ X is the set of active sensors. Define

cov(Xa, rs) =
⋃

X∈Xa

cov(X, rs). (3)

Thus, the unit square S0 is completely covered whenever cov(Xa, rs) = S0. Let 0 ≤ rs ≤
1√
2
. If cov(Xa, rs) = S0, then for all r > rs, we have cov(Xa, r) = S0. On the other hand,

we prove that if cov(Xa, rs) 
= S0, there exists ε > 0 such that for all r ∈ [rs, rs + ε), we
have cov(Xa, r) 
= S0. To prove this, note that the covered area cov(Xa, rs) is a closed set
because it is the union of a finite number of closed sets. Thus, the uncovered area is an
open set, and hence, to cover the uncovered area, the sensing radius rs must increase
by a strictly positive amount.

We now prove that for any rs, there exists a strictly positive ε such that pcov(r)
remains constant as the sensing radius r varies within [rs, rs + ε). Define

Xrs
a = {Xa : cov(Xa, rs) = S0}, and X

rs

a = {Xa : cov(Xa, rs) 
= S0}. (4)

Note that Xrs
a and X

rs

a are finite sets. Using Equation (4) we have

pcov(rs) =
∑

Xa∈Xrs
a

p(Xa). (5)

For any Xa ∈ X
rs

a , define ε(Xa) = min{r′ s.th. cov(Xa, rs +r′) = S0} and let ε = min{ε(Xa) :
Xa ∈ X

rs

a }. Then ε > 0. Further, for all r ∈ [rs, rs +ε), we have X
r
a = X

rs

a . Thus we conclude
that for all r ∈ [rs, rs +ε), we have Xr

a = Xrs
a . Using Equation (5) we conclude that pcov(rs)

does not change as r varies in [rs, rs + ε). This proves that pcov(rs) is a right-continuous
piecewise constant function.

It remains to show that the number of discontinuities is finite. This follows easily from
the fact that the number of Xa’s is finite. Note that by Equation (5), any discontinuity
occurs when the set Xrs

a changes due to an increase in rs. However, Xrs
a can have at most

2n elements. Further, at each discontinuity, at least one element is added to Xrs
a . This

implies that the number of discontinuities is upper-bounded by 2n. It is worth noting
that in practice, the number of discontinuities is much smaller than 2n. This completes
the proof.

Theorems 2 and 3 determine the behavior of a vast class of network quantities when
they are considered as functions of communication and sensing radii. In particular,
these are important from the viewpoint of finite sensor grids. We note that for very
large network sizes, the piecewise constant functions tend to continuous functions.
Thus, we do not observe the discontinuities. However, in such networks as finite sensor
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grids, this property is noticeable, as in Figures 2 and 3. We clarify that because the sim-
ulation results are approximations for the actual values, the figures are not completely
piecewise constant. In fact, one of the implications of Theorems 2 and 3 is to simplify
simulations, since the piecewise constant functions can be completely determined by
knowing their values for only a finite number of points. Furthermore, the preceding
results suggest that increasing the communication and sensing radii does not nec-
essarily improve coverage, connectivity, or any other graph-theoretic properties. This
is an important observation for designing the network and choosing its parameters
optimally.

2.3. Bounds on the Coverage Probability

We now consider coverage probability for finite sensor grids. We find lower and upper
bounds for pcov(n, p, rs, k) and show that they can give an acceptable estimate of the
coverage probability. Let N(r, x, y) be the number of sensors whose distance from the
point (x, y) is less than or equal to r. For example, N(r, 0.5, 0.5) denotes the number
of sensors whose distance from the top-right corner of the unit square is less than or
equal to r. We first prove the following lemma.

LEMMA 1. Let L be the set of
√

l × √
l points in a virtual grid on the unit square.

Let us also denote by A(u) the event that point u on L is covered by a sensor grid with
coverage radius rs. We then have

Pr

(∧
u∈L

A(u)

)
≥

∏
u∈L

Pr(A(u)). (6)

PROOF. We use FKG inequality to prove this lemma [Fortuin et al. 1971]. We first
show that for any two subsets I and J of L, we have Pr(A(I)

∧
A(J)) ≥ Pr(A(I)) ×

Pr(A(J)). Here, A(I) (A(J)) is the event that all points in I (J) are covered. Since this
is true for any two subsets of L, Equation (6) can be derived by partitioning L and the
resulted components, repeatedly, and then using this property at each step.

First note that we can enumerate the nodes in the sensor grid from 1 to n. Accordingly,
we can show the status of the network with a n-tuple binary vector, where 0 and 1 are
assigned to inactive and active nodes, respectively. Let us denote by T the set of all
possible binary n-tuples as the network status, that is, T = {t = (t1, t2, . . . , tn) ∈ {0, 1}n}.
T can be then defined as a finite distributive lattice as follows. For x = (x1, x2, . . . , xn)
and y = (y1, y2, . . . , yn) in T , we define x ∨ y as the elementwise “or” of x and y.
That is, if w = x ∨ y = (w1, w2, . . . , wn), then wi = xi ∨ yi. Similarly, we define x ∧ y
as the elementwise “and” of x and y, that is, if w = x ∧ y = (w1, w2, . . . , wn), then
wi = xi ∧ yi. With these definitions, it is easy to check that ∨ and ∧ are distributive
over each other. Note that the lattice defined this way is partially ordered, as we have
(x ∧ y) � x, y � (x ∨ y).

We now define a probability measure μ : T → R
+ as follows. For x ∈ T , μ(x) =

pk(1 − p)n−k, where k = ∑n
i=1 xi. Note that μ(x) in fact indicates the probability that

the sensor grid admits the status x with k active sensors and n − k inactive sensors.
It is also trivial to verify that μ(x)μ(y) ≤ μ(x ∨ y)μ(x ∧ y), which is required by FKG
inequality. Given two subsets I and J of L, we also define functions f, g : T → R

+ as
follows. For every x ∈ T , f (x) = 1 (g(x) = 1) if I (J) is covered. By these definitions,
f and g are both increasing functions over T . Given the lattice T , measure μ, and
functions f and g from earlier, the FKG inequality holds as follows.(∑

x∈T

μ(x) f (x)

)
.

(∑
x∈T

μ(x)g(x)

)
≤

(∑
x∈T

μ(x) f (x)g(x)

)
.

(∑
x∈T

μ(x)

)
. (7)
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However,
∑

x∈T μ(x) = 1. Furthermore,
∑

x∈T μ(x) f (x),
∑

x∈T μ(x)g(x), and
∑

x∈T μ(x)
f (x)g(x) are in fact equal to Pr(A(I)), Pr(A(J)), and Pr(A(I)

∧
A(J)), respectively.

Equation (7) can thus be rewritten as Pr(A(I)
∧

A(J)) ≥ Pr(A(I)) × Pr(A(J)). This
completes the proof.

Now we are ready to prove the lower bound on the coverage probability.

THEOREM 4. Consider the coverage probability for a finite sensor grid with parame-
ters n, p, and rs. We then have

pcov(n, p, rs, 1) ≥
∏
u∈L

[
1 − (1 − p)N(r′

s,xu,yu)], (8)

where L is the virtual grid in Lemma 1, and the radius r′
s is given by rs − 1√

2l
.

PROOF. First note that the choice of the virtual grid L and its size, l, is arbitrary.
As a result, for any given rs, we choose l large enough such that rs − 1/

√
2l > 0. To

prove this theorem, we make use of some results in Kumar et al. [2008]. Lemma 3.1
in Kumar et al. [2008] states that for a given set of points L that consists of all grid
points of a

√
l ×√

l virtual grid on a unite square, if L is covered by a network of radius
r′

s, the unit square is covered by the same network but with radius rs = r′
s + 1√

2l
. Hence,

pcov(n, p, rs, 1) ≥ Pr(L covered). Now we use Lemma 1 to prove the lower bound. Let us
denote by A(u) the event that point u is covered by a network with coverage radius r′

s. By
Lemma 1, we have Pr(

∧
u∈L A(u)) ≥ ∏

u∈L Pr(A(u)). Now, note that the probability that
a point u with coordination (xu, yu) is covered by the set of n nodes with coverage radius
r′

s is given by [1 − (1 − p)N(r′
s,xu,yu)]. Thus, we write pcov(n, p, rs, 1) ≥ Pr(L covered) =

Pr(
∧

u∈L A(u)) ≥ ∏
u∈L Pr(A(u)) = ∏

u∈L[1 − (1 − p)N(r′
s,xu,yu)].

Now, we prove an upper bound for the coverage probability.

THEOREM 5. Consider sensor grids with parameters n, p, rs. Then the coverage prob-
ability is upper bounded by

pcov(n, p, rs, 1) ≤ [
1 − (1 − p)N(rs,.5,.5)]4 × [

1 − (1 − p)N(rs,.5,0)]4� (1−2rs )
2rs

�

× [
1 − (1 − p)N(rs,0,0)]� (1−2rs )

2rs
�2

, (9)

where �x� denotes the largest integer less than or equal to x.

PROOF. Let X1 = (x1, y1), X2 = (x2, y2), . . . , Xm = (xm, ym) be m points on the deploy-
ment region S0. Assume that d(Xi, Xj) > 2rs for i 
= j, where d(., .) is the Euclidean
distance between the points. Then the event that Xi is covered is independent of the
event that Xj is covered, because there is no sensor node that can cover both points.
Hence, the probability that all Xi ’s are covered is given by

m∏
i=1

[
1 − (1 − p)N(rs,xi ,yi )

]
. (10)

This implies that pcov(n, p, rs, 1) is upper bounded by
∏m

i=1[1 − (1 − p)N(rs,xi ,yi )]. Thus
using any set of points on the plane that satisfy d(Xi, Xj) > 2rs, we can find an upper
bound for pcov(n, p, rs, 1). In particular, considering the set of points given by Figure 4,
we obtain the upper bound in Equation (9).

Note that the choice of Xi ’s in the proof ensures that we consider the edge effects. In
fact, in many situations, the coverage probability is dominated by the first and second
terms in Equation (9) which are related to edge effects. One may suggest that using a
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Fig. 4. Location of the points used for the upper bound of Theorem 5. The centers of the circles are points
X1 = (x1, y1), X2 = (x2, y2), . . . , Xk = (xk, yk).

triangular grid instead of non-overlapping balls can result in a more dense packing and,
consequently, a better bound. However, using a triangular grid results in fewer nodes on
the sides of the square. We have evaluated Equation (10) for the triangular grid as well
as some other more complicated layouts. It turn out that the resulting bound is looser
for the triangular grid. Moreover, there is only a negligible improvement by using other
layouts at the expense of a more complicated expression compared to Equation (9). It is
also worth noting that N(rs, .5, .5), N(rs, .5, 0), and N(rs, 0, 0) introduce discontinuities
in the upper bound, as predicted by Theorem 3.

Figure 5 compares the results obtained by Theorems 4 and 5 and the simulations for
n = 100 and p = 0.2. We observe that Theorems 4 and 5 provide significantly better
estimates of coverage probability compared with the asymptotic analysis in Figure 2.
The asymptotic behavior of these bounds can be checked by letting n to grow large. The
derivation of the lower bound employs a similar argument, as in the case of Lemma 4.1
in Kumar et al. [2008]. It can be checked that this bound leads to the same asymptotic
expression as in Theorem 1; hence it is tight asymptotically. On the other hand, when
n gets large, we can reasonably expect the same situation as in the upper bound of
Theorem 5. That is, the terms corresponding to the virtual nodes (i.e., nodes on the
virtual grid) on the corner and close to the edges will be dominant in the lower bound
of Equation (8). This is true because there are fewer sensor nodes around these virtual
nodes to cover them, causing the coverage probability Pr(A(u)) for these virtual nodes
to decay faster than the rest of the virtual nodes. Regarding the asymptotic behavior
of the upper bound of Equation (9), it can be verified that if npπr2

log(np) < 1 − ε as n tends to
infinity, then the upper bound will be o(1).

We also like to talk about the time complexity of computing the bounds in Theorems 4
and 5. The upper bound of Theorem 5 can be computed in time O(n). This is because
we need to find the neighbors for 1/(2rs)2 points, and finding the number of neighbors
for each point takes a constant amount of time. However, if 1/(2rs)2 > n, then pcov = 0.
Thus, the complexity is O(1/(2rs)2) = O(n). For the lower bound in Theorem 4, note
that we only need to find the number of neighbors for every node of L. Given the sensor
grid and the virtual grid L, finding the number of neighbors for each node of L takes a
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Fig. 5. Comparison of finite-size analysis with the simulation results for the coverage probability of sensor
grids with n = 100 and p = 0.20.

constant amount of time. Also note that for r′
s to be positive, L needs to contain more

nodes than the sensor grid, hence l > n. Therefore, the lower bound can be computed
with complexity O(l).

Theorems 4 and 5 can be easily generalized for k-coverage. Since the proof is very
similar, we just state the result in one theorem.

THEOREM 6. Consider the k-coverage probability for a sensor grid with parameters
n, p, and rs, and assume that L and r′

s are as defined in Theorem 4. Then we have

pcov(n, p, rs, k) ≥
∏
u∈L

[
1 −

k−1∑
i=0

(
N(r′

s, xu, yu)
i

)
pi(1 − p)N(r′

s,xu,yu)−i

]
, (11)

and

pcov(n, p, rs, k) ≤
[

1 −
k−1∑
i=0

(
N(rs, .5, .5)

i

)
pi(1 − p)N(rs,.5,.5)−i

]4

×
[

1 −
k−1∑
i=0

(
N(rs, .5, 0)

i

)
pi(1 − p)N(rs,.5,0)−i

]4� (1−2rs )
2rs

�

×
[

1 −
k−1∑
i=0

(
N(rs, 0, 0)

i

)
pi(1 − p)N(rs,0,0)−i

]� (1−2rs )
2rs

�2

. (12)

Figure 6 compares the results obtained by Theorem 6 and the simulations for k = 2,
n = 100, and p = 0.2. We observe that the two results are very close.

ACM Transactions on Sensor Networks, Vol. 9, No. 4, Article 51, Publication date: July 2013.



Results on Finite WSNs: Connectivity and Coverage 51:13

Fig. 6. Comparison of finite-size analysis with the simulation results for the two-coverage probability (k = 2)
of sensor grids with n = 100 and p = 0.20.

3. SMALL-SCALE ANALYSIS FOR RANDOM SENSOR NETWORKS

In this section, we try to establish a framework for analysis of finite sensor networks
with random node deployment. As we mentioned earlier, the exact analysis of network
properties is usually very difficult or at least results in very complicated formulas.
Thus, we will try to find simple lower and upper bounds which are sufficiently close
together that can be used to find a good estimate of the exact value of the desired
property. Here, we consider coverage and connectivity in finite sensor networks.

3.1. Preliminaries

We consider a wireless sensor network that consists of n nodes and assume that the
nodes are placed on a plane based on a given probability distribution. For example,
in wireless sensor networks, it is usually assumed that the nodes are randomly and
uniformly deployed over a given field [Akyildiz et al. 2002]. We assume that each
node has a fixed communication radius. Two nodes are connected (can communicate
with each other) if they are within communication range of each other. Throughout
the article, we assume B(R2) is the Borel σ−algebra on R

2 and m is the Lebesgue
measure on B(R2). Note that we just use measure-theoretic definitions to take care of
technicalities, but it is not necessary for the reader to be familiar with them. The reader
can simply assume that for a set F in R

2, m(F) is the area of F. B(X, R) is the closed ball
with radius R centered at X in R

2. S(X, L) is the closed square with side L centered
at X in R

2. In particular, S0 = S(O, 1) is the closed square with unit area centered
at the origin. If u and v are two nodes of a network located in R

2, then d(u, v) is the
Euclidean distance between the location of the points. For any set F ∈ B(R2), we define
ν(F) = m(F ∩ S0). Clearly, ν defines a measure on B(R2).

Wireless networks are sometimes modeled with the probability space of graphs that
we represent with g(n, r) = g(n, r(n)). In this model, it is assumed that n nodes are
uniformly and randomly distributed over S0 = S(O, 1). If two nodes u and v satisfy
d(u, v) ≤ r(n), then the edge {u, v} belongs to edges of the graph. A more general model
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Fig. 7. The field S0 and its subdivisions S1,S2, and S3.

is the model g(n, r, p), in which two nodes are connected with probability 0 < p � 1
if their distance is less than r. In this model, p models link failures that are common
in wireless networks. Note that here we are using p as a different notation from the
previous section. Asymptotic properties of g(n, r) have been studied extensively. Here
we are interested in these properties when n is not necessarily large. It is worth noting
that the assumption that the nodes are distributed on a square is made for simplicity.
These arguments can easily be generalized to other models for the deployment region
as well as the case where nodes are distributed nonuniformly over the deployment
region. For the purpose of analysis, we divide the square S0 into different parts shown
in Figure 7.

3.2. Asymptotic versus Finite Analysis

In this section, we present some evidence to show that previous asymptotic results
diverge significantly from actual values for finite networks. To show this, we consider
connectivity. We first provide the asymptotic probability of disconnectivity for g(n, r, p)
and compare it to simulation results. The following result is proved in Gupta and
Kumar [1998], where a slightly different model is considered. However, the results can
be trivially extended to g(n, r).

THEOREM 7 (GUPTA AND KUMAR 1998). Let cn = nπr2 − log(n), then g(n, r) is connected
with high probability if limn→∞ cn = ∞. On the other hand, if limn→∞ cn = c < ∞, then
for large n, g(n, r) is disconnected with a strictly positive probability 1 − pasymp(c).

This theorem states that if limn→∞ cn = c < ∞, the network connectivity probability
will be bounded away from one. In fact, pasymp(c) is the limit for the probability that the
network is connected when n goes to infinity. To find pasymp(c), Penrose [1997] proved
that g(n, r) is connected if and only if the longest edge of its corresponding minimal
spanning tree (MST) is smaller than r. On the other hand, if we denote the longest edge
of the MST by Mn, it is shown [Penrose 1997] that the distribution of nπ Mn

2 − log n
converges to the following double exponential distribution.

lim
n→∞ P

[
nπ Mn

2 − log n ≤ α
] = exp(−e−α) for α ∈ R. (13)
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Fig. 8. Comparison of asymptotic results with the small-scale simulation results for the probability of
disconnectivity of g(n = 100, r).

Thus, we have

pasymp(c) = lim
n→∞ P[Mn ≤ r] = lim

n→∞ P
[
nπ Mn

2 − log n ≤ nπr2 − log n
] = e−e−c

. (14)

Therefore, asymptotically, the probability that g(n, r) is connected is given by

pasymp = e−ne−nπr2

.

In Figure 8, we compare the probability of having a disconnected graph for n = 100
and for both exhaustive simulations and the asymptotic results. The probability of
disconnectivity is shown as a function of r, the communication radius. The experiment
shows that these results may differ by ten orders of magnitude. This illustrates that
the asymptotic method fails to provide a good approximation for small- scale networks.

A natural question to ask is what makes the results for the asymptotic analysis so
different from the finite case? As you can see in Figure 7, S0 is formed by three regions—
S1, and boundary regions S2 and S3. One important phenomenon in asymptotic analysis
is that boundary effects can be neglected. Loosely speaking, the asymptotic analysis of
the network properties is usually dominated by what happens in region S1 in Figure 7.
This can considerably simplify the analysis and results in simple and closed-form
formulas for network properties. In fact, we saw an example of this phenomenon in the
asymptotic formula for connectivity in Equation (14). However, in small-scale networks,
boundary effects cannot be neglected. In other words, nodes in the corners of the field
can play an important role in some network properties.

Another important issue in the analysis of finite networks is the effect of constant
factors. In asymptotic analysis, we usually neglect constant factors. However, in the
small-scale analysis, we must consider them. This is in fact a distinction of any finite
analysis from the asymptotic analysis and is not specific to geometric graphs.

3.3. Small-Scale Analysis for Coverage

In this section, we study the coverage probability, pcov(n, r), for finite sensor networks
modeled by g(n, r). We prove lower and upper bounds for the coverage probability.
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We start with the lower bound, which gives the worst-case performance, as well as a
guarantee of the coverage probability.

THEOREM 8. Consider the coverage probability of a sensor network modeled by g(n, r).
Then we have

pcov(n, r) ≥ 1 −
∑
u∈L

[1 − ν(B(X(u), r′))]n, (15)

where L is the set of
√

l × √
l points in a virtual grid on the unit square and the radius

r′ is given by r − 1√
2l

.

PROOF. We briefly describe the proof. As in the case of grid deployment, showing that
L is covered guarantees the coverage of the entire region. Let A(u) be the event that
the virtual grid point u is covered. Using union bound, we have

Pr(L not covered) = Pr

[⋃
u∈L

A(u)

]
≤

∑
u∈L

Pr(A(u)) =
∑
u∈L

[1 − ν(B(X(u), r′))]n. (16)

Therefore, pcov(n, r) = 1 − Pr(L not covered) ≥ 1 − ∑
u∈L[1 − ν(B(X(u), r′))]n.

Now we prove an upper bound for the coverage probability.

THEOREM 9. The coverage probability of a unit square for a sensor network modeled
by g(n, r) has an upper bound given by

pcov(n, r) ≤
[

1 −
(

1 − πr2

4

)n]4

×
[

1 −
(

1 − πr2

2

)n]4� (1−2r)
2r �

× [1 − (1 − πr2)n]�
(1−2r)

2r �2

.

(17)

PROOF. We adapt the proof of Theorem 5 to prove Theorem 9. Consider k points
U1,U2, . . . ,Uk on the unit square and assume that these k points are at least apart
by 2r units from one another. Similar to the proof of Theorem 5, we can observe that
pcov(n, r) is upper bounded by the probability that all the k points are covered, which
is given by

∏k
i=1(1 − [1 − ν(B(Ui, r))]n). Using the set of points depicted in Figure 4, we

find the upper bound given by Equation (17).

Figure 9 compares the bounds predicted by Theorems 8 and 9 with the simulated
coverage probability value. The asymptotic result from Kumar et al. [2008] is also
presented. Clearly, the bounds are more useful than the asymptotic result in the sense
that they give a better estimate of the coverage probability.

3.4. Small-Scale Analysis for Connectivity

In this section, we study the connectivity properties of finite sensor networks mod-
eled by g(n, r, p). We find lower and upper bounds for the probability pdisc(n, r, p) that
g(n, r, p) is disconnected. Let plow(n, r, p) and pupp(n, r, p) be the lower and upper bounds
on pdisc(n, r, p), respectively. Here we consider the case where pdisc(n, r, p) is small, that
is, pdisc(n, r, p) < 0.1. In practice, this is usually the range that is important, since we
want the network to be connected with high enough probability. Using these bounds,
we then provide a simple formula to estimate pdisc(n, r, p). As we will see by simulations
that the proposed formula gives a very good estimate for pdisc(n, r, p). First, note that a
connected component of a graph g is defined as a connected subgraph that is isolated
from the rest of g.
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Fig. 9. Simulation results and upper and lower bounds of coverage probability for a random wireless network
of size n = 100.

THEOREM 10. Consider a wireless sensor network modeled by g(n, r, p). Then we have

pdisc(n, r, p) ≥n
∫
S0

(1 − ν(B(X, r))p)n−1dm(X)

−
(

n
2

) ∫
S0

∫
S0

(1 − ν(B(X, r))p − ν(B(Y, r))p

+ ν(B(X, r) ∩ B(Y, r))p2)n−2dm(X) × m(Y ), (18)

and

pdisc(n, r, p) ≤
n/2∑
k=1

(
n
k

)
pcomp({v1, v2, . . . , vk}) = n

∫
S0

(1 − ν(B(X, r))p)n−1dm(X)

+
n/2∑
k=2

(
n
k

)
pcomp({v1, v2, . . . , vk}), (19)

where pcomp({v1, v2, . . . , vk}) is the probability that the vertices in {v1, v2, . . . , vk} construct
a connected component in g(n, r, p).

PROOF. Let p1(n, r, p) be the probability that there exists at least one isolated node
(i.e., a vertex with no neighbors) in g(n, r, p). Let v1, v2, . . . , vn be the n vertices
of g(n, r, p). Then pdisc(n, r, p) ≥ p1(n, r, p). Applying the inclusion-exclusion lemma,
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we obtain

pdisc(n, r, p) ≥
n∑

k=1

(−1)k+1
(

n
k

)
Pr{v1, v2, . . . , vk are isolated vertices}

≥ n Pr{v1 is isolated} −
(

n
2

)
Pr{v1 and v2 are isolated}.

Note that Pr{v1 is isolated } = ∫
S0

(1 − ν(B(X, r))p)n−1dm(X). Now define Circ(a, b, r) =
{(x, y) : (x − a)2 + (y − b)2 ≤ r2}. Then we have

Pr{v1 and v2 are isolated vertices}
=

∫
S0

∫
S0\Circ(X,r)

(
1 − ν(B(X, r))p − ν(B(Y, r))p + ν(B(X, r) ∩ B(Y, r))p2)n−2dm(X)

× m(Y ) + (1 − p)

×
∫
S0

∫
Circ(X,r)

(
1 − ν(B(X, r))p − ν(B(Y, r))p

+ν(B(X, r) ∩ B(Y, r))p2)n−2dm(X) × m(Y )

≤
∫
S0

∫
S0

(
1 − ν(B(X, r))p − ν(B(Y, r))p + ν(B(X, r) ∩ B(Y, r))p2)n−2dm(X) × m(Y ).

Combining these equations, we conclude the lower bound. For the upper bound, note
that pdisc(n, r, p) is equal to the probability that g(n, r, p) has at least one component of
size less than n/2. This is given by Equation (19).

Note that the bounds for pdisc(n, r, p) may not satisfy the simplicity requirement.
Particularly in the upper bound, except, for the first few terms, finding the rest of them
is computationally infeasible. We now try to give an estimation of pdisc(n, r, p) based
on these bounds. Let us denote the kth term in the upper bound by ak. We recall the
assumption that pdisc(n, r, p) is not very large; specifically, we assumed pdisc(n, r, p) <
0.1. An important observation here is that, by this assumption, the ak coefficients
decay very fast, and hence, the term

∑n/2
k=1 ak is dominated by a1. This can be seen

by both numerical simulations and intuitive analytical arguments. In fact, as it is
shown in Penrose [2003], as n tends to infinity, the impact of the terms ak, k > 1
fades. Figure 10 compares a1 and a2 for g(n = 100, r, p = 0.5). As we see, a2 is at least
one order of magnitude smaller than a1. Using the same approach, we find out that
a similar argument is true about the first and second terms in the lower bound of
Equation (18). However, the first term is shared by both the lower and upper bounds.
Based on these observations, we approximate the probability of disconnectivity as
follows.

pdisc(n, r, p) � n
∫
S0

(1 − ν(B(X, r))p)n−1dm(X). (20)

Figure 11 shows the upper bound, lower bound, and the simulation result for the
probability of disconnectivity of g(n, r, p), for n = 100, and p = 0.5. As it can be seen,
the three curves almost overlap. Based on our simulations, similar results are achieved
if we use different choices of parameters.
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Fig. 10. Comparison of a1 and a2 in Equation (19).
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Fig. 11. Disconnectivity probability of g(100, r, .5): lower bound, upper bound, and the simulation results.

It is worth noting that the methodology used here can be used to study k-connectivity.
In summary, we find the following approximation of the probability that g(n, r) is not
k-connected.

pk,disc(n, r) �
k−1∑
j=0

n
(

n
j

) ∫
S0

[ν(B(X, r(n)))] j × (
1 − ν(B(X, r(n)))

)n− j−1dm(X). (21)

Our simulations for different values of k confirm the validity of Equation (21). Here,
due to the space limitations we omit those results.
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4. CONCLUSIONS

In this article, we took some initial steps towards analyzing finite wireless sensor
networks. We provided some compelling evidence to show that asymptotic results
are not suitable for analyzing practical finite sensor networks. We studied connec-
tivity and coverage of finite unreliable sensor grids as a special case. We showed
that the connectivity, as well as all the graph-theoretic quantities, are piecewise con-
stant functions of the transmission radius in such networks. We also proved that the
coverage has a similar behavior. Moreover, we obtained lower and upper bounds for
the coverage and k-coverage probability of the grids and verified their preciseness
through simulations. Next, we extended our study to finite sensor networks with ran-
dom node deployment. Specifically, we considered coverage and connectivity of such
networks. We derived lower and upper bounds for their coverage and showed how
they could be used to estimate the coverage probability of the network. We also ob-
tained a formula for connectivity of wireless sensor networks and verified its accuracy
through simulations. The formula was then extended to include k-connectivity. A com-
mon characteristic of all these bounds is the ease of computations, making them very
attractive.

This article also opens up many research possibilities that offer some potentials for
further study. In the past, many other important properties of wireless sensor networks
have been studied for large-scale networks. It is an important task to extend these
results for networks with practical sizes, that is, small-scale networks. Small-scale
analysis can also reveal the effects of network parameters on network characteristics.
The next step would be to derive more accurate bounds for network parameters, such
as coverage, connectivity, and MAC-layer capacity, and further use the small-scale
framework in the design, analysis, and evaluation of communication algorithms for
wireless networks.
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