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Abstract— Adapting the functioning of the collision warning
systems to the specific drivers’ characteristics is of great benefit
to drivers. For example, by customizing collision warning
algorithms we can minimize false alarms, thereby reducing
injuries and deaths in highway traffic accidents. In order to
take the behaviors of individual drivers into account, the system
needs to have a Real-Time estimation of the distribution of
brake response times for an individual driver. In this paper,
we propose a method for doing this estimation which is
not computationally intensive and can take advantage of the
information contained in all data points.

I. INTRODUCTION

Traffic accidents in the United States cause over 30,000
deaths each year [1]. Some of these accidents could be
prevented or reduced in severity if the drivers involved were
warned in time to slow or steer to avoid the accident.
Collision warning systems do reduce the behaviors that
lead to crashes. Radical improvements in the effectiveness
of collision warning systems are now possible due to the
progress that is being made in Vehicular Ad Hoc Networks
(VANET). Vehicular ad hoc networks potentially allow all
vehicles to communicate with each other (V2V) and with
technologies embedded in the road infrastructure (V2I).

The effectiveness of warnings depends on how much time
the driver needs to react. Therefore, to be as effective as
possible, accident warning systems should be tailored to the
specific characteristics of the driver. An important aspect
of that is the distribution of brake response times (BRT)
for each particular driver. The BRT is the time elapsed
between a stimulus such as a lead car braking or traffic signal
changing color and a braking response by the driver. In this
paper we describe a method for estimating the distribution
of BRTs for a particular driver using data from a VANET
system which has information about the positions, velocities,
accelerations of cars on the roads, and the status and position
of traffic signals. Then, we will be able to use the estimated
distribution to adapt the system to drivers’ characteristics
[2]. The paper is organized as follows. In section II we
review the relevant literature formally defining the BRT and
related quantities, and outlining some methods that have been
proposed to estimate a driver’s BRT. Section III outlines the
methods that can be used to estimate what the distribution of
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Fig. 1: The scheme for defining perception reaction times as
given by Koppa [3].

a driver’s BRTs would be if he or she did not intentionally
delay braking. In section IV our concluding remarks are
discussed.

II. RELATED WORK

A. Basic Ideas: Perception-Reaction Times and Brake Re-
sponse Times

The time required to respond to a stimulus can be divided
into several distinct phases. One such division is given by
Koppa [3]. He defines the perception time as the amount of
time it takes for an individual to recognize that an event
has occurred. The reaction time is then the time elapsed
from detection of a stimulus to the start of a response.
The response time includes the reaction time as well as the
time required to complete the response. These divisions are
illustrated in Fig. 1.

There is some ambiguity in this definition of the reaction
and response times in that we must specify what is meant
by the response. Commonly in driving studies, the response
is operationally defined to be the act of braking. This oper-
ational definition is convenient because it is relatively easy
to measure when the brakes have been applied. However, a
difficulty with this definition is that a driver may intentionally
delay braking, for instance if there is a large space between
the driver and a traffic signal or leading car. This means
that measured response times may be larger than the drivers’
“true” response times [4]. This delay is illustrated in the data
plot reproduced in Fig. 2, which is taken from an article by
Goh and Wong [4]. We have rotated the plot to clarify that we
view time headway as the independent variable and response
time as the dependent variable. In this plot the horizontal axis
shows the driver’s time headway to a traffic signal at the time
it turned from green to yellow and the vertical axis shows
the measured brake reaction time for drivers who braked (or
the actual time to pass the signal for those drivers who ran
the light). We see that when the driver is a larger distance
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Fig. 2: Rotated plot from Goh and Wong of observed brake
reaction times (PRT in their terminology) vs. time headway
to traffic signal [4]. Points above the diagonal line correspond
to cars that did not stop at the intersection.
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Fig. 3: An illustration of the potential brake response time
and brake response time.

from the traffic signal, their measured brake response time
is larger – likely because they chose to delay braking.

In this paper we define the potential brake response time
(PBRT) as the time that a driver could have braked in if
he or she did not choose to delay braking, which is the
relevant quantity for the purposes of an accident warning
system. We will use the term “brake response time” (BRT)
to refer to the observed quantity, the time elapsed between a
stimulus such as a traffic signal color change and when the
driver applies pressure to the brake pedal. These definitions
are illustrated in Fig. 3. The estimation of BRT and PBRT
both present technical difficulties. We review methods that
have been proposed to estimate these quantities by previous
researchers in the next two subsections.

B. Estimation of Brake Response Time from Car-Following
Data

Several previous studies have examined how BRT can
be estimated from car-following data automatically. Here

we review some of these methods, focusing in particular
on the effectiveness of these algorithms for obtaining an
accurate estimate of the BRTs to several distinct events and
on the feasibility of implementing them with the limited
computational resources available in an on-board computer
system in a car. The idea proposed by Zhang and Bham
[5] is based on intuitive reasoning about the relationships
between the distances, speeds, and accelerations of two cars
when the following car reacts to an action taken by the
lead car. The starting point in their algorithm is to identify
two cars which go for a period of at least 4 seconds in
which they are separated by less than or equal to 250
feet and their speeds are within 5 ft/s, or 1.52 m/s. These
cars are said to be in a steady state.The advantages of
this method are that it is intuitively reasonable, relatively
easy to implement, and it yields reasonable reaction time
estimates. However, the requirement that the cars be in
steady state is restrictive. To obtain more information about
drivers’ reaction times, it would be helpful to extend this
approach to estimate reaction times in other situations than
the steady state. Another approach was taken by Ahmed, who
specified a reaction time distribution as part of a larger model
of car-following behavior, and estimated all parameters of
this model jointly through maximum likelihood techniques
[6]. However, the maximum likelihood estimates had to be
obtained numerically, which is computationally intensive due
to the complexity of the model. Therefore, this method would
not be practical to implement in a collision warning system
where the BRT distribution must be obtained with limited
computing resources.

C. Estimation of Potential Brake Response Times from Ob-
served Brake Response Times

Most of the previous studies have addressed the problem of
estimating the distribution of “true” reaction times based on
observed brake response times. All of these studies examined
this problem in the context of traffic signals, and focused on
estimation of population distributions, rather than distribu-
tions of response times for a particular individual. Maxwell
and Wood simply used the mode response time as a point
estimate for the average brake response time in a population,
arguing that this measure would be less sensitive to large
reaction times that include a delay [7]. Goh and Wong take
a more sophisticated approach [4]. They define a transitional
zone (TZ) based on the time headway between the driver and
the traffic signal at the time that it changes to yellow. This TZ
is “an empirically calibrated range of time headways suitable
for identifying drivers with realistic stop-or-cross decisions”
[4]. Essentially, to estimate response times they limit the
sample to those cars with a time headway of ≤ 4 seconds.
Nearly all cars that chose not to stop at the light were within
the 4-second threshold; thus, this threshold includes cars
with a “real” choice between stopping and continuing on.
This is illustrated in Fig. 2 above. This analysis does suffer
from some limitations. First, by restricting the sample to
those cars within the TZ, they lose the information contained
in those other data points. This is a particularly critical
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problem in our application, where we wish to learn about
response times for a particular driver. We may not have
the chance to observe response times very frequently for
a single driver; it would therefore be helpful to be able to
use all observed data points rather than just those with a
time headway of 4 seconds or less. Second, although the
relationship between time headway and BRT is reduced when
the sample is restricted to cars with time headway of ≤
4 seconds, a relationship can still be seen in the plot in
Fig. 2. This suggests that some of the measured response
times may still include a delay even within the TZ. In order
to be successful in tuning collision warning algorithms to
individual drivers, we will need a model which provides us
with an estimate of the average driver’s brake reaction time
as well as the individual driver’s response time. The mix of
drivers on the road is constantly changing, with new drivers
joining and other, usually older, drivers leaving. Thus when
there is no information on an individual, the average response
times can be used. As more information about an individual
driver’s response times becomes available, the system can
switch from the general estimate of brake response time to
the individual driver’s estimated brake response time.

III. ESTIMATING THE DISTRIBUTION OF POTENTIAL
BRAKE RESPONSE TIMES

A. General Discussion

In this section we discuss the construction of a statistical
model for the distribution of brake response times, and
how this model can be used to estimate the distribution of
potential brake response times for a particular individual.
Virtually every study to examine reaction times has found
that the population distribution of reaction times is skewed
right and several have shown that it is well approximated
by a lognormal distribution ( [4], [3], [7], [5]). A close
examination of the plot in Fig. 2 indicates that the distribution
of BRTs is also skewed right at a fixed value of time
headway. It is reasonable to assume that brake reaction times
are skewed right within individuals as well. We therefore
adopt a lognormal model for brake reaction times, modelling
the logarithm of the observed BRT as normally distributed
conditional on the time headway. This lognormal model
also has the advantage of automatically correcting for some
differences in the variance of the BRT distribution at different
time headways and across individuals. From the plot in Fig.
2, we can see that as the time headway increases, the mean
BRT and the variance of the BRTs both increase. Similarly,
it seems likely that some individuals have lower or higher
mean reaction times than other drivers, and that the variance
in the BRT distribution varies across individuals as well.
Specifically, it is likely that individuals with a low mean
reaction time also have a low variance in their reaction
times, whereas individuals with a high mean reaction time
also have a high variance in their reaction times. These
differences in the variance of brake reaction times will be
approximately corrected by modelling the logarithm of the
BRT. It also seems likely that the mean and variance of
the brake response time distribution depend on several other

variables. An important factor that will be accounted for in
our model is the stimulus type (e.g. traffic signal vs. lead
car decelerates). However, some of the other factors will
not generally be available to the accident warning system,
so their effects will be absorbed into the error term of our
model.

B. The Model
Using just the time headway as an explanatory variable,

the general ideas above can be formalized in the following
model:

yd ∼ N(Xβ +Xγd, σ
2I)

γd ∼ N(0,Σγ) (1)

In this model,
• d indexes the driver
• yd is a vector of the logarithms of observed reaction

times for a particular driver.
• X is a matrix of covariates, detailed further below.
• β is a fixed vector of unknown coefficients.
• σ2 is an unknown scalar.
• γd is a random vector of unknown coefficients.
• Σγ is an unknown matrix.

The basic idea of this model is that, conditional on the
time headway, the distribution of BRTs for an individual
driver has a mean which is given by an overall population
mean, Xβ, plus an offset due to the particular characteristics
of that driver, Xγd. This is illustrated in Fig. 4. It is
assumed that the parameters γd determining the individual’s
offset to the overall mean follow a multivariate Normal
distribution in the population. This is a linear mixed effects
model ( [8], [9], [10]). A key assumption made in this
model specification is that after the log transformation, the
covariance matrix Cov[yd] has the simple form σ2I . This
assumption could fail to hold in a number of ways, but it
makes the calculations much easier. We now consider the
form of the mean X(β + γd) in more detail. From the plot
in Fig. 2, we saw that the mean brake reaction time was
an increasing function of time headway. Since the logarithm
is a monotonically increasing function, it follows that the
logarithm of the BRT is also an increasing function of time
headway. For flexibility, we allow the possibility that the
log BRTs are a quadratic function of time headway. We
also allow for the possibility that the relationship between
time headway and BRT is slightly different for each of the
different stimulus types. For instance, it could be that drivers
have a faster BRT at low time headways and the average BRT
increases more rapidly as a function of time headway when
the stimulus is a lead car braking than when it is a traffic
signal changing to yellow. These considerations lead to the
following possible form of the mean log-BRT as a function
of time headway:

E[ydsi] =

βs,0+βs,1tdsi+βs,2t
2
dsi+γd,s,0+γd,s,1tdsi+γd,s,2t

2
dsi (2)

In equation (2), d indexes the driver, s indexes the stimulus
type, and i indexes the observation (so if we have 5 different
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Fig. 4: An illustration of the model based on a simulated
data set. All parameters were chosen for the simulation so
that the simulated data would be reasonably similar to that in
Fig. 2, from Goh and Wong [4]. Each plot shows simulated
data for just one stimulus type. The black curve represents
the population-average relationship between time headway
and brake reaction time, Xβ. The red curve represents the
relationship between time headway and brake reaction time
for one individual, X(β+γ). The red point is an observation
for that driver.

BRT observations for a particular driver and stimulus type,
i will vary from 1 to 5). As before, ydsi is the log brake
reaction time, and tdsi is the time headway at the time
of the stimulus. The subscript s on the β and γ terms
indicate that the values of those coefficients depend upon
the stimulus type s. To make this concrete, if this mean
function is adopted and there are S = 3 different stimulus
types under consideration with nds observations for driver d
under stimulus type s, β and γd are 9 × 1 vectors and the
portion of the X matrix corresponding to observations for
driver d will be of the following form:

1 td11 t2d11 0 0 0 0 0 0
1 td12 t2d12 0 0 0 0 0 0
...

...
...

...
...

...
...

...
...

1 td1nd1
t2d1nd1

0 0 0 0 0 0
0 0 0 1 td21 t2d21 0 0 0
...

...
...

...
...

...
...

...
...

0 0 0 1 td2nd2
t2d2nd2

0 0 0
0 0 0 0 0 0 1 td31 t2d31
...

...
...

...
...

...
...

...
...

0 0 0 0 0 0 1 td3nd3
t2d3nd3



C. Training the Model: A Fit Using Data from Driving
Simulations

For training the model, we assume data are gathered for
D subjects in a driving simulation. If possible, we prefer to
gather data from real drivers on the road, but this is likely
to be too difficult to be feasible. This being the case, we
will take precautions to address concerns about using results
from a driving simulation to learn about response times for
drivers in real life driving situations. The subjects in the study
will be a representative sample of the overall population

of drivers who will be using the collision warning system.
Brake responses for each subject will be elicited at a variety
of levels of expectancy. To improve the statistical analysis,
responses will also be collected at a range of time headways
for each stimulus type. To separate the effects of expectancy
and any other variables that may be included in the model,
the combinations of these factors will be randomized (for
example, we will have some observations where the braking
stimulus was more and less surprising at different levels of
the time headway variable). For each driver, we have multiple
observations of reaction times for each stimulus type. These
data can be used to estimate the unknown quantities β, σ2,
and Σγ in this model using standard statistical techniques
implemented in the lmer function of the lme4 library in
R. We will use a subscript of (tr) to indicate quantities
obtained from this training data set; in particular, let X(tr)

be the covariate matrix obtained using data from this data
set and denote the estimates by β̂(tr), σ̂2

(tr), and Σ̂γ(tr). β̂(tr)
can be written as β̂(tr) = (X ′(tr)V

−1
(tr)X(tr))

−X ′(tr)V
−1
(tr)y(tr),

where V(tr) = Cov(y(tr)) = X(tr)ΣγX
′
(tr) + σ2I and the

superscript
′′−′′ denotes a generalized inverse. The estimates

σ̂2
(tr) and Σ̂γ(tr) can be found through numerical maximum

likelihood techniques.

D. Real Time Estimation of the PBRT Distribution for One
Driver

We estimate the distribution of PBRTs for a particular
driver in two steps. First, we establish the relationship
between the covariates and BRT for that driver. Then we
use this relationship to estimate the distribution of PBRTs
by using values of the covariates at which the BRT does not
include an intentional delay to braking.

1) Estimating the Relationship Between Time Headway
and BRT for One Driver: As data are gathered in real
time for an individual driver d∗, our goal is to estimate
the driver’s offset γd∗ to the population-average regression
coefficients β. This is estimated by the Best Linear Unbiased
Predictor (BLUP). Intuitively, we might expect that if a
particular driver has a higher than average brake response
time in one stimulus type, they are likely to have a higher
than average brake response time in other stimulus types
as well. Similarly, if they are particularly sensitive to the
time headway in one situation, they are more likely to be
sensitive to the time headway with other stimulus types. This
intuition suggests that the covariance matrix Σγ will have
non-zero off-diagonal entries; that is, there is some degree
of correlation among the γd coefficients. Because of this
correlation, observations from one stimulus type can give
us information about the coefficients in the other stimulus
types. For example, if we make some observations of driver
brake response times in the traffic light setting which give
positive estimates of the γd coefficients for that stimulus,
a positive correlation between the coefficients might lead to
positive estimates of the coefficients for other stimuli as well.
To reduce the computational complexity of computing the
BLUP, we assume that the information about the unknowns
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β, σ2, and Σγ that is provided by the training data set from
the driving simulator is much greater than the information
provided by the data from this individual driver. That is, the
estimates β̂(tr), σ̂2

(tr), and Σ̂γ(tr) obtained from the training
data set above are very similar to what we would obtain
if we estimated them using the combined training data set
with the observations for this driver. If this assumption holds,
we can approximate the BLUP using the estimates of these
quantities found with the training data set, which saves the
computational effort of re-fitting the model every time we
observe a new reaction time.

Let Xd∗ be the covariate matrix X as in the full model,
but formed using only the data from driver d∗. The BLUP
of γd∗ is

γ̃d∗ = ΣγX
′
d∗V

−1
d∗ (yd∗ −Xd∗ β̂)

where Vd∗ = Cov(yd∗) = Xd∗ΣγX
′
d∗ + σ2I . Ordinarily

β̂ would be estimated from all of the data, but by our
assumption above we will instead use the estimate β̂(tr). The
formula for the BLUP still involves the unknowns σ2 and Σγ .
We estimate the BLUP by plugging in the estimates of these
quantities obtained from the training data above. Denoting
this estimated BLUP by γ̂d∗ , we have:

γ̂d∗ = Σ̂γ(tr)X
′
d∗ V̂

−1
d∗ (yd∗ −Xd∗ β̂(tr)),

where V̂d∗ = Xd∗Σ̂γ(tr)X
′
d∗+ σ̂2

(tr)I. The covariance matrix
of the BLUP γ̃d∗ is given by

Cov(γ̃d∗) = Cov(ΣγX
′
d∗V

−1
d∗ (yd∗ −Xd∗ β̂))

= ΣγX
′
d∗V

−1
d∗ (Vd∗ −Xd∗Cov(β̂(tr))X

′
d∗)V

−1
d∗ Xd∗Σγ

To estimate the covariance matrix of γ̂d∗ , we plug our
approximation to β̂, β̂(tr), and our estimates of σ2, Σγ ,
and Cov(β̂(tr)) into this formula. Denote this estimated
covariance matrix by Σ̂γ̂d∗ . When no data have been gathered
yet, the best predictor is just the vector 0, with covariance
matrix Σγ . In this case, the estimated mean for the individual
is equal to the estimated mean for the population of all
drivers.

2) Obtaining the Estimated PRBT Distribution: The final
step is to estimate the distribution of potential brake response
times for an individual driver, not including any delays. For
the suggested model form above using a quadratic function
of time headway, the intuitive idea is to pick a specific
time headway value t∗ at which the driver does not have
enough time to delay braking, and use that time headway
value to evaluate the mean function. Based on the plots in
Fig. 2, it appears that t∗ = 1.5 might be an appropriate
value. We can then estimate the mean of the driver’s log-
RTs by plugging t∗ = 1.5 into the estimated mean function:
µ̂ = β̂0 + γ̂d∗,0 + t∗(β̂1 + γ̂d∗,1) + (t∗)2(β̂2 + γ̂d∗,2). This
provides an estimated mean for the log-reaction time. There
are several options for estimating the variance of the log-
PBRT distribution. One simple idea would be to use the
estimate σ̂2

(tr) of the quantity σ2 in the model statement 1.
However, this does not take into account the uncertainty in

our estimate µ̂. This uncertainty is captured by the prediction
error, (β̂(tr) + γ̂d∗) − (β + γd∗). It can be shown that
Cov((β̂(tr) + γ̂d∗) − (β + γd∗)) = Cov(β̂(tr)) + Cov(γ̂d∗ −
γd∗) − Cov(β̂(tr), γ

′
d∗) − Cov(γd∗ , β̂(tr)), where

Cov(γ̂d∗ − γd∗) = Σγ − Cov(γ̂d∗)

Cov(γ̂d∗) =

ΣγX
′
d∗(V

−1
d∗ − V −1d∗ Xd∗Cov(β̂(tr))X

′
d∗V

−1
d∗ )Xd∗Σγ

Cov(β̂(tr), γ
′
d∗) = Cov(β̂(tr))X

′
d∗V

−1
d∗ Xd∗Σγ

This covariance can be estimated by plugging in estimates of
the unknown quantities Vd∗ , Cov(β̂(tr)), and Σγ . An estimate
of the variance of the distribution of log-PBRTs which takes
into account our uncertainty about the value of the mean is
then[
1 t∗ t∗2

]
Ĉov((β̂(tr) + γ̂d∗) − (β + γd∗))

[
1 t∗ t∗2

]′
+ σ̂2

(tr)

When we do not yet have any data, the adjusted variance
estimate is[

1 t∗ t∗2
]

Σ̂γ
[
1 t∗ t∗2

]′
+ σ̂2

(tr).

The plot in Fig. 5 shows the resulting distribution estimates
obtained in a simulation when these variance estimates are
used as the parameters of the distribution of PBRTs. From
this plot we can see that the estimates taking into account
uncertainty in the coefficient estimates are more conservative.
On the scale of these simulation results, the difference in the
percentiles obtained from these estimates is just a fraction of
a second, but the difference could be more significant with
real data. We will use the more conservative value for the
estimated variance since it more accurately reflects what we
know about the distribution of response times based on the
available data.

Fig. 6 shows how the estimated reaction time distribution
changes with the sample size and the allocation of the sample
among the different stimulus types. These results are depen-
dent upon the parameter values used in the simulation, but
they illustrate that observed reaction times for the stimulus
type that is used in estimating the PBRT distribution con-
tribute more information than observations in other stimulus
types. This will generally be the case, but our simulation
likely shows an extreme example since the correlation among
the gamma coefficients for different stimulus types is very
low in the simulation. It could be helpful to run a simulation
like this once the training data has been gathered to determine
what sample sizes are necessary to get good estimates of the
“true” PBRT distribution.

We note that computation of the estimated PBRT distri-
bution requires only the operations of matrix inversion and
matrix multiplication. The matrix which must be inverted is
V̂d∗ , which has dimension nd∗ , the number of observations
for driver d∗. The inversion operation has computational
complexity O(n3d∗). All of the matrix multiplication opera-
tions are between matrices of dimension 9×1, 9×9, 9×nd∗ ,
nd∗×1, or nd∗×1. Because multiplying an n×m matrix by
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Fig. 5: Estimates of the distribution of PBRTs for an indi-
vidual obtained in a simulation. The black curve represents
the individual’s “true” response time distribution. The blue
curve is the estimated distribution when the variance is taken
to be σ̂2. The red curve is the estimated distribution when
the variance estimate includes a term for uncertainty in β̂ and
γ̂d∗ . The vertical lines are at the 10th and 90th percentiles.
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Fig. 6: Estimates of the distribution of PBRTs for an indi-
vidual obtained in a simulation with different sample sizes.
The black curve represents the individual’s “true” response
time distribution. The purple curve represents the distribution
of reaction times in the population, which is used as an
estimate when the sample size is 0. The red curve is the
estimated distribution. The vertical lines are at the 10th and
90th percentiles.

an m× k matrix has complexity O(nmk), this implies that

the complexity of the “worst” matrix multiplication operation
is O(9n2d∗) (for the product X ′d∗ V̂

−1
d∗ ). Therefore the whole

computation has complexity O(n3d∗) when nd∗ > 9.

IV. CONCLUSION AND FUTURE WORK

In this paper we discussed the need to adapt collision
warning systems to drivers’ individual characteristics and
proposed a method for doing that by estimating the distribu-
tion of potential brake response times for an individual driver
in real time. This method uses a statistical model that was
developed based on previously published results about the
population-level brake response times. However, this model
has not yet been validated using data that includes multiple
reaction times for each driver. In future work, we will collect
this data, fine-tune the model, and apply it in a collision
warning system.

REFERENCES

[1] United States Department of Transportation. National Highway Traffic
Safety Administration,Early Estimate of Motor Vehicle Traffic Fatalities
in 2011 : DOT HS 811 604. Washington, DC, 2012.

[2] A. Rakhshan, H. Pishro-Nik, M. Nekoui, and D. Fisher, Tuning Col-
lision Warning Algorithms to Individual Drivers for Design of Active
Safety Systems : in Proceedings of IEEE Globecom 2013 Workshop -
Vehicular Network Evolution , Dec 2013.

[3] R.J. Koppa, Human Factors, Revised Monograph on Traffic Flow
Theory (Ch.3) , 2005.

[4] P. Goh and Y. D.Wong, Driver perception response time during the
signal change interval : Appl Health Econ Health Policy, 2004.

[5] X. Zhang, G.H. Bham, Estimation of driver reaction time from detailed
vehicle trajectory data : Proceedings of the 18th IASTED International
Conference: modeling and simulation, 574-579, 2007.

[6] K.I. Ahmed, Modeling drivers’ acceleration and lane changing behav-
ior, : Ph.D. Dissertation, Massachusetts Institute of Technology, 2006.

[7] A. Maxwell, K. Wood, Review of Traffic Signals on High Speed Road
: Accessed 12/2/12.

[8] C.E. McCulloch, S.R. Searle and J.M. Neuhaus Generalized, Linear,
and Mixed Models : 2nd ed. Hoboken: Wiley, 2008.

[9] S.R. Searle, G. Casella and C.E. McCullochVariance Components :
New York: Wiley, 1992.

[10] N. Ravishanker and D.K. Dey, A First Course in Linear Model Theory
: Boca Raton: Chapman & Hall/CRC, 2002.

1186


