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Abstract—In this letter, we propose a stochastic geometry based
pricing for infrastructure sharing in Internet of Things (IoT)
networks. We consider a game consisting of a Network Operator
(NO) as the seller and an IoT Device Owner (DO) as the buyer
in which the seller owns an infrastructure that can address the
communication needs of the DO. Using the proposed scheme,
we show that DO and NO can reach a win-win deal in which a
reasonable cost is imposed to DO in exchange of providing an
acceptable coverage by the NO. In particular, we show that the
DO can achieve a coverage probability of interest at a lower cost
compared to the case in which the proposed pricing model is
absent. The proposed idea provides a transparent pricing model
between NOs and DOs and paves the road for IoT applications
to become more widespread.

I. INTRODUCTION

Internet of Things (IoT) is a novel framework that allows

billions of smart devices to be connected to the Internet to

transmit their data. The data can then be used to improve

quality of life in different aspects such as healthcare, trans-

portation, and manufacturing [1].

In the core of most IoT systems lay smart wireless sensors

that can collect data from the environment and convey such

data to the central controllers for further processing [2]. The

entity that owns such sensors is referred to as the Device

Owner (DO). Due to the distributed nature of IoT, a DO needs

a cost effective network infrastructure to exchange the data

within itself and/or transmit it to another interested entity.

However, such a network generally cannot be owned and

operated by the DO itself and most DOs have to deal with

already established Network Operators (NOs) to use their

existing resources and infrastructures.

To compensate the NOs for the use of their resources,

the DO can either pay the NO directly or exchange its

own resources. Examples of such resources include valuable

anonymized data obtained by the DO or DO buildings that can

be shared with the NO to provide additional network services

for its clients.

Reaching a financial resource sharing agreement between

any two entities is usually a challenging task. As far as

infrastructure sharing is concerned, this is already a common

practice between large NO companies to reduce their oper-

ational costs. This can include sharing the spectrum, base

stations, or site locations. Yet, the agreements are usually

achieved by traditional negotiations without the use of a pric-

ing model. However, conventional negotiations between a large

NO and a small DO that does not specialize in communication

networks may result in an unfair deal for the DO and it

may be taken advantage of by the NO’s unreasonable rates.

In fact, lack of a transparent pricing model has been one

of the important barriers in preventing the IoT applications

from becoming more widespread. To take care of this issue, a

solid trading/pricing model is necessary to regulate such deals

between DOs and NOs.

In this paper, we focus on finding game theoretic pricing

models for infrastructure sharing between DOs and NOs.

As the first step in this important framework, we propose a

pricing model in which we assume that the DO only wants to

share the base stations of the NO in exchange for money. In

doing so, we deploy stochastic geometry as a very efficient

and powerful network planning tool [3]–[5]. By proposing

a stochastic geometry based infrastructure pricing model and

finding the Nash equilibrium, we demonstrate how the NOs

and DOs can reach a win-win deal. In particular, we show

that the DO can achieve a coverage probability of interest at a

lower cost compared to the case in which the proposed pricing

model is absent. The proposed model can be seen as a basis for

more advanced pricing models that if developed, will facilitate

the IoT to become more pervasive.

There are a number of works in wireless networking liter-

ature that use pricing methods to model the trade-offs among

different entities. Examples include secondary and primary op-

erators in cognitive radio networks [6]–[10], device to device

communications [11]–[13], and heterogeneous networks [14],

[15]. The focus of all these works is on the spectrum as the

resource to be traded and they are established on a completely

different pricing framework than the one presented in this

paper. There are a few papers that consider different aspects

of infrastructure pricing between network operators [16]–[18].

However, they are not in the context of IoT and do not use a

stochastic geometry framework in contrast to our work.

As far as pricing in IoT is concerned, only a few works exist in

the literature [19]–[21]. As a simple market, [19] investigates

the pricing scheme in a business model of IoT with three

participants: multiple sensing data owners, service providers,

and users. With similar market components, [20] proposes an

economic model in big data and IoT in which the authors use

the classification-based machine learning algorithms to define

the generic utility function of data. Then using a Stackelberg

game, optimal raw data selling price is obtained. Service

management of an IoT device has been investigated in [21]

where the Markov decision process (MDP) is used to model an

optimization framework in order to obtain an optimal policy
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for the device owner. As can be seen, despite its absolute

necessity, there is no pricing platform in the IoT literature

that can address the infrastructure sharing and in the context

of stochastic geometry.

The organization of this paper is as as follows. In the next

section, we propose the system model and in Section III, the

formulated problem and its solution are presented, Section IV

demonstrates the simulation results, and Section V concludes

the paper.

II. SYSTEM MODEL

We assume a realistic case that the DO does not own

any BS infrastructure and uses the NO’s BSs. However, we

assume that the DO uses its own spectrum and so there is

no spectrum sharing.1The considered NO system model is a

cellular network with BSs located according to a homogeneous

spatial Poisson Point Process (PPP) Φ of density λ. Each BS

has a single transmit antenna and the transmit power of each

BS is denoted by P . Mobile users are equipped with single

receive antennas, and they are located according to an arbitrary

configuration over the plane. It is assumed that there is a

test user located at the origin and we focus on the coverage

probability of this user.

The SNR-based coverage probability can be written as

C = Pr{SNRx∗ > τ}, (1)

where x∗ is the nearest BS to the user and τ is a defined

threshold for SNR. After some mathematical calculations, the

SNR-based coverage probability can be obtained as [22]

C = 1− exp

(

−λπ
(

g−1

( τ

P

))2
)

, (2)

where g is the path loss function shown by g(r) = (1 + rα)−1

and α is the path loss exponent. Note that for a fixed coverage

probability, the transmit power P is conversely proportional to

the BS density λ, i.e., P = ρ/λ where ρ is a constant [22].

Let µ be the cost per unit BS density. In order to include

the price, we should write P as a function of λ and µ, i.e.,

P = h(λ, µ), where h is a decreasing function of λ and an

increasing function of µ, as the DO should pay more if it

requires more power from NO side. In the absence of µ,

we already know that P = h(λ) = ρ/λ and therefore, it is

reasonable to assume P = ρ
λ
+ ζµ where ζ is a constant that

is set to 1 for notational convenience. Based on this setting

we have

λ = ρ/(P − µ) (3)

This choice of function h might not be unique but has shown

to fit well our current pricing model. Now we replace P in

1This is the case for certain entities (e.g. police departments or military)
that already own the spectrum for older applications (e.g. communication
using old fashioned analog devices) and may now want to exploit it in an IoT
framework without investing in infrastructure.

(2) and obtain

C = 1− exp

(

−λπ

(

g−1

(

τλ

ρ+ µλ

))2
)

. (4)

III. PROBLEM FORMULATION

In this section, we first propose optimization problems for

the NO and DO and then develop an algorithm by exploiting

the game theory approaches. Since there is conflict of interests

in the objectives of the game problem, the adopted game

theory is non-cooperative [23]. Hence, in our game theoretic

infrastructure sharing system, the NO first determines the

density of the BSs to be shared and the DO optimizes the

price to be paid.

A. NO Problem

The NO side is obligated to maximize its coverage

probability for the DO but wants to achieve it by maximizing

λ, the density of BSs to obtain higher revenue from the DO.

The optimization problem is then written as

ONO : max
λ

UNO (5)

s.t. max{λmin,
ρ

Pmax − µ
} ≤ λ ≤ min{λmax,

ρ

Pmin − µ
},

(6)

where

UNO = C (7)

In the above equations, Pmin and Pmax are the minimum and

maximum allowable transmit power of each BS and λmin and

λmax are the minimum and maximum range of BS’s density.

Note that the constraint actually represents the feasible set of

the λ as obtained according to (3).

To maximize the utility, we can equivalently maximize the

following function:

f(λ, µ) = λ

(

g−1

(

τλ

ρ+ µλ

))2

. (8)

To find the optimal density denoted by λ∗, we set the

derivative to zero as follows where µ0 is the initial price that

we choose for the stochastic pricing problem

d (f (λ, µ0))

dλ
= 0. (9)

By solving the above equation, the optimal density denoted

by λ∗ is obtained as

λ∗ =
ρ(α− 2)

α(τ − µ∗)
, (10)
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where µ∗ is the price which will be obtained through the

DO problem in the next subsection. Furthermore, to globally

maximize C, we should check that f
′′

(λ∗) < 0.

B. DO problem

The DO side plans to reduce the cost, i.e., µλ, while

maintaining the required probability of coverage. Therefore,

the optimization problem is written as

ODO : minUDO = min
µ

{µλ}, s.t. C ≥ C0, (11)

where C0 is a predefined threshold for coverage probability.

As the objective of this optimization problem is a monotonic

function versus the parameter µ, to obtain it, we first use

Eq. (4) to obtain the value of C, then by applying this C to

the constraint of problem (11), we can verify the value of µ
which minimizes the overall cost of DO, called µ∗. This µ∗

then is used to obtain the λ∗ from (10) as described later

in Algorithm 1. Finally, the optimal price denoted by µ∗ is

obtained as

µ∗ = τ

(

ln

(

1

1− C0

)

×
1

πλ

)
α

2

+ τ −
ρ

λ
. (12)

Note that the obtained µ∗ should satisfy the inequality µ ≤ τ
which is the feasible set of µ.

C. Nash Equilibrium of NO and DO problems

Algorithm 1 illustrates our iterative method to find the

optimal solution of the proposed stochastic pricing problem.

Algorithm 1

s1: Choose randomly µ0 from the feasible set of µ (i.e. 0 <
µ < τ ).

s2: Calculate λ∗ from (10).

s3: While (λ, µ) /∈ feasible set, calculate λ∗ and µ∗ from

(12) and (10).

s4: (λ∗, µ∗) is the optimal solution.

end

To see if the iterative method converges for a given set

of parameters, i.e., to reach a Nash equilibrium, we act as

follows. We substitute (10) in (12), which results in the

following equation for µ∗:

µ∗ = τ

(

ln

(

1

1− C0

)

α (τ − µ0)

ρπ(α− 2)

)
α

2

+ µ0(
α

α− 2
)−

τ(
2

α− 2
) (13)

For convenience, in (13), we introduce the coefficient k as

k = τ

(

ln

(

1

1− C0

)

×
α

ρπ(α− 2)

)
α

2

. (14)

In the next step, we can show (13) in the form of a recurrence

equation as

µn+1 = k(τ − µn)
α

2 + µn(
α

α− 2
)− τ(

2

α− 2
). (15)

To be able to evaluate this non-homogeneous recurrence

equation, we first have to transform it to its homogeneous

counterpart by getting rid of the constant term τ . This can be

achieved by replacing index n with n+ 1 and subtracting the

resulting equation from (13). This will result in the following

equation:

µn+2 − µn+1 =

k
(

(τ − µn+1)
α

2 − (τ − µn)
α

2

)

+ α
α−2

(µn+1 − µn).

(16)

By letting µn = rn, and consequently µn+1 = rn+1 and

µn+2 = rn+2 and replacing them in (16) we obtain the

so-called polynomial characteristic equation as [24]

k
(

(

τ − rn+1
)

α

2 − (τ − rn)
α

2

)

= rn+2−(1+
α

α− 2
)rn+1+

α

α− 2
rn. (17)

Now if for the given values of τ, C0, α and ρ, the equation

has a root within the feasible set, we can state that the

proposed game has a Nash equilibrium. For example, by

setting τ = 1.5, C0 = 0.8, ρ = 0.5, α = 4 we plot the two

sides of (17). As can be seen in Fig. 1, the equation does

have a root in the feasible set.
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Fig. 1. Obtaining the intersection of two sides of (17).
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IV. SIMULATION RESULTS

Throughout this section, we set the values of τ and ρ as

before. For the first part, we set α = 3 and C0 = 0.9 and

apply Algorithm 1. Doing so, this algorithm converges to

λ∗ = 2.7227 and µ∗ = 1.4388. To have a better understanding

of converging to the Nash equilibrium, in Fig. 2 we have

plotted two curves which correspond to NO and DO problems.

To obtain the NO curve, for different values of µ we solve the

NO problem and obtain the optimal value of λ and plot them

versus µ. To obtain the DO curve, for different values of λ,

we obtain optimal values of µ and plot them versus λ. To

be able to see both curves in one figure, we have to plot the

inverse of the NO curve. The intersection of the two curves

represents the Nash equilibrium obtained by Algorithm 1. The

trajectories on the figure also represent the iterative process

leading to convergence in Algorithm 1.

λ

0 1 2 3 4 5 6 7 8 9

µ
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1.65

DO curve

Inverse NO curve

Fig. 2. The graphical representation of convergence in Algorithm 1.

We now change the value of C0 and apply Algorithm 1

for α = 3, 4 to obtain optimal values of λ and µ. In Fig.

3, we have plotted the achieved coverage probability for

different values of C0, the minimum guaranteed coverage

probability threshold. As can be predicted, larger values of

C0 results in better coverage. However, this comes at the

expense of higher cost for DO, i.e., larger µλ as shown in

Fig. 4 where the cost µλ has been plotted versus C0. As can

be seen, the larger we set the C0, the larger the cost becomes

and we eventually achieve larger coverage probabilities than

necessary. Therefore, it is to the benefit of the DO to choose

a smaller value for C0. For example, for α = 3, if the DO

needs a 0.95 coverage probability, the NO can suggest it to

blindly set C0 to 0.95 to charge the DO more money, i.e.,

µλ = 26. However, using the proposed pricing model, the DO

can decrease C0 to 0.77 to pay less money, i.e. µλ = 4, while

being assured in obtaining the necessary coverage probability,

i.e., 0.95.
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Fig. 3. Resulting coverage probability vs minimum guaranteed coverage
threshold
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Fig. 4. The cost imposed to the DO vs minimum guaranteed coverage
threshold

V. CONCLUSION

In this letter, we proposed a stochastic geometry based

pricing for infrastructure sharing in IoT networks. Using this

scheme within a simplified framework, we showed that DO

and NO can reach a win-win deal in which a reasonable cost

is imposed to DO in exchange of providing an acceptable

coverage by the NO. The proposed idea provides a transparent

pricing model between NOs and DOs and paves the road for

IoT applications to become more widespread and introduces an

economic incentive for the NOs involvement. More practical

cases, such as concurrent consideration of both spectrum

and infrastructure sharing, multiple NOs-multiple DOs in-

frastructure sharing and intra-cell or inter-cell interference

consideration are left for our future work.
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