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Abstract—The prevalence of mobile devices and Location-
Based Services (LBS) necessitates the study of Location Privacy-
Preserving Mechanisms (LPPM). However, LPPMs reduce the
utility of LBSes due to the noise they add to users’ locations.
Here, we consider the remapping technique, which presumes the
adversary has a perfect statistical model for the user location. We
consider this assumption and show that under practical assump-
tions on the adversary’s knowledge, the remapping technique
leaks privacy not only about the true location data, but also
about the statistical model. Finally, we introduce a novel method
termed Randomized Remapping to provide a trade-off between
leakage of the users’ location and leakage of the users’ model
for a given utility.

Index Terms—Location-Based Service (LBS), information leak-
age, obfuscation, remapping technique, Location Privacy Preserv-
ing Mechanisms (LPPMs), utility-privacy trade-off.

I. INTRODUCTION

Contemporary mobile devices offer a wide spectrum of
location-based services (LBS), such as ride sharing and nav-
igation. LBSes collect large amounts of users’ location data
to tailor the service provided to each user’s specific needs.
To address the significant threat to user privacy due to lo-
cation data sharing, location privacy-preserving mechanisms
(LPPMs) have been introduced. LPPMs preserve privacy by
sharing obfuscated versions of true location data, but at the
cost of utility degradation [2], [3]. In [4], an adversary is
assumed who has perfect knowledge of the distribution of a
user’s location data, and a remapping technique is proposed to
improve the utility-privacy trade-offs of LPPMs. The remap-
ping technique shares a location that is the adversary’s best
estimate of the true location, and consequently improves utility
as the estimate is closer to the true location than the obfuscated
location.

We model remapping as a general utility improvement
technique for releasing not just location data but any type
of data, e.g., IoT application data. We consider Gaussian
distributed private data whose privacy is protected by the ad-
dition of Gaussian noise. Therefore, our analysis of remapping
generalizes to various domains, e.g., sensor networks [5] and
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Due to space limitation, detailed derivations, additional discussion, and
more references are provided in the long version of the paper [1].

distributed consensus [6], which consider Gaussian distributed
data as a promising substitute for the real data, and it can
be adapted to users’ check-ins modeled as a multi-center
Gaussian model [7].

We consider a friend (e.g., an IoT application) without any
prior statistical information about user behavior and an adver-
sary with statistical information about the user’s behavior. This
may occur, for example, when each intended recipient is either
naive or only looking at a single datum or a small set of data
from the user, whereas the adversary is sophisticated and has
access to the user’s data across a large time period. In such a
case, the adversary can use their statistical advantage to obtain
a better estimate of the user’s data than the friend. Remapping
recognizes this asymmetry of knowledge and reveals a more
accurate version of the data that the adversary would have been
able to obtain anyway. Thus, the remapping technique does
not incur privacy loss, but improves utility for the user. Not
surprisingly, this approach has garnered a growing amount of
interest in the privacy community [8]–[12], hence motivating
a fundamental analysis.

Note that the remapping technique implicitly assumes that
the sophisticated adversary has perfect knowledge of the
statistical model of the user data. However, this is not the
case in practice, as the adversary’s knowledge is imperfect due
to multiple reasons, e.g., the adversary not having an infinite
history, the user not reporting some of her data, or the reported
data being noisy. We explore the remapping technique from
the lens of this practical setting where the adversary has an
imperfect knowledge of the statistical model of the user’s data.
Contributions: After introducing our framework in Section
II, we provide the first information-theoretic look to explain
the operation of the remapping technique in Section III. As
acknowledged briefly in [4], a risk of remapping is that it
relies on accurate knowledge of the adversary’s statistical
model. In Section IV, we show that privacy leaks in two ways
when erroneous assumptions are made about the adversary’s
model: (i) the adversary obtains a more accurate version
of the data than they would have had without remapping,
and (ii) the adversary is able to improve their knowledge
of the statistics of the users’ data beyond what they would
have been able to do without remapping. In Section V, we
present a random remapping algorithm, where data points
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Fig. 1: System Model: Case where additive obfuscation (with-
out remapping) is applied to the user’s location. The (naive)
intended friend does not have a prior distribution for X and
hence employs Y for the user’s locations. A sophisticated
adversary, who possesses a prior distribution for X , can use
this prior to obtain a better estimate of the user’s location.

are independently remapped at random. The proposed random
remapping provides a hyperparameter which allows the user to
tune the trade-off between different types of privacy leakage
at a given user utility.

.eps

II. SYSTEM MODEL AND METRICS

Consider a system where a user generates a location X
which should be protected from a potential adversary. To
preserve the privacy of the user’s true location, the obfuscated
location is obtained by adding noise W to X . In other words,
the reported noisy version of location (Y ) is obtained as
Y = X +W . As shown in Figure 1, there exists an “intended”
friend (e.g., an LBS) who does not have prior statistical
knowledge about the user behavior, and a “sophisticated”
adversary who has knowledge about the prior behavior of
the user (πAdv). The adversary observes the noisy reported
location Y and uses it to find the estimate X̃Adv , which
denotes the estimate of the adversary given their observed
location (Y ) and their knowledge of the prior about the user
(πAdv) as X̃Adv = E [X |Y, πAdv]. As a result, there exist
asymmetries in knowledge and/or sophistication between the
intended friend and the adversary. The remapping technique,
which is introduced by Chatzikokolakis et al. [4], exploits
these asymmetries to publish a more accurate version of the
location that the sophisticated adversary would have been able
to obtain anyway. As shown in Figure 2, each reported location
is remapped into the best possible location according to the
perfect prior information of the adversary.
Location Data Model: We adopt a Gaussian model. User
traces are assumed to be independent and identically dis-
tributed (i.i.d.) Gaussian series, and each data location is drawn
from a normal distribution with mean µ and variance σ2

s , in
other words, we assume X(k) = µ + S, where S ∼ N

(
0, σ2

s

)
,

thus X(k) ∼ N
(
µ,σ2

s

)
. We also assume there exists some

underlying prior for the distribution of the mean (µ); we also
take this to be Gaussian, and hence assume µ ∼ N

(
0, σ2

µ

)
.

Obfuscation Mechanism: The obfuscated location is obtained
by passing the data location through an additive white Gaus-
sian noise (AWGN) channel. Hence, Y , the reported location
of the user, is the sum of the true location, X , and the noise,

Fig. 2: Remapping: X is the user’s true location, W is the
amount of noise added through the obfuscation process, Y is
the noisy reported location after applying obfuscation, and YR
is the remapped location which is the best possible estimate
of the adversary according to perfect prior knowledge about
the user.

W , where W is drawn from a zero-mean normal distribution
with variance equal to σ2

w . Thus, we have

Y = X +W ∼ N
(
µ,σ2

s + σ
2
w

)
.

Sophisticated Adversary Model: The adversary logs the
user’s locations over time to generate a prior about the behav-
ior of the user and performs an inference attack to estimate
the best possible location given this generated prior. Note that
the remapping literature [4] has considered a perfect prior for
the adversary. In reality, the adversary, however strong, does
not have an infinite time history of user’s data or have exact
knowledge of the user’s whereabouts, so she cannot build the
perfect prior. In this paper, different adversarial settings have
been considered: in Section III, we assume an adversary with
a perfect prior, and in Section IV, we assume an adversary
with an imperfect prior. It is critical to note that the adversary
knows the mechanism of the obfuscation, but she does not
know the exact value of the noise which will be added during
obfuscation and does not have any auxiliary information or
side information about the user’s location.
Remapping Mechanism: In the absence of remapping, and
given the perfect prior for the adversary, the adversary can
estimate X using the reported noisy version of the location
(Y ) as:

YR = E [X |Y, µ] =
σ2
w

σ2
s + σ

2
w

µ +
σ2
s

σ2
s + σ

2
w

Y, (1)

where YR is the estimate of the adversary given the observed
location (Y ) and perfect knowledge of the prior (πAdv).
Remapping simply notes that, since the adversary obtains YR
anyway (as shown in Figure 2), we might as well provide it
to the applications to improve the utility [4].
Metrics: We use mean squared error (MSE) as a metric to
quantify both utility degradation and privacy. In this paper,
“U” denotes the MSE of the intended application/friend which
quantifies utility degradation. In addition, “P” denotes the
MSE of the adversary about the true location, and “P̀” denotes
the MSE of the adversary about the statistical model. Note
that both “P” and “P̀” quantify the level of privacy. We use
MSE as metric in this paper due to the intuitive results and
insights it provides about the shortcomings of the state-of-
the-art remapping technique. However, we can also employ
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the mutual information as a metric to quantify both utility
and privacy. Note that the level of privacy can be quantified
as H(X |Y ) = H(X) − I(X;Y ), where H(.) is the entropy and
I(.) is the mutual information. Thus, our goal is to minimize
the information leakage to maximize the level of privacy at
the highest possible utility. We have obtained similar results
using mutual information as metric; these results can be found
in the long version of the paper [1].
Discussion 1: The reason behind employing Gaussian models
is related to the motivation for the paper. Recently, remap-
ping was proposed to improve the utility of LPPMs without
compromising privacy [4], which is an emerging technique
of high importance in the field of privacy. Although, the
leakage of private information has been noted, there has been
no quantification of this important effect. Also the leakage
of the statistical model (distribution), which is another major
contribution of this paper, has been completely overlooked in
the literature. In this paper, we have used Gaussian models not
only because it make sense in some application [5]–[7], but
also because these Gaussian models allow for a straightforward
analysis to arrive at the answer to this compelling question.

III. CASE 1: ADVERSARY WITH PERFECT KNOWLEDGE

In this section, we assume the adversary knows the exact
statistical distribution of the user data, which for our model
means the exact value of the mean (µ).

A. Without Remapping

Without remapping, the user’s intended friend, who does not
have any knowledge of the statistical model for the user’s data,
observes only the noisy location (Y ). The utility degradation
is:

U
(I )
NR = E

[(
X̃App − X

)2
]
= E

[
(Y − X)2

]
= σ2

w . (2)

In comparison to the user’s friend, the sophisticated adversary
obtains X̃Adv = E [X |Y, µ]. Thus, P(I )NR which quantifies the
level of privacy is calculated as:

P
(I )
NR = E

[(
X̃Adv − X

)2
]
= E

[
(YR − X)2

]
=

σ2
wσ

2
s

σ2
s + σ

2
w

. (3)

B. With Remapping

In this case, both the adversary and the user’s friend observe
the same reported location, X̃Adv = X̃App = YR = E [X |Y, µ].
Now, the MSE of the adversary and the MSE of the application
are equal:

U
(I )
R = P

(I )
R = E

[
(YR − X)2

]
=

σ2
wσ

2
s

σ2
s + σ

2
w

. (4)

Since the intended friend/application is oblivious to the
prior statistical knowledge about the user behavior, the MSE
of the adversary is always smaller than or equal to the
MSE of the application (P ≤ U). Thus, we can conclude
that the remapping technique provides the best utility among
techniques satisfying the same level of privacy under the
assumption that the adversary has perfect knowledge of the
statistical model for the user data.

IV. CASE 2: ADVERSARY WITH IMPERFECT KNOWLEDGE

Here, we assume the adversary has a noisy version of the
prior information, as might be obtained from a learning set of
limited length. Specifically, the adversary has µ̌ = µ+E , where
E has a zero-mean normal distribution with variance equal
to σ2

e , as would be the case if µ̌ were the minimum mean
square estimate (MMSE) based on prior observations with
additive Gaussian obfuscation. Note that the distribution of E
is not known to the PPM designers since the friend/application
algorithm does not have knowledge on how the adversary has
obtained her information and how accurately (e.g. amount of
history observed). We consider not only the leakage of the true
location (X) but also the leakage of the distribution of the true
location (µ), which is a serious issue as such leakage would
improve future estimates of the adversary.

A. Without Remapping

If remapping is not employed, the user’s intended friend ob-
serves the reported location (Y ). Thus, the utility is quantified
as:

U
(I I )
NR = E

[(
X̃App − X

)2
]
= E

[
(Y − X)2

]
= σ2

w . (5)

In contrast, the sophisticated adversary uses both Y = µ +
S +W and µ̌ = µ + E to improve knowledge not only about
the true location (X) but also about the distribution of the
true location (µ). Now, P̀(I I)NR which quantifies the MSE of the
adversary about the distribution of the true location (µ) is:

P̀
(I I )
NR = E

[
(µ̃Adv − µ)

2
]
=

σ2
eσ

2
µ

(
σ2
s + σ

2
w

)(
σ2
µ + σ

2
e

) (
σ2
s + σ

2
w

)
+ σ2

eσ
2
µ

.

(6)

and P(I I )NR which quantifies the MSE of the adversary about
the true location (X) is:

P
(I I)
NR = E

[(
X̃Adv − X

)2
]

=
σ2
sσ

2
w

σ2
s + σ

2
w

+
σ4
wσ

2
eσ

2
µ(

σ2
s + σ

2
w

) ( (
σ2
µ + σ

2
e

) (
σ2
s + σ

2
w

)
+ σ2

eσ
2
µ

) .
B. With Remapping

The user’s friend observes the remapped location, so the
utility of the system is:

U
(I I)
R = E

[(
X̃App − X

)2
]
= E

[
(YR − X)2

]
=

σ2
sσ

2
w

σ2
s + σ

2
w

.

(7)

However, the adversary observes not only YR, but also µ̌, and
uses both of these observations to estimate µ̃Adv and X̃Adv .
Now, the MSE of the adversary about the distribution of the
true location (µ) is:

P̀
(I I)
R = E

[
(µ̃Adv − µ)

2
]
=

σ4
sσ

2
eσ

2
µ

σ4
s

(
σ2
µ + σ

2
e

)
+ σ2

eσ
2
µ

(
σ2
s + σ

2
w

) ,
(8)
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and the MSE of the adversary about the true location (X) is:

P
(I I )
R =E

[(
X̃Adv − X

)2
]
=

σ2
sσ

2
w

σ2
s + σ

2
w

. (9)

Numerical results demonstrating what can be learned from
these expressions will be presented in Section V.

C. Discussion: Leakage of the Statistical Model

From (8), we can conclude that increasing the obfuscation
noise, somewhat surprisingly, increases the leakage about the
distribution of the true location (µ) when remapping is em-
ployed. Note that YR = E [X |Y, µ̌] depends on two parameters:
1) µ̌ = µ + E and 2) Y = X + W ; thus, if we increase
the obfuscation noise by increasing σ2

w , YR relies less on Y
and more on µ̌. Now in the extreme case, where σ2

w goes
to infinity, the observed location (Y ) is useless and, as a
result, YR = E [X |Y, µ̌] = µ. Note that protecting the statistical
model is important since leaking the statistical model gives the
adversary the opportunity to get a better estimate of the user’s
future locations. Hence, remapping technique leaks complete
information about the statistical model (µ) as σ2

w goes to
infinity.

V. RANDOMIZED REMAPPING AND NUMERICAL RESULTS

As derived in Section IV, the remapping technique can leak
information about the distribution of the true location (µ) if the
adversary does not have the perfect prior about the user. Here,
we introduce a new technique called randomized remapping
to improve privacy. This technique gives us an opportunity to
provide a trade-off between leakage of the users’ location and
leakage of the users’ model for a given utility. In this ran-
domized remapping technique, each location data is replaced
with its remapped location (YR) with probability pH . Here,
Z denotes the output of our randomized remapping technique
and can be expressed as:

Z =

{
YR, with probability pH ,

Y, with probability of 1 − pH ,

The user’s friend observes Z; thus, according to the law of
total expectation, the MSE of the application is

U
(I I I )
Rand

= E
[
(Z − X)2

]
= pHU

(I I )
R + (1 − pH )U

(I I )
NR . (10)

However, the adversary observes both Z and µ̌ = µ + E
to estimate the true location (X) and distribution of the true
location (µ). Equations (11) and (12) present the analysis for
a genie-aided adversary, where a genie tells the adversary for
each published data point whether remapping was applied
to that data point or not. In this case, we can calculate
P̀
(I I I )
Rand

which indicates the MSE of the adversary about the
distribution of the true location (µ) as:

P̀
(I I I )
Rand

= E
[
(µ̃Adv − µ)

2
]
= pH P̀

(I I)
R + (1 − pH ) P̀

(I I)
NR . (11)

Figure 3a shows the MSE of the adversary about the statistical
model (P̀(I I I )

Rand
) versus the MSE of the intended applica-

tion/friend (U(I I I )
Rand
). We can also calculate P(I I I )

Rand
which

indicates the MSE of the adversary about the true location
(X) as:

P
(I I I )
Rand

= E

[(
X̃Adv − X

)2
]
= pHP

(I I)
R + (1 − pH ) P

(I I)
NR .

(12)

Figure 3b shows the MSE of the adversary about the true loca-
tion (P(I I I )

Rand
) versus the MSE of the intended application/friend

(U
(I I I )
Rand
).

From Figures 3a and 3b, we can conclude that remapping
technique leaks less information about the user’s true location
(as is shown in Figure 3b), but leaks significant information
about the statistical model (as is shown in Figure 3a). As a
result, we proposed randomized remapping to enable a trade-
off between leakage of the users’ location and leakage of
the users’ model for a given utility that cannot be obtained
with standard remapping. Randomized remapping provides a
hyperparameter, pH , which allows us to tune this trade-off.
Figure 3c shows that for a given utility, randomized remapping
provides a range of possible location leakages and statistical
model leakages. Figure 3d shows the trade-off between leakage
of the users’ location and leakage of the users’ model for
the case MSE of the application is equal to 0.6. Thus, PPM
designers can choose pH depending on the application and
tune the trade-off between leakage of the users’ location and
leakage of the users’ model.
Discussion 2: Note that the actual randomized remapping
where the adversary lacks knowledge of whether Z = YR
or Z = Y (i.e. whether remapping was performed on a
given published data point or not), would perform much
better against the true adversary rather than the genie-aided
adversary considered here. In particular, the friend who is
only interested in a single data point or does not perform
complicated statistical modeling does not care about whether
remapping was employed, and thus cares little about whether
Z = YR or Z = Y ; he will use the published data value at
face value regardless. However, for the adversary not knowing
whether Z = YR or Z = Y , they are presented with a
complicated mixture of Gaussians model, which significant
impairs their ability to update their statistical model. The
derivation of the adversary’s optimal detector and its perfor-
mance characterization is challenging and therefore relegated
to future work.

VI. CONCLUSIONS

Remapping, a state-of-the-art utility improvement technique
for location privacy preserving mechanisms, has been shown
to leak no privacy if the adversary has perfect knowledge of
a user’s statistical model. To understand the impact of remap-
ping under real-world scenarios, we perform an information-
theoretic analysis of remapping under practical assumptions
on the adversary’s knowledge. We show that if the adversary
has imperfect knowledge of the statistical model, the standard
remapping technique provides the best utility, but leaks signif-
icant information about the statistical model. To remedy such,
we proposed a preliminary version of randomized remapping
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(a) The MSEAdv about the statistical model vs MSEApp (b) The MSEAdv about the user’s true location vs MSEApp

(c) The MSEApp versus the MSEAdv (d) MSEAdv about the statistical model vs MSEAdv about the true
location in the case MSEApp = 0.6.

Fig. 3: The MSE of the adversary versus the MSE of the application for three cases. Case 1: remapping technique is not
employed (pH = 0), Case 2: a randomized remapping technique is employed with pH = 0.2, 0.4, 0.6, and 0.8, and Case 3:
standard remapping [4] is employed (pH = 1). Here, we assume σ2

µ = σ
2
e = σ

2
s = 1 and σ2

w is swept from 0 to 3 with steps
of 0.1.

which provides a hyperparameter which allows us to tune the
trade-off between leakage of the users’ location and leakage
of the users’ model for a given utility based on our need. We
have taken the first necessary steps to open up new avenues
for further research in this domain, and designing an optimal
randomized remapping technique is an interesting topic for
future research.
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