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Abstract— Stochastic geometry has been successfully applied
for performance analysis of wireless networks. Performance of
some emerging applications such as unmanned aircraft systems
(UAS) relies heavily on unique mobility characteristics that are
sometimes not fully captured by the current stochastic geometry
results. This paper focuses on this issue by introducing families of
trajectory processes that preserve uniformity within a cell in the
framework of aerial base stations (ABS) networks. This means if
the ABS move according to such trajectory processes, they will
be distributed according to a binary point process (BPP) at any
time snapshot. We propose two families of such processes, namely
spiral and oval processes, and analytically prove our claim. We
then focus on 2 special cases of such processes, namely, radial
and ring processes and demonstrate their attractive properties
as far as implementation is concerned.

I. INTRODUCTION

Many current and future engineering systems are composed

of a large number mobile intelligent agents. In such sys-

tems, mobile agents might move along non-deterministic paths

(trajectories). An immediate example of such systems is the

future generations of Unmanned Aircraft Vehicles (UAV) [1].

Such systems usually produce heterogeneous and stochastic

traffic and introduction of this new paradigm has caused major

concern on how to integrate UAVs into the national airspace

system while avoiding possible incidents with conventional

manned air traffic already in place. Nevertheless, there is

currently no rigorous probabilistic theory that can effectively

capture the dynamics of such systems.

In this paper, we focus on a subset of UAVs called

Aerial Base Stations (ABS) which have recently received

great attention [2]. Accordingly, numerous works have been

published on different aspects of ABSs which have been

reviewed in the extended version of this paper [3]. ABSs

can be deployed statically or mobile. Nevertheless, a major

advantage of ABSs compared to their terrestrial counterparts

is in fact their mobility [4] which can significantly improve

the user experience in terms of average fade duration (AFD).

Moreover, it has been generally stated in the literature that

mobile ABSs (usually with fixed wing) outperform fixed ones

(usually with rotary-wing) with respect to energy consumption

[5]. However, an important question is how an acceptable

coverage can also be provided. Therefore, the goal here is

to design trajectory processes for mobile ABSs, so that they

can provide a relatively uniform and sustainable coverage over

a given area. In this regard, stochastic geometry has been

successfully applied for performance analysis of wireless net-

works. However, the analysis is usually carried out assuming
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Fig. 1. Coverage probability vs. distance to origin for a cell with radius
ρ = 10 km and 10 ABSs. For static case, ABSs are distributed according to
BPP. For the mobile case, the ABSs move with constant speed of 5 m/s.

networks of static terrestrial base stations and is not directly

applicable to network of mobile ABSs.

Let’s assume the desired area is a cell with radius ρ. If the

points (ABSs) were static, a uniform binomial point process

(BPP), where points are uniformly and independently dis-

tributed across the cell, would seem to be a reasonable choice

to provide a relatively uniform coverage as it is considered

in the literature [6]. To address the case of mobile ABSs, we

formulate the trajectory process problem in the following way:

design a trajectory process involving N ABSs such that at any

time t > τ , the snapshot locations of the points are distributed

according a uniform BPP in the cell, for some positive τ .

To see the importance of having BPP distribution at any time

snapshot, in Fig. 1 for a given signal to noise ratio threshold,

we have plotted the coverage probability across the cell for

the static case in which the points are distributed according

to BPP, with a solid curve. As can be seen, a fairly uniform

coverage is achievable. Now we assume the ABSs start moving

based on a trivial trajectory, for example, they move with a

constant speed across the cell. The dashed curve shows the

coverage in this case which does not provide an equally well

user experience. The reason is that at any snap shot, the points

are not distributed according to a BPP any more even though

they initially were.

In this paper, we address the trajectory process problem

proposed above by introducing families of trajectory processes

that can preserve the uniformity at each time snapshot of the

network. So far, we have been able to identify two families
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of such trajectory processes, referred to as spiral and oval

trajectory processes.

In spiral trajectory processes, each ABS generally starts

flying from the cell origin towards the cell edge according

to the specs itemized in Definition 1 of the next section. An

important member of this family is called the radial trajectory

process in which the trajectories are in fact randomly-selected

cell radii. In oval trajectory processes, each ABS moves on

a closed curve, containing the cell origin within it according

to the specs itemized in Definition 2 of the next section. An

important member of this family is called the ring trajectory

process in which the trajectories are circles with different

radiuses, all centered on the cell origin.

In the extended version of this paper [3], we simulate a

network based on radial and ring processes and show that

they can improve AFD by two orders of magnitude while

providing a uniform coverage similar to the case of static BPP.

Moreover, we have proposed deterministic counterparts of the

radial and ring processes and proved that they have similar

statistical properties. This makes the proposed scheme even

more practical and implementable.

Finally, it is important to note that application of results of

this paper is not limited to ABS networks. In fact, in many

other scenarios, we do prefer to have the UAVs distributed

uniformly across an area. An immediate example is when we

are performing a search and rescue operation using UAVs and

if the uniformity is preserved, it can result in higher probability

of success in the operation.

II. STOCHASTIC TRAJECTORY PROCESSES THAT PROVIDE

UNIFORM COVERAGE

A. Some basic facts

If a fixed number of points are independently and identically

distributed (i.i.d) on a compact set W ∈ Rd, we say the points

can be modeled as a general BPP. If these points are distributed

uniformly within the same compact set, then we say the points

are modeled according to a uniform BPP [7].

Now suppose that N ABSs at height H are distributed

according to a BPP and start their flights following an ar-

bitrary trajectory process, {X1(t),X2(t),X3(t), · · ·} at times

T1, T2, ..., TN , independently chosen randomly from (0, τ) ac-

cording to a given PDF (It is assumed that the trajectory curves

are chosen independently from a certain probability space, and

are independent from the starting times T1, T2, ..., TN ). It can

be easily seen that at any arbitrary observation time of t′ ≥ τ ,

the ABSs still follow a general BPP. However, if these ABSs

are distributed according to uniform BPP and move according

to an arbitrary trajectory, at a given time instant, the ABSs do

not necessarily follow a uniform BPP model.

B. Spiral Trajectory Processes

1) General theorem: For c = (cx, cy) ∈ R
2, let B(c, ρ) =

{(x, y) ∈ R
2 : (x−cx)

2+(y−cy)
2 ≤ ρ2}. Let also O = (0, 0).

Then we state the following definition:

Definition 1. Let X(s) : [0, 1] 7→ B(O, ρ) be twice dif-

ferentiable curves, X(s) = (x(s), y(s)), with the following

properties:

1) X(0) = O, x(1)2 + y(1)2 = ρ2;

2) r(s) ,
√

x(s)2 + y(s)2 is a strictly increasing function

of s for all s ∈ [0, 1].

Now for any τ > 0, define the mappings h : [0, 1] 7→ [0, τ ]

as h(s) = τr(s)2

ρ2 . Suppose that N aerial vehicles start their

flights at times T1, T2, ..., TN , independently chosen uniformly

from (0, τ). For kτ + Ti ≤ t ≤ (k + 1)τ + Ti, we define the

spiral trajectories X̃i(t) = (x̃i(t), ỹi(t)) for the i’th vehicle as

Eq. (1) on the next page. In (1), ROTΘi
is the rotation around

the origin by Θi degrees where Θi ∼ U(0, 2π) are chosen

independently when the vehicle starts its departure from the

origin.

In order to have a better insight of the curves satisfying

Properties 1 and 2, we provide a family of general curves

here. Assume that

X(s) = [ρskcos(ζs), ρsksin(ζs)], s ∈ [0, 1], (2)

where depending on the values of ρ, k and ζ, different curves

can be generated. For example by setting ρ = 5, k = 2 and

ζ = 2π we obtain curves in Fig. 2 where X2(s) = −X1(s).
Now we are ready to state the following theorem:

Theorem 1. For all t > τ , the instantaneous locations of

the aerial vehicles on the spiral trajectory, i.e., X̃i(t) =
(x̃i(t), ỹi(t)), form a uniform BPP in B(O, ρ).

Before providing the proof, we present the following lemma

which will be used later in the proof procedure.

Lemma 1. Consider a periodic function g : R 7→ [0,∞),
where g(t + τ) = g(t), ∀t ∈ R. FR(t)(r), the CDF of the

randomly shifted process R(t) , g(t − T ), T ∼ U(0, τ), is

obtained by

FR(t)(r) =
|A|
τ

, (3)

where |.| is the Lebesgue measure of A defined as A = {α ∈
[0, τ ]| g(α) ≤ r}.

Proof.

FR(t)(r) =

∫ τ

0

Pr (g(t− T ) ≤ r|T = α) fT (α)dα

=
1

τ

∫ τ

0

1{g(t−α)≤r}dα =
|A|
τ

, (4)

where A is defined as the region in which g(α) ≤ r during

one period, i.e., A = {α ∈ [0, τ ]|g(α) ≤ r}.

Corollary 1. If we have g(2τ − t) = g(t), t ∈ (0, τ), and

R(t) , g(t − T ), T ∼ U(0, τ), we get a similar distribution

since g(t) is symmetric with respect to τ .

We now provide the proof for Theorem 1.

Proof. For the proof of Theorem 1, we first need to show that

for t ≥ τ , the location of vehicles are independent. This is

intuitive since Θi ∼ U(0, 2π) and Ti ∼ U(0, τ) both have

been chosen independently. Second, we have to show that the

locations are uniformly distributed in B(O, ρ). To do so, we

note that since Θi ∼ U(0, 2π), the phase of an arbitrary point

on the curve is uniformly distributed between 0 and 2π, i.e.,
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(x̃i(t), ỹi(t)) =















ROTΘi

(

xi(h
−1
i (t− kτ − Ti)), yi(h

−1
i (t− kτ − Ti))

)

, k even

ROTΘi

(

xi(h
−1
i ((k + 1)τ + Ti − t)), yi(h

−1
i ((k + 1)τ + Ti − t))

)

, k odd,

(1)
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Fig. 2. Typical curves from the spiral trajectory process with ρ = 5, k = 2

and ζ = 2π.

6 X̃i(t) ∼ U(0, 2π). It only remains to show that the CDF of

the distance between the origin and an arbitrary point on the

curve, i.e., ‖X̃i(t)‖, is equal to the distribution corresponding

to uniform BPP within B(O, ρ). For notational simplicity, we

drop index i in the rest of the proof. Let

u(t) ,

{

‖X(h−1(t))‖ 0 ≤ t ≤ τ

‖X(h−1(2τ − t))‖ τ ≤ t ≤ 2τ
. (5)

We provide the proof for the case of 0 ≤ t ≤ τ , the

for the case of τ ≤ t ≤ 2τ is similar. According to (5) and

Property 2 in Definition 1, we understand that

u(t) = ‖X(h−1(t))‖= r(h−1(t)). (6)

Also, since the random rotation of X(t) will not affect its

absolute value, we have ‖X̃(t)‖= u(t−T ) where X̃(t) is the

randomly rotated and shifted version of X(t) defined in Eq.

(1). Now using Lemma (1), we obtain F‖X̃‖ as below

F‖X̃‖ =
1

τ
|{0 ≤ α ≤ τ : u(α) ≤ r}|

=
1

τ
|{0 ≤ α ≤ τ : ‖X(h−1(α))‖≤ r}|. (7)

Again, according to Property 2, since r(s)
2

is strictly increas-

ing, h(s) = τr(s)2

ρ2 is also strictly increasing and hence, there

exists an αmax such that

‖X(h−1(αmax))‖≤ r. (8)

Therefore, F‖X̃‖ = |[0,αmax]|
τ

= αmax

τ
. Now suppose there exists

an arbitrary 0 ≤ α∗ ≤ τ such that α∗ = τr2

ρ2 . This means

there exists a s∗ ∈ [0, 1] such that α∗ = h(s∗) = τr∗2

ρ2 , which

means r∗ = r(h−1(α∗)) = r. Therefore, we have h−1(α∗) =
h−1(αmax), according to (8). By this, we can uniquely obtain

!1 
!2 

!" 

#1($) 

#2($) 

" = 1,2,�% 

ABS

!"~&(0,2') 

ρ 

#"($) 

Fig. 3. An illustration of flying ABSs according to a radial trajectory process

α∗ = αmax, since h is monotonic. Finally, the CDF can be

written as

F‖X̃‖ =
|{0 ≤ α ≤ αmax}|

τ
=

r2

ρ2
, (9)

which is the same as the CDF corresponding to a BPP within

B(O, ρ). This completes the proof.

The family of curves introduced by this theorem is quite

diverse. In the next subsection we focus on one of the simple

processes of this family called radial trajectory process.

2) Radial Trajectory Process: A sample radial trajectory

process is shown in Fig. 3. It can be obtained by setting

k = 1 and ζ = 0 in Eq. (2). We assume that N ABSs

start to take off from the cell center at random moments

T1, T2, ..., TN ∈ (0, τ) where τ is the initialization time

in which all N ABSs start to take off. T1, T2, ..., TN are

independently chosen uniformly from (0, τ). Each ABS first

flies to a predetermined altitude of H and then chooses a

random angle Θi ∈ (0, 2π) uniformly and flies in a straight

line towards the cell edge where its distance to origin at time t

is shown by the random variable R(t). When an ABS reaches

the cell edge, it returns to the origin on the same angle to

complete the first cycle and this action repeats continuously.

For each half cycle kτ + Ti ≤ t ≤ (k + 1)τ + Ti, R(t) has

to satisfy the following formulation:

Ri(t) =







ρ

√

t−Ti−kτ
τ

, k even

ρ

√

(k+1)τ+Ti−t

τ
k odd.

(10)

Note that with this definition, we have R(kτ) = 0 if k is

even and R(kτ) = ρ otherwise. In other words, τ is the time

it takes for an ABS to go from center to the edge. It is worth

mentioning that during the initial take off phase, it takes a

while for each ABS to get to the altitude H but we assume

this time is negligible compared to τ . By the description above,

one can understand that after the time τ , we have N ABSs

flying at the altitude of H .
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A very interesting point in radial trajectory process is the

behaviour of the ABS velocity which can be obtained by

taking derivative of (10):

Vi(t) =







ρ√
τ(t−Ti−kτ)

, k even

− ρ√
τ((k+1)τ+Ti−t)

, k odd
. (11)

Eq. (11) demonstrates that as t increases (i.e., ABS is at larger

distance from the center), its velocity decreases which means

that it spends longer time flying at the larger distances to

provide a uniform coverage.

C. Oval Trajectory Processes

1) General theorem:

Definition 2. For any given a, b ∈ R
+, where 0 ≤ a ≤ b ≤ ρ,

let Xa,b(s) : [0, 1] 7→ B(O, ρ) be twice differentiable curves,

Xa,b(s) = (xa,b
1 (s), xa,b

2 (s)), with the following properties:

1) Xa,b(0) = (0, a), Xa,b(1) = (b, 0);

2) ra,b(s) , ‖Xa,b(s)‖=
√

x
a,b
1 (s)2 + x

a,b
2 (s)2 is a non-

decreasing function of s for all s ∈ [0, 1].

Now, for any τ > 0, define the mappings ha,b : [0, 1] 7→
[0, τ

4 ] as

ha,b(s) =
τ(ra,b(s)− a)

4(b− a)
. (12)

In addition, for i ∈ {1, 2, · · · , N}, assume that random

variables (Ai, Bi) are chosen independently according a two-

dimensional probability distribution that satisfies P (0 ≤ Ai ≤
Bi ≤ ρ) = 1 and

EAi,Bi

[

1(Ai≤r≤Bi)

Bi −Ai

]

=
2r

ρ2
for all r ∈ [0, ρ]. (13)

We define the corresponding oval trajectories Za,b(t) :
[0, τ ] 7→ B(O, ρ) as in Equations (14) and (15) in the next

page, for 0 ≤ t ≤ τ
2 and τ

2 ≤ t ≤ τ , respectively: Now for

any ABS i, we set a = Ai and b = Bi to generate Z
a,b
i (t).

The extended oval trajectories, Z̃
a,b

(t) = (z̃a,b1 (t), z̃a,b2 (t)) :
R

+ 7→ B(O, ρ), are defined by periodically extending Za,b(t)
outside of [0, τ ] such that

Z̃
a,b

(t+ τ) = Z̃
a,b

(t), for t ∈ R
+.

Suppose that N aerial vehicles start their flights at times

T1, T2, ..., TN , independently chosen uniformly from (0, τ). Let

also W
Ai,Bi

i (t) be the corresponding delayed extended oval

trajectories according to Ti’s, i.e., for t ∈ [Ti,∞]

WAi,Bi(t) = Z̃
Ai,Bi

(t− Ti).

Moreover, for t > τ , we define the rotated delayed extended

oval trajectories, Ṽ i(t) = (ṽi(t), ṽi(t)) of the i’th vehicle

(ṽi(t), ṽi(t)) = ROTΘi

(

WAi,Bi(t)

)

, (16)

where ROTΘi
is the rotation around the origin by Θi degrees

and Θi ∼ U(0, 2π) is chosen independently from each other.

A family of curves satisfying the Properties 1 and 2 of

Definition 2 can be defined in the following form

X(s) = [q cos(
π

2
s), q sin(

π

2
s)], s ∈ [0, 1], (17)

where q = a+(b−a)s and a and b are random variables with

a two-dimensional PDF fA,B(a, b) that satisfies (13). Figure

4 shows a representation of Eq. (17).

Theorem 2. For all t > τ , the instantaneous locations of the

aerial vehicles on the rotated delayed extended oval trajectory,

i.e., Ṽ (t), form a uniform BPP in B(O, ρ).

Before presenting the proof of Theorem 2, we state the

following lemma which will be used in the main part of the

proof.

Lemma 2. Let T ∼ U(0, τ). Fix a, b ∈ R
+, where without

loss of generality 0 ≤ a ≤ b ≤ ρ (since the case of 0 ≤ b ≤
a ≤ ρ can be considered as the rotated version of the former),

and consider a delayed oval trajectory Z̃
a,b

(t) as defined in

Definition 2. For t ∈ [T,∞], define the delayed extended oval

trajectory W a,b(t) as

W a,b(t) = Z̃
a,b

(t− T ).

Then for any t > τ , we have

‖W a,b(t)‖∼ U(a, b).

Proof. We provide the proof for 0 ≤ t ≤ τ
4 . The proof is simi-

lar for other values of t. Similar to the procedure developed for

the proof of Theorem 1, let u(t) = ‖Z̃a,b
(h−1(t))‖, 0 ≤ t ≤ τ

4

and ‖W a,b(t)‖= u(t − T ), where T is a uniform random

variable in the interval (0, τ). With these assumptions and

using Lemma 1 we obtain

F‖Wa,b‖ =
4|{0 ≤ β ≤ τ

4 : u(β) ≤ r}|
τ

=
4|{0 ≤ β ≤ τ

4 : ‖Z̃a,b
(h−1(β))‖≤ r}|

τ
, (18)

where since h(s) defined in (12) is a non-decreasing function

of s, we can say that there exists a βmax for which we have

‖Z̃a,b
(h−1(βmax))‖≤ r. Hence, we get

F‖Wa,b‖ =
4|[0, βmax]|

τ
=

4βmax

τ
. (19)

On the other hand, let 0 ≤ β∗ ≤ τ
4 , β

∗ = τ(r−a)
4(b−a) which means

there exists a s∗ ∈ [0, 1] for which β∗ = h(s∗). Therefore, we

have h−1(β∗) = h−1(βmax) and since h is monotonic, we

uniquely have β∗ = βmax. Finally, we obtain the CDF of the

distance between any point on the first quarter located on the

curve W a,b(t) and the origin as below

F‖Wa,b‖ =
4|{0 ≤ β ≤ βmax}|

τ
=

4βmax

τ
=

r − a

b− a
, (20)

which is the CDF of a random variable distributed uniformly

between a and b.

Using Lemma 2, we now are able to provide the proof of

the Theorem 2.

Proof. Similar to the case of Theorem 1, since Θi ∈ (0, 2π)
and Ti ∈ (0, τ) are each chosen independently, we conclude

that the points on the curves are independent. Now we can

obtain the distribution of distances of the points on the rotated
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Za,b(t) = (za,b1 (t), za,b2 (t)) =















(

x
a,b
1 (h−1

i (t)), xa,b
2 (h−1

i (t))

)

, for 0 ≤ t ≤ τ
4

(

− x
a,b
1 (h−1

i ( τ2 − t)), xa,b
2 (h−1

i ( τ2 − t))

)

, for τ
4 ≤ t ≤ τ

2 ,

(14)

Za,b(t) = (za,b1 (t), za,b2 (t)) =















(

− x
a,b
1 (h−1

i (t− τ
2 )),−x

a,b
2 (h−1

i (t− τ
2 ))

)

, for τ
2 ≤ t ≤ 3τ

4
(

x
a,b
1 (h−1

i (τ − t)),−x
a,b
2 (h−1

i (τ − t))

)

, for 3τ
4 ≤ t ≤ τ.

(15)
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y
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Fig. 4. Typical curves from the oval trajectory process

delayed extended oval trajectory Ṽ i(t) for t ≥ τ , f‖Ṽ ‖(r) as

below

f‖Ṽ ‖(r)
(a)
=

∫

a

∫

b

f‖Ṽ ‖|A,B(r|a, b)fA,B(a, b)dadb

= EA,B [f‖Ṽ ‖|A,B(r|a, b)]
(b)
= EA,B

[

A≤r≤B

B −A

]

, (21)

where (a) results from the law of total probability and (b)

comes from Lemma 2 where we showed that given a and b,

the distribution of ‖W a,b(t)‖ is uniform in the interval (a, b).
Finally, according to (13), the last statement in (21) is equal

to 2r
ρ2 and so we have f‖Ṽ ‖(r) = 2r

ρ2 which completes the

proof.

2) Ring Trajectory Process: A special case of the oval

process can be obtained by assuming Bi to be a random

variable with fBi
(b) = 2b

ρ2 and Ai = Bi − ǫ with probability

1. With a = b = Bi which results in q = Bi in (17),

this trajectory which is henceforth called the ring process,

represents a circle with radius Bi on which an ABS i turns

around the center with a constant speed of vi,ring = 2πBi

τ
.

Such a constant speed is a major practical advantage over

other members of the oval trajectory family as well as the

spiral trajectory. Now we have to investigate if (13) holds:

EAi,Bi

[

Ai≤r≤Bi

Bi −Ai

]

=
1

ǫ
Pr (Bi − ǫ ≤ r ≤ Bi)

=
1

ǫ

∫ r+ǫ

r

fBi
(b)db =

2r + ǫ

ρ2
. (22)

As ǫ → 0, the expectation tends to 2r
ρ2 , proving the assertion.

ρ 

ABS

ρ

Fig. 5. An illustration of flying ABSs according to a ring trajectory process

III. CONCLUSION

In this paper, we designed stochastic trajectory processes

involving N points (ABSs) such that at any snapshot, the

locations of the points are distributed according a uniform BPP

in the cell. For a network of ABSs, this guarantees a uniform

coverage for the users across the cell. We introduced two

families of such processes, namely spiral and oval processes

and analytically proved the uniformity. Then we considered

two specials cases of the proposed families, radial and ring

processes. These two trajectory processes can be conveniently

implemented and are thus of practical interest.
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