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Abstract—Modern applications significantly enhance user ex-
perience by adapting to each user’s individual condition and/or
preferences. While this adaptation can greatly improve utility
or be essential for the application to work (e.g., for ride-
sharing applications), the exposure of user data to the application
presents a significant privacy threat to the users, even when
the traces are anonymized, since the statistical matching of an
anonymized trace to prior user behavior can identify a user and
their habits. Because of the current and growing algorithmic
and computational capabilities of adversaries, provable privacy
guarantees as a function of the degree of anonymization and
obfuscation of the traces are necessary. Our previous work has
established the requirements on anonymization and obfuscation
in the case that data traces are independent between users.
However, the data traces of different users will be dependent
in many applications, and an adversary can potentially exploit
such. In this paper, we consider the impact of correlation between
user traces on their privacy. First, we demonstrate that the
adversary can readily identify the association graph, revealing
which user data traces are correlated. Next, we demonstrate that
the adversary can use this association graph to break user privacy
with significantly shorter traces than in the case when traces are
independent between users, and that independent obfuscation of
the data traces is often insufficient to remedy such. Finally, we
discuss how the users can employ dependency in their obfuscation
to improve their privacy.

Index Terms—Internet of Things (IoT), Privacy-Protection
Mechanisms (PPM), Information Theoretic Privacy, Anonymiza-
tion, Obfuscation, Inter-User Correlation.

I. INTRODUCTION

Many modern applications exploit a user’s characteristics,
both their past choices and present state, to enhance user
experience. For example, emerging Internet of Things (IoT)
applications include smart homes, health care, and connected
vehicles that will smartly tune their response to a given user,
such as a connected vehicle application optimizing a route
based on the current location of the vehicle and traffic condi-
tions. Such applications require that a user provide potentially
sensitive data; hence, questions arise about how much user pri-
vacy is compromised. Even if user data traces are anonymized,
statistical matching of the current data trace with prior user
behavior can identify the user and their characteristics [1],
[2]. And studies have indicated that privacy concerns could
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significantly hamper the penetration of IoT applications [3]–
[5].

Our previous work has introduced the notion of “perfect pri-
vacy” [6]. In particular, with rapid advances in algorithms and
computation, information-theoretic guarantees that demon-
strate that sensitive information does not leak to a powerful
adversary are critical. The work of [6]–[8] considered the
degree of user anonymization and data obfuscation required
to obtain perfect privacy in the case when the data traces of
different users are independent of one another. In that work,
we have considered the case of independent and identically
distributed (i.i.d.) samples from a given user and the case
when there is temporal correlation within the trace of a given
user [7], [8], as have others under different metrics [9]–[12].

There are many applications where there is correlation
between the traces of different users. For example, friends
tend to travel together or might meet at given places, hence
introducing dependency between locations. However, there is
relatively limited work in this area [13]–[17], particularly from
a fundamental perspective. Hence, here we investigate what the
metrics of [6]–[8] require in terms of user anonymization and
data obfuscation to preserve privacy in the case of correlation
between the data traces of different users.

We model dependence between user traces with an associa-
tion graph, where an edge between the vertices corresponding
to a pair of users indicates dependency between their data
traces. We first demonstrate that the adversary can readily
determine this association graph. Armed with this association
graph, the adversary can attempt to identify the users, and we
show that this provides the adversary with a significant ad-
vantage versus the case when the data traces of different users
are independent of one another. This suggests that, unless ad-
ditional countermeasures are employed, the results of [6]–[8],
[18], [19] for independent traces are overly optimistic when
user traces are correlated. We next consider countermeasures.
First, we demonstrate that adding independent obfuscation to
user data samples is often ineffective in improving the users’
privacy. Finally, we demonstrate that, if users with correlated
traces can jointly design their obfuscation, user privacy can be
significantly improved.

More references, additional discussion, and proofs of main
results are provided in the long version of the paper [20].

2018 IEEE International Symposium on Information Theory (ISIT)

978-1-5386-4780-6/18/$31.00©2018 IEEE 1036



II. FRAMEWORK

We employ a similar framework to [6], [8]. The system has
n users, and Xu(k) is the sample of the data of user u at time k.
Our main goal is protecting Xu(k) from a strong adversary (A)
who has full knowledge of the (unique) marginal probability
distribution function of the data samples for each user based on
previous observations or other resources. In order to achieve
data privacy of users, both anonymization and obfuscation
techniques can be used as shown in Figure 1. In Figure 1,
Zu(k) shows the (reported) sample of the data of user u
at time k after applying obfuscation, and Yu(k) shows the
(reported) sample of the data of user u at time k after applying
anonymization. Let m = m(n) be the number of data points
after which the pseudonyms of users are changed in the
anonymization. To break the anonymization, the adversary
tries to estimate Xu(k), k = 1, 2, · · · ,m, from m observations
per user by matching the sequence of observations to the
known statistical characteristics of the users.

Fig. 1: Notation for sequences after applying obfuscation and
anonymization to users’ data samples.

Let Xu be the m × 1 vector containing the samples of the
data of user u, and X be the m × n matrix with uth column
equal to Xu;

Xu =
[
Xu(1), Xu(2), · · · , Xu(m)

]T
X = [X1,X2, · · · ,Xn] .

Data Samples Model: We assume users’ data samples can
have r possibilities (0, 1, · · · , r −1). Thus, according to a user-
specific probability distribution, Xu(k) is equal to a value
in {0, 1, · · · , r − 1} at any time, and, per above, these user-
specific probability distributions are known to the adversary
(A) and form the basis upon which he performs (statistical)
matching.

Association Graph: An association graph or dependency
graph is an undirected graph representing dependencies of
users with each other. Let G(V, F) denote the association graph
with set of nodes V , (|V | = n), and set of edges F. Two vertices
(users) are connected if their data sets are dependent. More
specifically,
• (u, u′) ∈ F if I(Xu(k); Xu′(k)) > 0,
• (u, u′) < F if I(Xu(k); Xu′(k)) = 0,

where I(Xu(k); Xu′(k)) is the mutual information between the
k th data sample of user u and user u′.

Obfuscation Model: Obfuscation perturbs the users’ data
samples. Each user has only limited knowledge of the char-
acteristics of the overall population, so usually a simple dis-
tributed method in which the samples of the data of each user
are reported with error with a certain probability is employed.
Note that this probability itself is generated randomly for each
user. Let Zu be the vector which contains the obfuscated

versions of user u’s data sample, and Z be the collection of
Zu for all users,

Anonymization Model: In the anonymization technique, the
identity of the users is perturbed. Anonymization is modeled
by a random permutation Π on the set of n users. Let Yu be
the vector which contains the anonymized version of Zu (the
obfuscated version of data of user u), and Y is the collection
of Yu for all users, thus Yu = YΠ−1(u) and YΠ(u) = Yu .

Adversary Model: We assume the adversary has full knowl-
edge of the marginal probability distribution function of each
of the users on {0, 1, . . . , r −1}. The adversary also knows the
anonymization mechanism, but does not know the realization
of the random permutation. The adversary knows the obfusca-
tion mechanism, but does not know the realization of the noise
parameters. Also, the adversary knows the association graph
G(V, F), but does not necessarily know the exact nature of
dependency. That is, while the adversary knows the marginal
distributions Xu(k) as well as which pairs of users have
strictly positive mutual information, he might not know the
joint distributions or even the values of mutual informations
I(Xu(k); Xu′(k)). It is critical to note that we assume the
adversary does not have any auxiliary information or side
information about users’ data.

Definition 1. User u has perfect privacy [6] if and only if

∀k ∈ N, lim
n→∞

I
(
Xu(k); Y

)
= 0,

where I
(
Xu(k); Y

)
denotes the mutual information between a

sample of the data of user u at time k and the collection of
the adversary’s observations for all of the users.

Definition 2. User u has no privacy [8] if and only if
there exists an algorithm for the adversary to estimate Xu(k)
perfectly as n goes to infinity. In other words, as n→∞,

∀k ∈ N, Pe(u, k) , P
( �Xu(k) , Xu(k)

)
→ 0,

where �Xu(k) is the estimated value of Xu(k) by the adversary.

III. IMPACT OF CORRELATION BETWEEN USERS ON
PRIVACY USING ANONYMIZATION

In this section, we consider only anonymization and thus
the obfuscation block in Figure 1 is not present.

A. i.i.d. Two-State Model

There is potentially correlation between the data of different
users, but we assume here that the sequence of data for
any individual user is i.i.d.. The i.i.d. model would apply
directly to data that is sampled at a low rate. In addition,
understanding the i.i.d. case can also be considered the first
step toward understanding the more complicated case where
there is dependency.

We first consider the i.i.d. two-state (r = 2) case, where
the sample of the data of user u at any time is a Bernoulli
random variable with parameter pu , which we define as the
probability of user u being at state 1. Thus,

Xu(k) ∼ Bernoulli
(
pu

)
.
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The parameters pu , u = 1, 2, · · · , n are drawn independently
from a continuous density function, fP(pu), on the (0, 1)
interval. The density fP(pu) might be unknown, so all that
is assumed here is that such a density exists. From the results
of the paper, it will be evident that knowing or not knowing
fP(pu) does not change the results asymptotically. Further, we
assume there are δ1, δ2 > 0 such that1:{

δ1 ≤ fP(pu) ≤ δ2, pu ∈ (0, 1).
fP(pu) = 0, pu < (0, 1).

The adversary knows the values of pu , u = 1, 2, · · · , n, and
uses this knowledge to match the observed traces to the users.
We will use capital letters (i.e., Pu) when we are referring to
the random variable, and use lower case (i.e., pu) to refer to
the realization of Pu .

A vector containing the permutation of those probabilities
after anonymization is P̃ , where P̃u = PΠ−1(u) and P̃Π(u) = Pu .
As a result, for u = 1, 2, ..., n, the distribution of the data
symbols for the user with pseudonym u is given by:

Yu(k) ∼ Bernoulli
(
P̃u

)
∼ Bernoulli

(
PΠ−1(u)

)
.

For this case, dependency and correlation of the data sam-
ples are equivalent, that is, we can say:
• (u, u′) ∈ F if ρ(Xu(k), Xu′(k)) = ρuu′ > 0,
• (u, u′) < F if ρ(Xu(k), Xu′(k)) = ρuu′ = 0,

where ρuu′ is the correlation coefficient between the data of
user u and that of user u′. The adversary knows the association
graph G(V, F), but does not necessarily know the correlation
coefficient (ρuu′) for each specific (u, u′) ∈ F.

Critical to compromising the privacy of the users will be the
adversary’s ability to match empirical correlation properties
of the data traces to the known structure of the (ensemble)
correlation between users. First, we show that the adversary
can reliably reconstruct the entire association graph for the
anonymized version of the data (i.e. the observed data traces)
with relatively few observations.

Lemma 1. Consider a general association graph G(V, F). If
the adversary obtains m = (log n)3 anonymized observations
per user, he/she can construct G̃ = G̃(Ṽ, F̃), where Ṽ = {Π(u) :
u ∈ V} = V , such that for all u, u′ ∈ V ; (u, u′) ∈ F iff(
Π(u),Π(u′)

)
∈ F̃. We write this statement as P(F̃ = F) → 1.

The structure of the association graph (G) can leak a
significant amount of information. For example, in Figure 2,
the identity map is the only automorphism of the association
graph G. Thus, it is obvious that the adversary can uniquely
identify all of the users if he/she can reconstruct the association
graph.

To be able to derive further results, we need to make some
assumptions on the structure of the association graph. For
the rest of the paper, we consider a graph structure shown

1The condition δ1 < fP (pu ) < δ2 is not actually necessary for the
results and can be relaxed; however, we keep it here to avoid unnecessary
technicalities.

Fig. 2: One example of an association graph for which the
identity map is the only automorphism.

Fig. 3: Association graph consists of some disjoint subgraphs
(G j), where G j is a connected graph on sj vertices.

in Figure 3, where the association graph consists of f disjoint
subgraphs,

G = G1 ∪ G2 ∪ · · · ∪ G f ,

where subgraph G j is a connected graph on sj vertices. In
particular, each subgraph G j refers to a group of “friends” or
“associates” such that their data sets are dependent, and we
will denote its association graph as G j(Vj, Fj), where |Vj | = sj .

The following theorem states that if the number of observa-
tions per user (m) is significantly larger than n

2
s in this two-

state model, then the adversary can successfully de-anonymize
the users in any group of size s.

Theorem 1. For the above two-state model, if Y is the
anonymized version of X as defined above, the size of a group
is s, and m = cn

2
s +α, where α > 0, then user 1 has no privacy

as n goes to infinity.

Discussion: It is insightful to compare this result to
Theorem 1 in [6], where it is stated that if the users are not
correlated, then all users have perfect privacy as long as the
number of adversary’s observations per user (m) is smaller
than O(n2). Here, Theorem 1 states that with much smaller m
the adversary can de-anonymize all users. Therefore, we see
that correlation can significantly reduce the privacy of users.

B. i.i.d. r-States Model

Now, assume users’ data samples can have r possibilities
(0, 1, · · · , r − 1), and pu(i) gives the probability of user u
having data sample i. We define the vector pu as

pu = [pu(1), pu(2), · · · , pu(r − 1)]T , P =
[
p1, p2, · · · , pn

]
.

We also assume pu’s are drawn independently from some
continuous density function, fP(pu), which has support on a
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subset of the (0, 1)r−1 hypercube. In particular, define the range
of the distribution as

RP = {(x1, x2, · · · , xr−1) ∈ (0, 1)r−1 :
xi > 0, x1 + x2 + · · · + xr−1 < 1}.

Then, we assume there are δ1, δ2 > 0 such that:{
δ1 ≤ fP(pu) ≤ δ2, pu ∈ RP.

fP(pu) = 0, pu < RP.

Theorem 2. For the above r-states model, if Y is the
anonymized version of X as defined above, the size of a group
is s, and m = cn

2
(r−1)s +α, where α > 0, then user 1 has no

privacy as n goes to infinity.

C. Markov Chain Model

In Sections III-A and III-B, we assumed each user’s data
patterns was i.i.d.; however, in this section users’ data patterns
are modeled using Markov chains in which each user’s data
samples are dependent over time. In this model, we again
assume there are r possibilities for each data point, i.e.,
Xu(k) ∈ {0, 1, · · · , r − 1}.

More specifically, each user’s data is modeled by a Markov
chain with r states. It is assumed that the Markov chains of
all users have the same structure, but have different transition
probabilities. Let E be the set of edges in the assumed transi-
tion graph, so (i, l) ∈ E if there exists an edge from state i to
state l, meaning that pu(i, l) = P

(
Xu(k + 1) = l |Xu(k) = i

)
>

0. The transition matrix is a square matrix used to describe the
transitions of a Markov chain; thus, different users can have
different transition probability matrices. Note for each state i,

we have
r∑
l=1

pu(i, l) = 1, so the adversary can focus on a subset

of size d = |E | − r of transition probabilities for recovering
the entire transition matrix. So we have

pu = [pu(1), pu(2), · · · , pu(d)]T , P =
[
p1, p2, · · · , pn

]
.

We also consider pu(i)’s are drawn independently from
some continuous density function, fP(pu), on the (0, 1) |E |−r
hypercube. Define the range of the distribution as

RP =
{
(x1, · · · , xd) ∈ (0, 1)d : xi > 0, x1 + x2 + · · · + xd < 1

}
.

As before, we assume there are δ1, δ2 > 0, such that{
δ1 ≤ fP(p) ≤ δ2, p ∈ Rp

fP(p) = 0, p < Rp

Theorem 3. For an irreducible, aperiodic Markov chain
model, if Y is the anonymized version of X as defined above,
the size of a group is s, and m = cn

2
s(|E |−r )+α, where α > 0,

then user 1 has no privacy as n goes to infinity.

IV. PRIVACY USING ANONYMIZATION AND OBFUSCATION

Here we consider the case when both anonymization and
obfuscation techniques are employed, as shown in Figure 1.
We assume similar obfuscation to [8].

A. i.i.d. Two-State Model
Again, let us start with the i.i.d. two-state model. As before,

we assume that pu’s are drawn independently from some
continuous density function, fP(pu), on the (0, 1) interval.

To obfuscate the data samples, for each user u we inde-
pendently generate a random variable Ru that is uniformly
distributed between 0 and an. The value of Ru shows the
probability that the user’s data sample is changed to a different
value by obfuscation, and an is termed the “noise level” of the
system.

The effect of the obfuscation is to alter the probability
distribution function of each user’s data samples in a way
that is unknown to the adversary, since it is independent of
all past activity of the user, and hence the obfuscation inhibits
user identification. For each user, Ru is generated once and is
kept constant for the collection of samples of length m, thus
providing a very low-weight obfuscation algorithm.

The Zu(k)’s are i.i.d. with a Bernoulli distribution; thus,

Yu(k) ∼ Bernoulli
(
p̂u

)
,

where p̂u is is the probability that an obfuscated data sample
of user u is equal to one, so

p̂u = pu(1 − Ru) + (1 − pu)Ru

= pu +
(
1 − 2pu

)
Ru .

Define the vector P̂, which contains the obfuscated probabili-
ties:

P̂ =
[
p̂1, p̂2, · · · , p̂n

]
,

and the vector containing the permutation of those probabili-
ties after anonymization as P̃. As a result, for u = 1, 2, ..., n,

Yu(k) ∼ Bernoulli
(
p̃u

)
.

Theorem 4. For the above two-state model, if Z is the
obfuscated version of X, and Y is the anonymized version
of Z as defined above, the size of a group is s, and
• m = cn

2
s +α for c > 0 and α > 0;

• Ru ∼ Uni f orm[0, an], where an , c′n−
(

1
s +β

)
for c′ > 0

and β > α
4 ;

then user 1 has no privacy as n goes to infinity.

Discussion: It is insightful to compare this result to Theorem
1 in [8], which stated that if the users are not correlated, then
all users have perfect privacy as long as the number of the
adversary’s observations per user (m) is smaller than O(n2) or
the noise level (an) used to obfuscate the users’ data samples
is larger than O(n−1). Here, Theorem 4 states that with much
smaller m or much larger an the adversary can de-anonymize
and de-obfuscate all users with vanishing error probability.
Therefore, we see that correlation can significantly reduce the
privacy of users.

B. i.i.d. r-States Model and Markov Chain Model
Similar to sections III-B and III-C, we can extend the results

of Section IV-A to the r-states models well as the Markov
chain models. The details are provided in the extended version
[20].
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V. ACHIEVING PERFECT PRIVACY IN THE PRESENCE OF
CORRELATION

Here, we discuss how we can improve privacy in the
presence of correlation. First note that independent obfuscation
alone is not sufficient even at a high noise level, because it
cannot change the association graph. Thus, we suggest that
associated users collaborate together to increase their privacy.
For clarity, we focus on the two-state model with sj ≤ 2;
thus, there are some users that are connected together and
there are also some isolated users. The asymptotic noise level
is defined as the highest probable percentage of data points
that are corrupted [20] .

Theorem 5. For the two-state model, if Z is the obfuscated
version of X, Y is the anonymized version of Z, and the size
of all subgraphs are less than or equal to 2, there exists an
anonymization/obfuscation scheme such that for all (u, u′) ∈
F, the asymptotic noise level for users u and u′ is at most

a(u, u′) =
��Cov(Xu(k), Xu′(k))

��
max{pu, pu′, 1 − pu, 1 − pu′}

,

to achieve perfect privacy for all users.

VI. CONCLUSION

A sophisticated adversary can threaten user privacy by
employing statistical matching of user data traces to prior
behavior. Our previous work has considered the requirements
on anonymization and obfuscation for “perfect” user privacy to
be maintained when traces are independent between users. But
traces are rarely independent, as relationships between users
establish dependence in their behavior. We have shown here
that such dependence can have a significant impact on user
privacy, as the anonymization employed must be significantly
increased to preserve perfect privacy, and often no degree of
independent obfuscation of the traces can be effective. We
also present preliminary results on dependent obfuscation to
preserve user privacy.

REFERENCES

[1] F. M. Naini, J. Unnikrishnan, P. Thiran, and M. Vetterli, “Where you
are is who you are: User identification by matching statistics,” IEEE
Transactions on Information Forensics and Security, vol. 11, no. 2, pp.
358–372, 2016.

[2] J. Unnikrishnan, “Asymptotically optimal matching of multiple se-
quences to source distributions and training sequences,” IEEE Trans-
actions on Information Theory, vol. 61, no. 1, pp. 452–468, 2014.

[3] N. Apthorpe, D. Reisman, and N. Feamster, “A Smart Home is No
Castle: Privacy Vulnerabilities of Encrypted IoT Traffic,” in Workshop
on Data and Algorithmic Transparency, 2016.

[4] P. Porambag, M. Ylianttila, C. Schmitt, P. Kumar, A. Gurtov, and A. V.
Vasilakos, “The quest for privacy in the internet of things,” IEEE Cloud
Computing, vol. 3, no. 2, pp. 36–45, 2016.

[5] A. Ukil, S. Bandyopadhyay, and A. Pal, “IoT-privacy: To be private or
not to be private,” in IEEE Conference on Computer Communications
Workshops (INFOCOM WKSHPS). Toronto, ON, Canada: IEEE, 2014,
pp. 123–124.

[6] Z. Montazeri, A. Houmansadr, and H. Pishro-Nik, “Achieving Perfect
Location Privacy in Wireless Devices Using Anonymization,” IEEE
Transaction on Information Forensics and Security, vol. 12, no. 11, pp.
2683–2698, 2017.

[7] N. Takbiri, A. Houmansadr, D. Goeckel, and H. Pishro-Nik, “Matching
anonymized and obfuscated time series to users’ profiles,” https://arxiv.
org/abs/1710.00197, May 2018, [Online; accessed 02-May-2018].

[8] N. Takbiri, A. Houmansadr, D. L. Goeckel, and H. Pishro-Nik, “Limits
of location privacy under anonymization and obfuscation,” in Interna-
tional Symposium on Information Theory (ISIT). Aachen, Germany:
IEEE, 2017, pp. 764–768.

[9] R. Al-Dhubhani and J. Cazalas, “Correlation analysis for geo-
indistinguishability based continuous lbs queries,” in 2nd International
Conference on Anti-Cyber Crimes (ICACC). Abha, Saudi Arabia: IEEE,
2017.

[10] S. Zhang, Q. Ma, T. Zhu, K. Liu, L. Zhang, W. He, and Y. Liu,
“Plp: Protecting location privacy against correlation-analysis attack in
crowdsensing,” in 44th International Conference on Parallel Processing
(ICPP). Beijing, China: IEEE, 2015.

[11] H. Liu, X. Li, and H. Li, “Spatiotemporal correlation-aware dummy-
based privacy protection scheme for location-based services,” in IEEE
Conference on Computer Communications (INFOCOM). Atlanta, GA,
USA: IEEE, 2017.

[12] Y. Xiao and L. Xiong, “Protecting locations with differential privacy
under temporal correlations,” in Proceedings of the 22nd ACM SIGSAC
Conference on Computer and Communications Security, pp. 1298–1309.

[13] D. Kifer and A. Machanavajjhala, “No free lunch in data privacy,” in
Proceedings of the 2011 ACM SIGMOD International Conference on
Management of data. Athens, Greece: ACM, 2011, pp. 193–204.

[14] T. Zhu, P. Xiong, G. Li, and W. Zhou, “Correlated differential privacy:
Hiding information in non-iid data set,” IEEE Transactions on Informa-
tion Forensics and Security, vol. 10, no. 2, pp. 229–242, 2015.

[15] L. Ou, Z. Qin, Y. Liu, H. Yin, Y. Hu, and H. Chen, “Multi-user
location correlation protection with differential privacy,” in IEEE 22nd
International Conference on Parallel and Distributed Systems (ICPADS).
IEEE], year=2016, address= Wuhan, China.

[16] B. Yang, I. Sato, and H. Nakagawa, “Bayesian differential privacy on
correlated data,” in Proceedings of the 2015 ACM SIGMOD Interna-
tional Conference on Management of Data. Melbourne, Victoria,
Australia: ACM, 2015, pp. 747–762.

[17] J. Zhang, G. Cormode, C. M. Procopiuc, D. Srivastava, , and X. Xiao,
“Privbayes: Private data release via bayesian networks,” in Proceedings
of the 2014 ACM SIGMOD International Conference on Management
of Data, pp. 1423–1434.

[18] N. Takbiri, A. Houmansadr, D. L. Goeckel, and H. Pishro-Nik, “Fun-
damental limits of location privacy using anonymization,” in Annual
Conference on Information Science and Systems (CISS). Baltimore,
MD, USA: IEEE, 2017.

[19] N. Takbiri, A. Houmansadr, D. Goeckel, and H. Pishro-Nik, “Statistical
matching in the presence of anonymization and obfuscation: Non-
asymptotic results in the discrete case,” in Annual Conference on
Information Science and Systems (CISS). Princeton,NJ, USA: IEEE,
2018.

[20] N. Takbiri, A. Houmansadr, D. Goeckel, and H. Pishro-Nik, “Pri-
vacy against statistical matching: Inter-user correlation,” http://www.
ecs.umass.edu/ece/pishro/Papers/correlation.pdf, January 2018, [Online;
accessed 07-April-2018].

2018 IEEE International Symposium on Information Theory (ISIT)

1040


