
IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 61, NO. 3, MARCH 2013 919

On Finite-Length Performance of Polar Codes:
Stopping Sets, Error Floor, and

Concatenated Design
A. Eslami, Student Member, IEEE, and H. Pishro-Nik, Member, IEEE

Abstract—This paper investigates properties of polar codes
that can be potentially useful in real-world applications. We
start with analyzing the performance of finite-length polar codes
over the binary erasure channel (BEC), while assuming belief
propagation as the decoding method. We provide a stopping
set analysis for the factor graph of polar codes, where we
find the size of the minimum stopping set. We also find the
girth of the graph for polar codes. Our analysis along with
bit error rate (BER) simulations demonstrate that finite-length
polar codes show superior error floor performance compared
to the conventional capacity-approaching coding techniques. In
order to take advantage from this property while avoiding the
shortcomings of polar codes, we consider the idea of combining
polar codes with other coding schemes. We propose a polar code-
based concatenated scheme to be used in Optical Transport Net-
works (OTNs) as a potential real-world application. Comparing
against conventional concatenation techniques for OTNs, we show
that the proposed scheme outperforms the existing methods by
closing the gap to the capacity while avoiding error floor, and
maintaining a low complexity at the same time.

Index Terms—Polar codes, concatenated codes, belief propa-
gation, stopping sets, error floor.

I. INTRODUCTION

S INCE their introduction, polar codes have attracted a lot
of attention among researchers due to their capability to

solve some problems (sometimes open problems) that could
not be handled using other schemes. However, theoretical
approaches have been mostly taken toward polar codes in the
literature. Our goal is to study polar codes from a practical
point of view to find out about properties that can be useful in
real-world applications. Hence, we are mainly concerned with
the performance of polar codes in the finite regime (i.e. with
finite lengths) as opposed to the asymptotic case. Some of
the previous work related to finite-length polar codes include
[1]–[9]. Particularly, [2] proposes a successive cancellation list
decoder that bridges the gap between successive cancellation
and maximum-likelihood decoding of polar codes. Inspired

Manuscript received October 15, 2011; revised July 2, and September 20,
2012. The associate editor coordinating the review of this paper and approving
it for publication was S.-Y. Chung.

The authors are with the Electrical and Computer Engineering Depart-
ment, University of Massachusetts, Amherst, MA, USA (e-mail: {eslami,
pishro}@ecs.umass.edu).

The material in this paper was presented in part at the International
Symposium of Information Theory (ISIT), 2011, and the 48th Annual Allerton
Conference on Communication, Control, and Computing, 2010.

This work was supported by the National Science Foundation under grants
CCF-0830614 and ECCS-0636569.

Digital Object Identifier 10.1109/TCOMM.2013.012313.110692

by [2], [10]–[12] propose using CRC along with list decoding
to improve the performance of polar codes. [3] presents a
method to improve the finite-length performance of successive
cancellation decoding by means of simple and short inner
block codes. A linear program (LP) decoding for polar codes
is considered in [5]. In [7], a method for efficient construction
of polar codes is presented and analyzed. In addition, scaling
laws are provided in [13]–[17] for the behavior of polar codes
that, in some cases, have finite-length implications.

Since an analysis in the finite regime can be very difficult in
general, we start with studying the performance of polar codes
over the binary erasure channel (BEC). While being fairly
manageable, such an analysis leads to a better understanding
of the behavior of polar codes. We provide an analysis of the
stopping sets in the factor graph realization of polar codes.
Such a realization for polar codes was first employed by
[18] and [19] to run Belief Propagation (BP) as the decoding
algorithm. Stopping sets are important as they contribute to
the decoding failure and error floor, when BP is used for
decoding [20]. Particularly, in the case of BEC, stopping
sets are the sole reason of the decoding failure. We find the
structure of the minimum stopping set and its size, called
stopping distance. We will show that the stopping distance
grows polynomially for polar codes. This is a clear advantage
over capacity-approaching LDPC codes. We also find the girth
of the factor graph of polar codes, showing that polar codes
hold a relatively large girth. The effect of such a large girth and
stopping distance on the error floor behavior of polar codes is
depicted in our simulation results for the binary erasure and
AWGN (Additive White Gaussian Noise) channels.

It is well-known that finite-length polar codes show poor
error probability performance when compared to some of the
existing coding schemes such as LDPC and Turbo codes.
Nevertheless, showing a set of good characteristics such as
being capacity-achieving, low encoding and decoding com-
plexity, and good error floor performance suggests that a
combination of polar coding with another coding scheme
could eliminate shortcomings of both, hence providing a
powerful coding paradigm. In this paper, we consider the
design of polar code-based concatenated coding schemes that
can contribute to closing the gap to the capacity. Concatenated
coding has been studied extensively for different combina-
tions of coding schemes. Furthermore, there have been many
applications, such as deep space communications, magnetic
recording channels, and optical transport systems that use

0090-6778/13$31.00 c© 2013 IEEE

920 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 61, NO. 3, MARCH 2013

a concatenated coding scheme [21]–[24]. A coding scheme
employed in these applications needs to show strong error
correction capability. Here, we investigate the potentials of
using polar codes in a concatenated scheme to achieve very
low error rates while avoiding error floor. While the idea of
concatenated polar codes was first introduced in [25], the
problem of designing practical concatenated schemes using
polar codes is yet to be studied. In [25], the authors study the
classical idea of code concatenation using short polar codes
as inner codes and a high-rate Reed-Solomon (RS) code as
the outer code. It is shown that such a concatenation scheme
with a careful choice of parameters boosts the rate of decay
of error probability to almost exponential in the block-length
with essentially no loss in computational complexity. While
[25] mainly considers the asymptotic case, we are interested
in improving the performance in practical finite lengths.

In this paper, we study the combination of polar codes
and LDPC codes, suggesting a polar code as the outer code
and a LDPC code as the inner code. LDPC codes can be
decoded in linear time using BP, while they can get very close
to the capacity. However, LDPC codes with good waterfall
characteristics are known to mostly suffer from the error floor
problem. Here, polar codes come to play their role making
the combination to show a good error floor performance. In
order to investigate the performance of this scheme in a real-
world application, we compare our proposed scheme against
some of the conventional schemes used for OTNs. These
schemes include a capacity-approaching LDPC code, the ITU-
T Recommendation G.709 for OTNs, and some of the “super
codes" of ITU-T G.975.1 for DWDM (Dense Wavelength
Division Multiplexing) submarine cable systems. we will
show that polar-LDPC combination actually outperforms these
schemes as it closes the gap to capacity without showing
error floor. Our results suggest that polar codes have a great
potential to be used in combination with other codes in real-
world communication systems.

The rest of the paper is organized as follows. We first
explain the notations and provide a short background on
the belief propagation. Section III gives an analysis on the
minimum stopping set of polar codes. We provide a girth
analysis of polar codes in Section IV where we also present
simulation results for error floor performance. We propose
concatenated polar codes to be used in a real-world application
in Section V. Finally, Section VI concludes the paper.

II. PRELIMINARIES

In this section, we explain the notations and some prelim-
inary concepts we will use in our analysis. Let F = [1 0

1 1]
be the kernel used for construction of polar codes. Apply
the transform F⊗n (where ⊗n denotes the nth Kronecker
power) to a block of N = 2n bits and transmit the output
through independent copies of a symmetric binary discrete
memoryless channel (B-DMC), call it W . As n grows large,
the channels seen by individual bits (suitably defined in [26])
start polarizing to either a noiseless channel or a pure-noise
channel, where the fraction of channels becoming noiseless
is close to the capacity I(W). Polar codes use the noiseless
channels for transmitting information while fixing the symbols
transmitted through the noisy ones to a value known both

to the sender as well as the receiver. Accordingly, part of
the block that carries information includes “information bits"
while the rest of the block includes “frozen bits". Since we
only deal with symmetric channels in this paper, we assume
without loss of generality that the fixed positions are set to 0.
The code is defined through its generator matrix as follows.
Compute the Kronecker product F⊗n. This gives a 2n × 2n

matrix. The generator matrix of polar codes is a sub-matrix
of F⊗n in which only a subset of rows of F⊗n are present.
These rows are in fact the rows of F⊗n corresponding to
information bits. In the following, let x̄ = (x1, ..., xN) and
ȳ = (y1, ..., yN) denote, respectively, the vectors of code-bits
and channel output bits.

A Successive Cancelation (SC) decoding scheme is em-
ployed in [26] to prove the capacity-achieving property of
polar codes. However, [18] and [19] later proposed using
belief propagation decoding to obtain better BER performance
while keeping the decoding complexity at O(N logN). Belief
propagation can be run on the factor graph representation of
the code [18]. Such a representation is easily obtained by
adding check nodes to the encoding graph of polar codes,
as it is shown in Fig. 1 for a code of length 8. We refer
to this graph as the code’s factor graph. Note that the factor
graph is formed of columns of variable nodes and check nodes.
There are, respectively, n+ 1 and n columns of variable and
check nodes in the graph. We denote the variable nodes in jth
column by v(1, j), v(2, j), ..., v(N, j) for j = 1, ..., n + 1.
This is also shown in Fig. 1. Similarly, check nodes are
labeled as c(1, j), c(2, j), ..., c(N, j) for j = 1, ..., n. The
rightmost column in the graph includes code-bits, while the
leftmost column includes frozen and information bits. As
it will become clear, our analysis does not depend on any
specific choice of the frozen and information bits. Therefore,
we treat all the nodes in the left-most column as variable
nodes. Among v(i, 1), i = 1, ..., N , some are associated to
the information bits. We denote the index set of information
bits by A where A ⊆ {1, 2, ..., N}. Also, the row in F⊗n

associated with an information bit i ∈ A will be denoted by
ri = [ri,1 ri,2 ... ri,N]. Note that this is the ith row of F⊗n.
We denote by wt(ri) the Hamming weight of ri.

BP runs on the factor graph in a column-by-column fashion.
That is, BP runs on each column of the adjacent variable
and check nodes. The parameters are then passed to the next
column. Each column, as it can be seen in Fig. 1, is formed
of some Z-shaped subgraphs. In our proofs, we sometimes
simply call a Z-shaped part a “Z". The schedule with which
BP runs is very important for channels other than BEC. Here,
we use the same scheduling used in [19], i.e. we update the
LLRs for Z parts from bottom to top for each column, starting
from the rightmost one. After arriving at the leftmost column,
we reverse the course and update the Zs from top to bottom for
each column, moving toward the rightmost one. This makes
one round of iteration, and will repeat at each round. While
we tried other schedules as well, this one led to a better overall
performance.

We denote the factor graph of a code of length N = 2n

by Tn. A key observation is the symmetric structure of this
graph due to the recursive way of finding the generator matrix:
Tn+1 includes two factor graphs Tn as its upper and lower

ESLAMI and PISHRO-NIK: ON FINITE-LENGTH PERFORMANCE OF POLAR CODES: STOPPING SETS, ERROR FLOOR, AND CONCATENATED DESIGN 921

)1,1(v 1x

2x
3x

4x

5x

6x

7x

8x

)1,2(v

)1,3(v

)1,4(v

)1,5(v

)1,6(v

)1,7(v

)1,8(v

)2,1(v

)2,2(v

)2,3(v

)2,4(v

)2,5(v

)2,6(v

)2,7(v

)2,8(v

)1,1(c

)1,2(c

)1,3(c

)1,4(c

)1,5(c

)1,6(c

)1,7(c

)1,8(c

U
nT 1

L
nT 1

Fig. 1. Normal realization of the encoding graph for N = 8. An example
of a GSS is shown with black variable and check nodes.

halves, connected together via v(1, 1), v(2, 1), ..., v(N, 1) and
c(1, 1), c(2, 1), ..., c(N, 1). We denote these two subgraphs by
TU
n+1 and TL

n+1, as it is shown in Fig. 1. This observation will
be later used in our analysis.

In this paper, we are particularly interested in the analysis
of stopping sets in the factor graph of polar codes. A stopping
set is a non-empty set of variable nodes such that every
neighboring check node of the set is connected to at least
two variable nodes in the set. Fig. 1 shows an example of the
stopping set in the polar codes’ graph, where we have also
included the corresponding set of check nodes. A stopping set
with minimum number of variable nodes is called a minimum
stopping set.

A. Stopping Trees

An important category of stopping sets in the factor graph of
polar codes are stopping trees. A stopping tree is a stopping set
that contains one and only one information bit. It can be easily
seen that this sub-graph is indeed a tree, therefore justifying
its name. We say that the stopping tree is rooted at its (single)
information bit (on the left side of the graph), with leaves
at code-bits (on the right side of the graph). An example of
such a stopping set is shown in Fig. 2 with black variable
nodes. We also included the corresponding set of check nodes
in order to visualize the structure of the tree. A stopping tree
like the one shown in Fig. 2 can be immediately realized for
any information bit. As we will later see (in Fact 2 below), this
would in fact be the unique stopping tree for each information
bit. We denote the stopping tree rooted at v(i, 1) by ST (i).
Among all the stopping trees, the one with minimum number
of variable nodes is called a minimum stopping tree. We refer
to the set of leaf nodes of a stopping tree as the leaf set of the
tree. The size of the leaf set for ST (i) is denoted by f(i). We
refer to a stopping tree with minimum leaf set as a Minimum-
Leaf Stopping Tree (MLST). Note that a minimum stopping
tree does not necessarily have the minimum f(i) among all
the stopping trees.

)1,1(v 1x

2x

3x

4x

5x

6x

7x

8x

)1,2(v

)1,3(v

)1,4(v

)1,5(v

)1,6(v

)1,7(v

)1,8(v

)2,1(v

)2,2(v

)2,3(v

)2,4(v

)2,5(v

)2,6(v

)2,7(v

)2,8(v

)1,1(c

)1,2(c

)1,3(c

)1,4(c

)1,5(c

)1,6(c

)1,7(c

)1,8(c

11

Fig. 2. The stopping tree for v(6, 1) is shown with black variable and check
nodes.

B. Graph Stopping Sets vs. Variable-Node Stopping Sets

By looking at the factor graph of polar codes, one can
observe that the middle variable nodes, i.e. v(i, j) for j =
2, ..., n and i = 1, ..., N , are always treated as erasures by the
BP decoder. This is also true about information bits. Frozen
bits, on the other hand, are known to the decoder. As a
result, the only real “variable" nodes are the code-bits, i.e.
v(1, n + 1), ..., v(N,n + 1). These are in effect the variable
nodes that if erased may cause a decoding failure. Here, we
refer to a stopping set on the graph as a Graph Stopping
Set (GSS), while we refer to the set of code-bits on such a
GSS as a Variable-Node Stopping Set (VSS). In Fig. 1, the
set {x3, x4, x5, x6} is the VSS for the depicted GSS. As we
will see later, every GSS must include some information bits
and some code-bits. Thus, VSS is nonempty for each GSS.
Accordingly, we define a minimum VSS (MVSS) as a VSS
with minimum number of code-bits among all the VSSs. That
is, a minimum VSS is the set of code-bits on a GSS with
minimum number of code-bits among all GSSs. Note that a
minimum VSS is not necessarily on a minimum GSS. We
refer to the size of a minimum VSS as stopping distance of
the code.

Now, for any given index set J ⊆ A, there always exists an
information bit j ∈ J whose corresponding stopping tree has
the smallest leaf set among all the elements in J . We call such
an information bit a minimum information bit for J , denoted
by MIB(J). Note that there may exist more than one MIB in
J . In general, any given index set J ⊆ A can be associated to
several GSSs in the factor graph. We denote by GSS(J) the
set of all the GSSs that include J and only J as information
bits. Each member of GSS(J) includes a set of code-bits. The
set of code-bits in each of these GSSs is a VSS for J . We refer
to the set of these VSSs as variable-node stopping sets (VSSs)
of J , denoted by V SS(J). Among the sets in V SS(J), we
refer to the one with minimum cardinality as a minimum VSS
for J , denoted by MV SS(J). Let us also mention that all the
proofs for the facts, lemmas, and theorems have been moved
to the Appendix at the end of the paper.

922 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 61, NO. 3, MARCH 2013

III. STOPPING SET ANALYSIS OF POLAR CODES

In this section, we provide a stopping set analysis for polar
codes. For the BEC, it is proved [20] that the set of erasures
which remain when the decoder stops is equal to the unique
maximal stopping set within the erased bits. In general, an
analysis of the structure and size of the stopping sets can reveal
important information about the error correction capability of
the code. A minimum stopping set is more likely to be erased
than larger stopping sets. Thus, minimum stopping sets play an
important role in the decoding failure. In code design, codes
with large minimum stopping sets are generally desired. We
consider the problem of finding the minimum stopping set for
a given polar code of length N . The results of this analysis
may also help finding the optimal rule of choosing information
bits to achieve the best error correction performance under
belief propagation decoding.

A. Minimum VSS in the Graph

It is important to realize that what prevents the BP decoder
from recovering a subset J of information bits is the erasure
of the code-bits in one of the sets in V SS(J). Therefore, what
will eventually show up in any error probability analysis is the
set of VSSs and their size. Particularly, MV SS(J) represents
the smallest set of code-bits whose erasure causes a decoding
failure of J . We will find the size of MV SS(J) for any given
J . Furthermore, we will find the size of minimum VSS for a
given polar code.

We start our analysis by stating some of the facts about
the structure of stopping sets in the factor graph of polar
codes. The factor graph of polar codes has a simple recursive
structure which points to some useful observations. Here we
mention some of these observations.

Fact 1: Any GSS in the factor graph of a polar code
includes variable nodes from all columns of the graph. In
particular, any GSS includes at least one information bit and
one code-bit. �

This implies that any given GSS includes a nonempty VSS.
Fact 2: Each information bit has a unique stopping tree. �
Fact 3: Any GSS in Tn+1 is formed of a GSS in TU

n+1

and/or a GSS in TL
n+1, and a number of variable nodes

v(i, 1), i = 1, ..., N . �
This implies that any GSS in Tn+1 induces a GSS in TU

n+1

and/or TL
n+1. This can be also seen in Fig. 1. The stopping set

shown in the figure induces a stopping set in each of TU
n+1 and

TL
n+1. Now, consider size of the leaf set for different stopping

trees. Note that we have f(1) = 1, f(2) = 2, f(3) = 2,
f(4) = 4, so on. In general, we can state the following facts
about f(·).

Fact 4: For a polar code of length N = 2n, the function
f(·) can be formulated as follows:

f(2l) = 2l for l = 0, 1, ..., n,

f(2l +m) = 2f(m) for 1 ≤ m ≤ 2l − 1, 1 ≤ l ≤ n− 1.
(1)

Thus f(·) is not necessarily an increasing function. �
Fact 5: For a given polar code of length N formed by the

kernel F , and for any i ∈ A, we have f(i) = wt(ri). In other
word, the size of the leaf set for any stopping tree is in fact

equal to the weight of the corresponding row in the generator
matrix. Particularly, the leaf set of the stopping tree for any
input bit represents the locations of 1’s in the corresponding
row of the matrix F⊗n. �

Now, let us consider variable-node stopping sets for J ⊆
A. The following theorem is proved for MV SS(J) in the
Appendix. The proof uses facts 1, 3, and 4.

Theorem 1: Given any set J ⊆ A of information bits in
a polar code of length N = 2n, we have |MV SS(J)| ≥
minj∈J f(j). �

Theorem 1 sets a lower bound on the size of the MV SS
for a subset J of information bits. It also implies that the size
of the minimum VSS for a polar code is at least equal to
mini∈A f(i). However, we already know that the leaf set of
the stopping tree for any node i ∈ A is a VSS of size f(i).
This leads us to the following corollary.

Corollary 1: For a polar code with information bit index A,
the size of a minimum variable-node stopping set is equal to
mini∈A f(i), i.e. the size of the leaf set for the minimum-leaf
stopping tree. �

Corollary 1 implies that in order to find the size of the
minimum VSS, we need to find the information bit with
minimum leaf stopping tree among all the information bits.

B. Size Distribution of Stopping Trees and their Leaf Sets

We provide a method for finding the size distribution of
stopping trees and their leaf sets. First, note that the recursive
construction of the factor graph dictates a relationship between
the size of stopping trees in Tn+1 and Tn.

Fact 6: Let An and Bn be two vectors of length
2n showing, respectively, the size of stopping trees
and their leaf sets for all input bits in Tn. That is,
An = [|ST (1)| |ST (2)| ... |ST (2n)|] and Bn =
[f(1) f(2) ... f(2n)]. We then have

An+1 = [An 2An] + 1n+1

Bn+1 = [Bn 2Bn], (2)

where 1n+1 is the all-ones vector of length 2n+1. �
These two recursive equations can be solved with complex-

ity O(N) to find the desired size distributions for a code of
length N . Note that Fact 4 can be also concluded from Fact
6. Furthermore, Fact 5 can be used to find the size of leaf set
for a specific stopping tree within time O(N).

C. Stopping Distance for Polar Codes

Fact 6 gives the stopping distance for a finite-length polar
code, when the set of information bits is known. However,
it is not always easy to choose the optimal information set,
particularly with large code-lengths. In order to approach this
problem, we first show that a slight modification in the set
of information bits may actually result in a larger stopping
distance without a significant impact on the BER performance.

Theorem 2: In the factor graph of a polar code of length
N , the number of input bits v(i, 1) for which f(i) < N ε, 0 <
ε < 1

2 is less than NH(ε). �
The above theorem implies that, for any 0 < ε < 1/2, we

can always replace NH(ε) information bits by some frozen

ESLAMI and PISHRO-NIK: ON FINITE-LENGTH PERFORMANCE OF POLAR CODES: STOPPING SETS, ERROR FLOOR, AND CONCATENATED DESIGN 923

0.29 0.3 0.31 0.32 0.33 0.34 0.35
10-8

10-7

10-6

10-5

10-4

10-3

10-2
B

E
R

BP Arikan
SC Arikan
SC New Rule
BP New Rule

Fig. 3. BER comparison for different methods of choosing information
bits under BP and SC decoding. Code-rate and code-length are 1/2 and 213,
respectively.

bits for which the stopping tree has a leaf set larger than
N ε. It is easy to show that such a replacement does not
effectively change the overall BER under BP, asymptotically.
When N → ∞ and ε < 1/2 , NH(ε) will be vanishing with
N . In a sparse factor graph, such as the one in polar codes,
erroneous decoding of a small set of information bits affects
only a few number (vanishing with N as N → ∞) of other
information bits. Therefore, given a finite number of iterations,
BER will not change asymptotically. Accordingly, We can
expect such a modification to have little impact on the BER
performance in the finite regime, while resulting in a better
error floor performance. Fig. 3 is used to demonstrate this
case. The BER is depicted for Arikan’s rule and its modified
version introduced above (we call it new rule) applied to a
code of length 213 and rate 1/2. We replaced information bits
with leaf sets smaller than 28, by frozen bits with minimum
Bhattacharyya parameter who also had a leaf set larger than
28. As it can be seen, when SC decoding is used, the new rule
performs slightly worse than the Arikan’s rule. However, under
BP decoding, it does slightly better than Arikan’s rule. While
the figure only shows the BER performance in the waterfall
region, We conjecture that this rule results in a superior error
floor performance of the new rule due to its larger stopping
distance. It is also noteworthy that if we use the new rule to
pick all the information bits, i.e. if we only pick input bits with
largest leaf sets as information bits, then the resulting code will
be a Reed-Muller code for which BP performance is worse
than polar codes [18]. Therefore, we only considered a limited
use of the new rule. This apparently helps to preserve some
of the good characteristics of polar codes while increasing
the stopping distance. We also like to mention two points
regarding the stopping distance.

1) Asymptotic Case: Theorem 2 asserts that given any
capacity-achieving polar code and any σ > 0, we can always
construct another capacity-achieving code with a stopping
distance N1/2−σ , by replacing some information bits by some
frozen bits with larger f(.). The following theorem gives the
stopping distance for polar codes in the asymptotic case. Note

that this only holds asymptotically and the analysis is different
for finite-length codes, as we explained above.

Theorem 3: The stopping distance for a polar code of
length N grows as Ω(N1/2). �

2) Minimum Distance vs. Stopping Distance: The follow-
ing theorem states the relation between the stopping distance
and minimum distance of polar codes.

Theorem 4: The stopping distance of a polar code defined
on a normal realization graph such as the one in Fig. 1, is
equal to the minimum distance of the code, dmin. �

According to Theorem 4, the number of code-bits in the
minimum VSS grows as fast as the minimum distance. It is
noteworthy that for linear block codes, dmin (i.e. the minimum
Hamming weight among all codewords) puts an upper bound
on the stopping distance [27]–[29]. This is because if all the
ones in the received vector are erased, then it is impossible for
the decoder to find out if an all-zero codeword has been sent or
another codeword. For a code, it is a desirable property to have
a stopping distance equal to its minimum distance. Therefore,
Theorem 4 can be interpreted as a positive result, particularly
compared to the capacity-approaching LDPC codes for which
both the stopping and minimum distances are fairly small in
comparison to the block length [27]–[29].

IV. ERROR FLOOR PERFORMANCE OF POLAR CODES

A large stopping distance is desirable in order to improve
the error floor performance of a code over the BEC. After
exploring the stopping sets of polar codes in the pervious
section, here we focus on “girth" of polar codes as another
important factor in error floor performance. Afterward, we
examine the error floor performance of polar codes over the
BEC and binary Gaussian channel via simulations.

A. Girth of Polar Codes

The girth of a graph is the length of shortest cycle contained
in the graph. cycles in the Tanner graph prevent the sum-
product (BP) algorithm from converging [30]. Furthermore,
cycles, especially short ones, degrade the performance of
the decoder, because they affect the independence of the
extrinsic information exchanged in the iterative decoding.
When decoded by belief propagation, the external information
at every variable node remains uncorrelated until the iteration
number reaches half the girth. Hence, we are often interested
in constructing large girth codes that can achieve high perfor-
mance under BP decoding [31]–[33]. As it can be seen in the
factor graph shown in Fig. 4, there exist two types of cycles:
first, the cycles including nodes only from one of the top or
bottom part of the graph (shown by thick solid lines), and
second, the cycles including nodes from both top and bottom
parts of our symmetric graph (shown by thick dashed lines).
The first type of cycles have the same shape in both upper
and lower halves of the graph. The interesting fact about the
cycles is that because the graph for a code of length 2m is
contained in the graph of a code of length 2m+1, all the cycles
of the shorter code are also present in the graph of the longer
code. The shortest cycle appears in the graph of a length-4
polar code, as it is shown in Fig. 4. It is a cycle of size 12,
including 6 variable nodes and 6 check nodes. The shortest

924 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 61, NO. 3, MARCH 2013

u1

u7

u3

u5

u2

u8

u4

u6

x1

x4

x3

x2

x5

x8

x7

x6

Fig. 4. Different types of cycles in the factor graph of polar codes for
N = 8. Thick solid and dashed lines show the first and second types of
cycles, respectively.

cycle of the second type appears first in the graph of a length-
8 polar code, and have a size of 12 (dotted lines in Fig. 4).
Thus, based on the above, the girth of a polar code is 12.

B. Simulation Results for Error Floor

We performed simulations to examine the effect of the
relatively large stopping distance and girth of the polar codes’
factor graph on the error correction performance of these
codes. Fig. 5(a) shows the simulation results for a code of
length 215 and rate 1/2 over the BEC. As it can be seen,
no sign of error floor is apparent. This is consistent with the
relatively large stopping distance of polar codes. We indicated
the 99% confidence interval for low BERs on the curve to
show the precision of the simulation. Fig. 5(b) also shows the
simulation results for a rate 1

2 polar code of length 213 over
a binary-input Gaussian channel subjected to additive white
Gaussian noise with zero mean and variance σ2. The figure
shows no sign of error floor down to the BERs of 10−9.

Regarding the error floor, we should mention here a prior
work by Mori and Tanaka [34], which gives theoretical upper
and lower bounds on block error probability, for SC decoding
of polar codes over the BEC. According to these bounds,
no error floor is expected for block error probability. Note
also that for the BEC, BP decoding is strictly better than
SC decoding [19]. Thus, if SC decoding shows no error
floor problems, so does BP decoding. For large block lengths,
however, a stopping distance of Ω(

√
N) (as it was shown in

Theorem 3) implies a good error floor performance for polar
codes over the BEC.

V. A POTENTIAL APPLICATION FOR POLAR CODES

Polar codes show a set of good characteristics that are
needed in many real-world communication systems. Among
these properties are good error floor performance, being
capacity-achieving, and a low encoding and decoding com-
plexity. In this section, we take advantage of these properties
to design a polar code-based scheme as a solution to a practical
problem. An Optical Transport Network (OTN) is a set of

0.33 0.34 0.35 0.36 0.37 0.38 0.39 0.4 0.41 0.42 0.43
10

−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

ε

B
E

R

SC Decoding

BP Decoding

(a) BER for BP and SC decoding over BEC. The code-
length and code-rate are 215 and 1/2, respectively. The 99%
confidence interval is shown for the two lowest BER’s.

2.2 2.4 2.6 2.8 3 3.2 3.4
10

−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

E
b
/N

0
 (dB)

B
E

R

SC Decoding

BP Decoding

(b) BER for BP and SC decoding over Gaussian channel. The
code-length and code-rate are 213 and 1/2, respectively.

Fig. 5. BER performance of polar codes over the binary erasure and Gaussian
channels. The 99% confidence interval is shown for the two lowest BER’s.

optical network elements connected by optical fiber links, able
to transport client signals at data rates as high as 100 Gbit/s
and beyond. These networks are standardized under ITU-T
Recommendation G.709, and stand for an important part of the
high data-rate transmission systems such as Gigabit Ethernet
and the intercontinental communication network. A minimum
BER of at least 10−13 is generally required in such systems
[23], [24]. Because of very high-rate data transmission, OTNs
need to employ a low complexity coding scheme to keep the
delay in a low level. Furthermore, these systems generally use
a long frame for data transmission, which allows using large
code-lengths.

We propose concatenated polar-LDPC codes to be used in
OTNs. Our proposed scheme is formed of a Polar code as
the outer code, and a LDPC code as the inner code. Fig. 6
shows the block diagram of this scheme. We consider long
powerful LDPC codes as the inner code with rates close
to the channel capacity. LDPC codes with good waterfall
characteristics are known to mostly suffer from the error floor
problem. However, the polar code plays a dominant role in the
error floor region of the LDPC code. Based on the analysis

ESLAMI and PISHRO-NIK: ON FINITE-LENGTH PERFORMANCE OF POLAR CODES: STOPPING SETS, ERROR FLOOR, AND CONCATENATED DESIGN 925

Information bits

u1,...,uk

û1,...,ûk

ChannelPolar
Encoder

LDPC
Decoder

LDPC
Encoder

Polar
Decoder

Fig. 6. Block diagram of the proposed concatenated system of polar and
LDPC codes.

provided in previous sections, the combination of polar and
LDPC codes is expected to form a powerful concatenated
scheme with a BER performance close to the capacity for
a broad range of the channel parameter. We consider a binary
polar code concatenated with a binary LDPC code. This is
different from the traditional concatenated schemes [35] in
which a non-binary code is usually used as the outer code.

OTU4 is the standard designed to transport a 100 Gigabit
Ethernet signal. The FEC (Forward Error Correction) in the
standard OTU4 employs a block interleaving of 16 words of
the (255, 239, 17) Reed-Solomon codes, resulting in an overall
overhead of 7%. This scheme guarantees an error floor-free
performance using a bounded distance decoder, and provides
a coding gain of 5.8 dB at a BER of 10−13. Since the approval
of this standard (February 2001), several concatenated coding
schemes have been proposed in the literature and some as
patents, targeting to improve the performance of this standard.
In most cases, these schemes propose a concatenation of two
of Reed-Solomon, LDPC, and BCH codes [22]–[24], [36].
Here, for the first time, we consider polar-LDPC concatenation
for the OTU4 setting.

A. Encoder

In order to satisfy the overhead of 7%, we adopt an effective
code rate of 0.93. That is, if we denote the code-rates for
the polar and LDPC codes by Rp and Rl respectively, then
Reff = Rp × Rl needs to be 0.93. The first problem
is to find the optimal code-rate combination for the two
codes to achieve the best BER performance. While this is an
interesting analytical problem, it might be a difficult problem
to solve. Therefore, we find the best rate combination for our
application empirically. First, note that both Rp and Rl are
greater than 0.93. We are also aware of the relatively poor
error rate performance of finite-length polar codes compared to
LDPC codes. Therefore, in order to minimize the rate loss, we
choose Rl close to the Reff . As a result, Rp would be close
to 1. The values of Rl and Rp can be found empirically. Fig. 7
shows the BER performance of three different rate couples, as
a sample of all the rate couples we simulated. Code-length for
the polar code is fixed to 215 = 32768 for all the rate couples.
Showing a rate couple by (Rp, Rl), these three rate couples are
(0.989, 0.94), (0.979, 0.95), (0.969, 0.96). We picked (0.979,
0.95) for the rest of our simulations in this paper as it shows
a better performance in the low-error-rate region. Fixing the
code-length 215 = 32768 for the polar code and fixing the
rates to (0.979, 0.95), the LDPC code-length would be 34493.
We used the following optimal degree distribution pair which

6 6.05 6.1 6.15 6.2 6.25 6.3 6.35 6.4 6.45 6.5
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

E
b
 / N

0
 (dB)

B
E

R

(R
p
,R

l
)=(0.979,0.95)

(R
p
,R

l
)=(0.989,0.94)

(R
p
,R

l
)=(0.969,0.96)

Fig. 7. BER performance comparison for different rate combinations in a
polar-LDPC concatenated scheme.

has a threshold value of 0.47 for the binary AWGN channel
under BP [37]:

λ(x) =0.156935 x+ 0.138295 x2 + 0.325131 x3

+ 0.168818 x11 + 0.210821 x12, (3)

ρ(x) =0.039239 x34 + 0.144375 x35 + 0.302308 x70

+ 0.514078 x71. (4)

An interesting question here is how to design the polar
code in this concatenated scheme, while the channel seen by
the polar code is not an AWGN channel anymore. It is well
known, that when the iterative BP decoder fails, the residual
erroneous bits after decoding are organized in graphical struc-
tures (e.g. stopping sets on BEC or trapping sets for other types
of channels). In order to find the distribution of such patterns,
one method is to prepare a histogram of these (post-decoding)
error patterns. However, here we simply assume that the error
patterns are distributed randomly (equally likely) at the output
of the LDPC decoder, hence assuming the channel seen by
the polar code as an AWGN channel with capacity 0.979. We
then designed our polar code for this channel. The problem of
designing optimal polar codes for this concatenated scheme
remains as an interesting problem for further research.

B. Decoder

At the decoder side, we perform belief propagation decod-
ing with soft-decision for both the polar and LDPC codes.
Upon finishing its decoding, the LDPC decoder will pass its
output vector of LLRs to the polar decoder. Polar decoder
then treats this vector as the input for its belief propagation
process.

C. Simulation Results

Fig. 8 depicts the BER performance for the concatenated
scheme explained above, when using the LDPC code above.
For the channel, we assumed a binary symmetric Gaussian
channel as it is used by [22]–[24], [36]. Along with the
concatenated scheme, we have shown the performance of the
LDPC code when used alone with an effective rate of 0.93,
which is equal to the effective rate of the concatenated scheme.

926 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 61, NO. 3, MARCH 2013

5 5.5 6 6.5 7 7.5 8
10

−10

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

E
b
 / N

0
 (dB)

B
E

R

Cap−App LDPC
Polar−LDPC
OTU4 RS(255,239)
RS(2720,2550)
G.975.1 LDPC
Shannon Limit

Fig. 8. BER performance for different concatenated schemes.

As it can be seen, the concatenated scheme follows the per-
formance of LDPC code in the waterfall region closely. Since
both polar and LDPC codes here are capacity-approaching
(capacity-achieving in case of polar codes), this technique does
not suffer from rate-loss theoretically. Therefore, by increasing
the code-length we expect the curve for polar-LDPC scheme
to close the gap to capacity. The curve also shows no sign of
error floor down to BERs of 10−10, as opposed to the curve
for LDPC code which shows error floor at around 10−8. What
actually happens in a polar-LDPC concatenation is that the two
codes are orchestrated to cover for each other’s shortcomings:
LDPC plays the dominant role in its waterfall region, while
polar code is dominant in the error floor region of the LDPC
code.

We should also mention that a soft BP decoder is used
with a 9 bit quantization (512 values) of the LLRs. We are
also limiting the LLR values to the range of (-20, 20). The
maximum number of iterations used in our simulations is 60;
however, we counted the average number of iterations (let us
call it the ANI) for LDPC and polar-LDPC schemes in order
to get some ideas about their decoding latency. At a BER
of 10−6, the ANI for the capacity-approaching LDPC code
when used alone was 11.3. On the other hand, the ANI for
the LDPC and polar codes used in the polar-LDPC scheme
was 13.1 and 16.7, respectively. It should be noted that the
BP-Polar iterations are heavier than the iterations for LDPC
due to the N logN time of each iteration in BP-Polar in
comparison to the linear time of each iteration in BP-LDPC.
In our simulations for the lower points in the curves, we
kept sending blocks until we encounter 100 erroneous blocks.
For example, for polar-LDPC curve at 6.4 dB (the lowest
BER), we ended up simulating over 300 million blocks. This
particular point took us the longest amongst all the simulated
points. The lowest point in the cap-app LDPC curve was
obtained by simulating about 30 million blocks.

In order to see the significant potential of polar codes for
concatenated schemes, we compared the BER performance
of the polar-LDPC approach against some of the existing
coding techniques for OTNs, including the G.709 standard
explained earlier in the paper. We also included two “super

FECs" proposed in ITU-T standard G.975.1 for high bit-rate
DWDM (Dense Wavelength Division Multiplexing) submarine
systems [38]. These schemes share some features, specifically
the rate, block-length, and low decoding latency, with G.709,
while achieving a much better performance. All the schemes
use a code rate of 0.93. Furthermore, all of them are using
codes of length around 215. We borrowed the BER curves of
these schemes from [38].

As it is shown, an improvement of 1.3 dB at BER of 10−8

is achieved by polar-LDPC over the RS(255,239) of G.709
standard. Another scheme is an RS(2720,2550) with 12-bit
symbols that has a block-length of 32640 bits. It has been
shown to achieve a significant coding gain and to have superior
burst correction capabilities [38]. As it is shown, polar-LDPC
concatenation achieves an improvement of 0.25 dB over this
scheme. Presented in the figure is also the performance of a
systematic binary LDPC code of length 32640, with 30592
information-carrying bits [38]. This LDPC code is suitable
for implementation in current chip technologies for 10G and
40G optical systems offering low latency and feasibility of low
power consumption in case of 40G implementation showing a
significantly higher coding gain than the standardized RS code
in G.709. As it can be seen, polar-LDPC shows an edge of
0.15 dB over this LDPC scheme. The decoding complexity for
LDPC and RS codes is O(N) and O(N2), respectively, while
the polar-LDPC scheme has a complexity of O(N logN)
which is closer to the LDPC code.

VI. CONCLUSION

As a first step in a practical approach to polar codes, we
studied the BER performance of finite-length polar codes
under belief propagation decoding. We analyzed the structure
of stopping sets in the factor graph of polar codes as one
of the main contributors to the decoding failure and error
floor over the BEC. The size of the minimum stopping
set and the girth of the factor graph have been found for
polar codes. We then investigated the error floor performance
of polar codes through simulations where no sign of error
floor was observed down to BERs of 10−10. Motivated by
good error floor performance, we proposed using polar codes
in combination with other coding schemes. We particularly
studied the polar-LDPC concatenation to be used in OTNs as
a potential real-world application. Comparing the performance
for our proposed scheme to some of the existing coding
schemes for OTNs, we showed that polar-LDPC concatenation
can achieve a significantly better performance.

APPENDIX

Proof of Fact 1: First, note that we only have degree 2
and 3 check nodes in the graph. In every Z-shaped part there
are two check nodes, one at the top and one at the bottom.
The top check node is always of degree 3 and the bottom
one is always of degree 2. When a check node is a neighbor
of a variable node or a set of variable nodes, we say that
the check (variable) node is adjacent to that variable (check)
node or the set of variable (check) nodes. We show that if a
GSS is adjacent to either one of these check nodes in the ith
column, then it must involve check nodes and variable nodes

ESLAMI and PISHRO-NIK: ON FINITE-LENGTH PERFORMANCE OF POLAR CODES: STOPPING SETS, ERROR FLOOR, AND CONCATENATED DESIGN 927

from both (i − 1)th and (i + 1)th columns. Therefore, any
GSS includes variable nodes from all columns of the graph,
including information bits and code-bits.

We consider two cases. Since each neighboring check node
of a GSS needs to be connected to at least two variable nodes
in the set, if the bottom check node is adjacent to the GSS,
then both of its neighboring variable nodes must be in the
set. Since all the check nodes connected to a variable node in
the GSS are also adjacent to the set, this means that some of
the check nodes in the (i − 1)th and (i + 1)th columns are
also adjacent to the set. In the second case, if the upper check
node (of degree 3) is adjacent the GSS, then its neighbors in
the GSS are either a variable node at its right and one at its
left, or two variable nodes at its left, one at the top and one
at the bottom of the Z. In the former case, the GSS clearly
includes nodes from the (i − 1)th and (i + 1)th columns. In
the latter case, the bottom variable node has the bottom check
node as its neighbor in the GSS, leading to the same situation
we discussed above. �

Proof of Fact 2: Suppose an information bit i has two non-
overlapping stopping trees, ST and ST ′. Also, suppose ST
has a form like the stopping tree shown in Fig. 2. That is only
one variable node from each Z can participate in ST . Also,
Note that a check (variable) node in the graph is adjacent to
only one variable (check) node on the right (left). Thus, if a
check node is adjacent to ST , it is adjacent to exactly one
variable node on the left and one on the right.

Now assume that the difference between ST and ST ′ starts
at the jth column. j
= 1 Since, by definition, a stopping tree
can include only one information bit; hence, v(i, 1) is the
only variable node of column 1 participating in ST and ST ′.
Suppose there exists a variable node v(k′, j) ∈ ST ′, j
= 1,
which is not part of ST . v(k′, j) is adjacent to c(k′, j − 1)
from left. However, c(k′, j − 1) can not be adjacent to ST ,
otherwise we would have v(k′, j) ∈ ST because of what we
mentioned above. But c(k′, j− 1) must be adjacent to at least
one variable node in ST ′ form the left since it needs to be
adjacent to at least two variable nodes in ST ′ (definition of
a stopping set). Therefore, c(k′, j − 1) is adjacent to at least
one variable node in ST ′ in the (j − 1)th column, which is
not part of ST . This is contradiction since we assumed ST
and ST ′ start to differ at the jth column. �

Proof of Fact 3: Fact 1 implies that any GSS in Tn+1

includes at least one information bit. Consider such a GSS.
According to Fact 1, this GSS includes a set of vari-
able nodes in TU

n+1 and/or TL
n+1. Let us denote these

sets by SU and SL, respectively. Now, it is easy to see
that the variable and check nodes in SU and SL, if non-
empty, still satisfy the conditions of a GSS. This is because
v(1, 1), v(2, 1), ..., v(N, 1) are connected to the rest of the
graph only through c(1, 1), c(2, 1), ..., c(N, 1). Therefore, for
any GSS in Tn+1, the induced non-empty subsets in TU

n+1 and
TL
n+1 also form a GSS for these subgraphs. �

Proof of Fact 4: This fact can be concluded directly by
looking at the recursive structure of the factor graph. �

Proof of Fact 5: This is true because based on Arikan’s

paper, the encoding graph of polar codes is obtained from
the matrix F⊗n. In fact, this graph is a representation of the
recursive algebraic operations in this Kronecker product. �

Proof of Theorem 1: We prove the theorem by induction
on n where N = 2n is the code-length. For n = 1 (N = 2),
there are only two information bits, v(1, 1) and v(2, 1). It is
trivial to check the correctness of the theorem in this case.
Now suppose the hypothesis holds for a polar code of length
2k. We prove that it also holds for a code of length 2k+1.
Consider a set J and let MIB(J) = i. In the case that there
exist more than one MIB in J , without loss of generality, we
pick the one with the largest index as the MIB(J). That is,
we pick the one which occupies the lowest place in the graph
among the MIBs of J . Let V SS∗ be a minimum VSS for
J , and let GSS∗ be the corresponding GSS for V SS∗. We
also denote the upper and lower halves of the factor graph
by GU and GL, as it is shown in Fig. 9(a). Note that GU

and GL are identical in shape, and each of them includes half
of the variable and check nodes in the factor graph. Without
loss of generality, we assume that V SS∗ includes variable
nodes (code-bits in this case) from both GU and GL. We
denote these two subsets of V SS∗ by V SS∗

U and V SS∗
L,

respectively. Also, GSS∗ includes some variable nodes from
the second column, i.e. from v(1, 2), ..., v(N, 2). Let us denote
the index set of these nodes by J ′. For example, for the GSS
shown in Fig. 1, J ′ is {2, 4, 6}. We also denote the subsets of
J ′ in the upper and lower halves of the graph by J ′

U and J ′
L,

respectively. Furthermore, We simply use TU and TL instead
of TU

k+1 and TL
k+1, since it is clear that we are dealing with

the case n = k + 1. Accordingly, we use fU (j
′) (fL(j′)) to

show the size of the leaf set for the stopping tree of j′ ∈ J ′
U

(j′ ∈ J ′
L) in TU (TL).

For this setting, we need to show that for bit i to be
erased, at least f(i) code-bits must be erased, or equivalently,
|V SS∗| ≥ f(i). We consider two cases: 1. i ∈ GL, and 2.
i ∈ GU .

1) i ∈ GL: This case is depicted in Fig. 9(a). First, note
that i−2k can not be in the V SS∗, because f(i−2k) =
1/2f(i) and then i would not be a MIB. Now, for i to
be erased, i′ and l′ = i′ − 2k must be erased. Fact 3
asserts that J induces two stopping sets in TU and TL

for J ′
U and J ′

L, respectively. We claim that i′ and l′ are
MIB for J ′

L and J ′
U , respectively. If i′
= MIB(J ′

L),
then there exists a node j′ such that fL(j′) < fL(i

′).
Then, there exists j ∈ A such that f(j) < f(i) which
is in contradiction with the fact that i is a MIB.
If l′
= MIB(J ′

U), then there exists t′ such that fU (t′) <
fU (l

′). This means that we have t ∈ J and/or t+2k ∈ J .
However, we then have f(t) < f(i) and f(t + 2k) <
f(i), which is again a contradiction with i being a MIB.
Now, since i′ = MIB(J ′

L) and l′ = MIB(J ′
U), then

the induction hypothesis implies that |V SS∗
L| ≥ fL(i

′)
and |V SS∗

U | ≥ fU (l
′). Therefore, |V SS∗| = |V SS∗

L|+
|V SS∗

U | ≥ fL(i
′) + fU (l

′) = f(i).
2) i ∈ GU : This case is depicted in Fig. 9(b). If J ∩GL =

φ, then we can prove that i′ = MIB(J ′
U) along the

same lines as the proof of case 1 above. Then the in-
duction hypothesis implies that V SS∗ ≥ fU (i

′) = f(i),

928 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 61, NO. 3, MARCH 2013

1x

2x

3x
4x

5x

6x

7x

8x

l

j
i

kil 2

j

i

UT

LT

uG

lG

tt

(a) Case 1 in Theorem 1.

1x

2x

3x
4x

5x

6x

7x

8x

kit 2
j

i

t
j

i

UT

LT

uG

lG

(b) Case 2 in Theorem 1.

Fig. 9. Figure is used to visualize different cases considered in the proof of
Theorem 1.

and the proof would be complete for this case.
Now suppose that J∩GL
= φ. Consider any j ∈ J∩GL.
We show that f(j) > f(i+2k). Let us denote i+2k by
t. First note that f(j) > f(i); otherwise if f(j) = f(i),
then according to our definition of MIB, we would pick
j as the MIB since j ∈ GL and i ∈ GU . Also note that
f(.) only takes value as powers of 2. Hence, we have
f(j) ≥ 2f(i). Therefore, fL(j′) = 1/2f(j) ≥ f(i) =
fL(t

′). As a result, |V SS∗| ≥ |V SS∗
L| ≥ fL(t

′) = f(i).
�

Proof of Fact 6: The fact becomes clear by looking at the
recursive structure of the graph: Tn+1 is formed of two copies
of Tn, one at the top and one at the bottom, that are connected
together. �

Proof of Theorem 2: In the matrix F⊗n, there are
(
n
i

)
rows

with weight 2i [19]. This means that in the factor graph of
a polar code, there are

(
n
i

)
stopping trees with a leaf set of

size 2i. Thus the corresponding tree of these input bits is at
least of size 2i. As a result, the number of input bits with
less than 2εn = N ε variable nodes in their tree is less than∑εn

i=0

(
n
i

)
, which is itself upper-bounded by 2H(ε)n = NH(ε)

for 0 < ε < 1
2 . �

Proof of Theorem 3: The block error probability for SC
decoding over every B-DMC is proved to be O(2−

√
N) [39].

Noting that the error correction performance of BP is at least
as good as SC over the BEC [19], we conclude that block
error probability for BP over the BEC decays as O(2−

√
N)

as well. Let us denote by PB(E) and Pr{EMV SS}, the block
erasure probability and the probability of MVSS being erased.
We then have

Pr{EMV SS} =ε|MV SS| = (1/ε)−|MV SS| ≤ PB(E)

= O(2−
√
N) ⇒ |MV SS| = Ω(

√
N), (5)

where ε is the channel erasure probability. �

Proof of Theorem 4: First note that according to Fact 5,
f(i) = wt(ri) for any i ∈ I. On the other hand, according
to [17], [19], dmin = mini∈A wt(ri) for a polar code. Now
using Corollary 1, dmin = mini∈A wt(ri) = mini∈A f(i) =
|MV SS|. �

REFERENCES

[1] R. Mori and T. Tanaka, “Non-binary polar codes using Reed-Solomon
codes and algebraic geometry codes,” in Proc. 2010 IEEE Inf. Theory
Workshop.

[2] I. Tal and A. Vardy, “List decoding of polar codes,” in Proc. 2011 IEEE
Int. Symp. Inf. Theory.

[3] M. Seidl and J. B. Huber, “Improving successive cancellation decoding
of polar codes by usage of inner block codes,” in Proc. 2010 IEEE Int.
Symp. Turbo Codes Iterative Inf. Process.

[4] A. Alamdar-Yazdi and F. R. Kschischang, “A simplified successive-
cancellation decoder for polar codes,” IEEE Commun. Lett., vol. 15,
pp. 1378–1380, Dec. 2011.

[5] N. Goela, S. Korada, and M. Gastpar, “On LP decoding of polar codes,”
in Proc. 2010 IEEE Inf. Theory Workshop.

[6] R. Pedarsani, H. Hassani, I. Tal, and E. Telatar, “On the construction of
polar codes,” in Proc. 2011 IEEE Int. Symp. Inf. Theory.

[7] I. Tal and A. Vardy, “How to construct polar codes,” arXiv:1105.6164v1
[cs.IT], May 2011.

[8] A. Eslami and H. Pishro-Nik, “On bit error rate performance of polar
codes in finite regime,” in Proc. 2010 Allerton Conf. Commun., Control,
Computing.

[9] A. Eslami and H. Pishro-Nik, “A practical approach to polar codes,” in
Proc. 2011 IEEE Int. Symp. Inf. Theory.

[10] G. Bonik, S. Goreinov, and N. Zamarashkin, “A variant of list plus CRC
concatenated polar code,” arXiv:1207.4661v1 [cs.IT], July 2012.

[11] B. Li, H. Shen, and D. Tse, “An adaptive successive cancellation list
decoder for polar codes with cyclic redundancy check,” arXiv:1208.3091
[cs.IT], Aug. 2012.

[12] K. Niu and K. Chen, “CRC-aided decoding of polar codes,” IEEE
Commun. Lett., vol. 16, no. 10, pp. 1668–1671, Oct. 2012.

[13] S. Hassani and R. Urbanke, “On the scaling of polar codes—I: the
behavior of polarized channels,” in Proc. 2010 IEEE Int. Symp. Inf.
Theory.

[14] S. Hassani, K. Alishahi, and R. Urbanke, “On the scaling of polar
codes—I: the behavior of un-polarized channels,” in Proc. 2010 IEEE
Int. Symp. Inf. Theory.

[15] S. Korada, A. Montanari, E. Telatar, and R. Urbanke, “An emprical
scaling law for polar codes,” in Proc. 2010 IEEE Int. Symp. Inf. Theory.

[16] A. Goli, S. H. Hassani, and R. Urbanke, “Universal bounds on the
scaling behavior of polar codes,” in Proc. 2012 IEEE Int. Symp. Inf.
Theory.

[17] S. H. Hassani, R. Mori, T. Tanaka, and R. Urbanke, “Rate-dependent
analysis of the asymptotic behavior of channel polarization,” Oct. 2011.
Available: http://arxiv.org/abs/1110.0194v2

[18] E. Arikan, “A performance comparison of polar codes and Reed-Muller
codes,” IEEE Commun. Lett., vol. 12, no. 6, pp. 447–449, 2008.

[19] N. Hussami, S. Korada, and R. Urbanke, “Performance of polar codes
for channel and source coding,” in Proc. 2009 IEEE Int. Symp. Inf.
Theory.

[20] C. Di, D. Proietti, I. E. Telatar, T. Richardson, and R. Urbanke, “Finite-
length analysis of low-density parity-check codes on the binary erasure
channel,” IEEE Trans. Inf. Theory, vol. 48, pp. 1570–1579, 2002.

ESLAMI and PISHRO-NIK: ON FINITE-LENGTH PERFORMANCE OF POLAR CODES: STOPPING SETS, ERROR FLOOR, AND CONCATENATED DESIGN 929

[21] E. M. Kurtas, A. Kuznetsov, and I. Djurdjevic, “System perspectives
for the application of structured LDPC codes to data storage devices,”
IEEE Trans. Magn., vol. 42, no. 2, pp. 200–207, 2006.

[22] C. Wu and J. Cruz, “RS plus LDPC codes for perpendicular magnetic
recording,” IEEE Trans. Magn., vol. 46, no. 16, pp. 1416–1419, 2010.

[23] X. Ningde, X. Wei, Z. Tong, E. F. Haratsch, and M. Jaekyun, “Concate-
nated low-density parity-check and BCH coding system for magnetic
recording read channel with 4 kb sector format,” IEEE Trans. Magn.,
vol. 44, no. 12, pp. 4784–4789, 2008.

[24] T. Mizuochi, Y. Konishi, Y. Miyata, T. Inoue, K. Onohara, S. Kametani,
T. Sugihara, K. Kubo, H. Yoshida, T. Kobayashi, and T. Ichikawa,
“Experimental demonstration of concatenated LDPC and RS codes by
FPGAs emulation,” IEEE Photonics Technol. Lett., vol. 21, no. 18,
pp. 1302–1304, 2009.

[25] M. Bakshi, S. Jaggi, and M. Effros, “Concatenated polar codes,” in Proc.
2010 IEEE Int. Symp. Inf. Theory.

[26] E. Arikan, “Channel polarization: a method for constructing capacity-
achieving codes for symmetric binary-input memoryless channels,”
IEEE Trans. Inf. Theory, vol. 55, pp. 3051–3073, July 2009.

[27] C. Di, T. J. Richardson, and R. L. Urbanke, “Weight distribution of low-
density parity-check codes,” IEEE Trans. Inf. Theory, vol. 52, no. 11,
pp. 4839–4855, 2006.

[28] A. Orlitsky, K. Viswanathan, and J. Zhang, “Stopping set distribution
of LDPC code ensembles,” IEEE Trans. Inf. Theory, vol. 51, no. 3,
pp. 929–953, 2005.

[29] A. Orlitsky, R. Urbanke, K. Viswanathan, and J. Zhang, “Stopping sets
and the girth of Tanner graphs,” in Proc. 2002 IEEE Int. Symp. Inf.
Theory.

[30] F. R. Kschischang, B. J. Frey, and H. A. Loeliger, “Factor graphs and the
sum-product algorithm,” IEEE Trans. Inf. Theory, vol. 47, pp. 498–519,
Feb. 2001.

[31] M. Gholami and M. Esmaeili, “Maximum-girth cylinder-type block-
circulant LDPC codes,” IEEE Trans. Commun., vol. 60, pp. 952–962,
Apr. 2012.

[32] I. E. Bocharova, F. Hug, R. Johannesson, B. D. Kudryashov, and R. V.
Satyukov, “Searching for voltage graph-based LDPC tailbiting codes
with large girth,” IEEE Trans. Inf. Theory, vol. 58, pp. 2265–2279, Apr.
2012.

[33] J. Huang, L. Liu, W. Zhou, and S. Zhou, “Large-girth nonbinary

QC-LDPC codes of various lengths,” IEEE Trans. Commun., vol. 58,
pp. 3436–3447, Dec. 2010.

[34] R. Mori and T. Tanaka, “Performance and construction of polar codes
on symmetric binary-input memoryless channels,” in Proc. 2009 IEEE
Int. Symp. Inf. Theory, pp. 1496–1500.

[35] S. Lin and D. J. Costello, Error Control Coding: Fundamentals and
Applications. Prentice-Hall, 1983.

[36] H. Griesser and J. P. Elbers, “Forward error correction coding.” U.S.
Patent, US 7,484,165 B2, Jan. 2009.

[37] Available: http://sigpromu.org/ldpc/
[38] ITU-T, “Forward error correction for high bit-rate dwdm submarine

systems.” International Telecommunication Union, Series G.975, Feb.
2004.

[39] E. Arikan and E. Telatar, “On the rate of channel polarization,” in Proc.
2009 IEEE Int. Symp. Inf. Theory, 2009.

Ali Eslami received his B.S. and M.S. in electrical
engineering from Sharif University of Technology,
Tehran, Iran, in 2004 and 2006, respectively. He was
a research assistant in the Information Systems and
Security Lab (ISSL) at Sharif University from 2004
to 2007. He is currently pursuing a Ph.D. degree in
electrical and computer engineering at the University
of Massachusetts, Amherst. His research interests
include analysis of wireless networks, network in-
formation theory, and error correcting codes.

Hossein Pishro-Nik is an Associate Professor of
electrical and computer engineering at the Univer-
sity of Massachusetts, Amherst. He received a B.S.
degree from Sharif University of Technology, and
M.Sc. and Ph.D. degrees from the Georgia Institute
of Technology, all in electrical and computer engi-
neering. His research interests include mathematical
analysis of communication systems, in particular, er-
ror control coding, wireless networks, and vehicular
ad hoc networks. His awards include a NSF Faculty
Early Career Development (CAREER) award, an

Outstanding Junior Faculty Award from UMass, and an Outstanding Graduate
Research Award from Georgia Tech.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /ACaslonPro-Bold
 /ACaslonPro-BoldItalic
 /ACaslonPro-Italic
 /ACaslonPro-Regular
 /ACaslonPro-Semibold
 /ACaslonPro-SemiboldItalic
 /AdobeFangsongStd-Regular
 /AdobeHeitiStd-Regular
 /AdobeKaitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobeSongStd-Light
 /AGaramondPro-Bold
 /AGaramondPro-BoldItalic
 /AGaramondPro-Italic
 /AGaramondPro-Regular
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Aharoni-Bold
 /Algerian
 /Andalus
 /AngsanaNew
 /AngsanaNew-Bold
 /AngsanaNew-BoldItalic
 /AngsanaNew-Italic
 /AngsanaUPC
 /AngsanaUPC-Bold
 /AngsanaUPC-BoldItalic
 /AngsanaUPC-Italic
 /Aparajita
 /Aparajita-Bold
 /Aparajita-BoldItalic
 /Aparajita-Italic
 /ArabicTypesetting
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /BatangChe
 /Bauhaus93
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BirchStd
 /BlackadderITC-Regular
 /BlackoakStd
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /BritannicBold
 /Broadway
 /BrowalliaNew
 /BrowalliaNew-Bold
 /BrowalliaNew-BoldItalic
 /BrowalliaNew-Italic
 /BrowalliaUPC
 /BrowalliaUPC-Bold
 /BrowalliaUPC-BoldItalic
 /BrowalliaUPC-Italic
 /BrushScriptMT
 /BrushScriptStd
 /Calibri
 /Calibri-Bold
 /Calibri-BoldItalic
 /Calibri-Italic
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Cambria
 /Cambria-Bold
 /Cambria-BoldItalic
 /Cambria-Italic
 /CambriaMath
 /Candara
 /Candara-Bold
 /Candara-BoldItalic
 /Candara-Italic
 /Castellar
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ChaparralPro-Bold
 /ChaparralPro-BoldIt
 /ChaparralPro-Italic
 /ChaparralPro-Regular
 /CharlemagneStd-Bold
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /Consolas
 /Consolas-Bold
 /Consolas-BoldItalic
 /Consolas-Italic
 /Constantia
 /Constantia-Bold
 /Constantia-BoldItalic
 /Constantia-Italic
 /CooperBlack
 /CooperBlackStd
 /CooperBlackStd-Italic
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /Corbel
 /Corbel-Bold
 /Corbel-BoldItalic
 /Corbel-Italic
 /CordiaNew
 /CordiaNew-Bold
 /CordiaNew-BoldItalic
 /CordiaNew-Italic
 /CordiaUPC
 /CordiaUPC-Bold
 /CordiaUPC-BoldItalic
 /CordiaUPC-Italic
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /CurlzMT
 /DaunPenh
 /David
 /David-Bold
 /DFKaiShu-SB-Estd-BF
 /DilleniaUPC
 /DilleniaUPCBold
 /DilleniaUPCBoldItalic
 /DilleniaUPCItalic
 /DokChampa
 /Dotum
 /DotumChe
 /Ebrima
 /Ebrima-Bold
 /EccentricStd
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /EucrosiaUPC
 /EucrosiaUPCBold
 /EucrosiaUPCBoldItalic
 /EucrosiaUPCItalic
 /EuphemiaCAS
 /FangSong
 /FelixTitlingMT
 /FootlightMTLight
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FrankRuehl
 /FreesiaUPC
 /FreesiaUPCBold
 /FreesiaUPCBoldItalic
 /FreesiaUPCItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Gabriola
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Gautami-Bold
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /GiddyupStd
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /Gisha
 /Gisha-Bold
 /GloucesterMT-ExtraCondensed
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Gulim
 /GulimChe
 /Gungsuh
 /GungsuhChe
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /HoboStd
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /IrisUPC
 /IrisUPCBold
 /IrisUPCBoldItalic
 /IrisUPCItalic
 /IskoolaPota
 /IskoolaPota-Bold
 /JasmineUPC
 /JasmineUPCBold
 /JasmineUPCBoldItalic
 /JasmineUPCItalic
 /Jokerman-Regular
 /JuiceITC-Regular
 /KaiTi
 /Kalinga
 /Kalinga-Bold
 /Kartika
 /Kartika-Bold
 /KhmerUI
 /KhmerUI-Bold
 /KodchiangUPC
 /KodchiangUPCBold
 /KodchiangUPCBoldItalic
 /KodchiangUPCItalic
 /Kokila
 /Kokila-Bold
 /Kokila-BoldItalic
 /Kokila-Italic
 /KozGoPro-Bold
 /KozGoPro-ExtraLight
 /KozGoPro-Heavy
 /KozGoPro-Light
 /KozGoPro-Medium
 /KozGoPro-Regular
 /KozMinPro-Bold
 /KozMinPro-ExtraLight
 /KozMinPro-Heavy
 /KozMinPro-Light
 /KozMinPro-Medium
 /KozMinPro-Regular
 /KristenITC-Regular
 /KunstlerScript
 /LaoUI
 /LaoUI-Bold
 /Latha
 /Latha-Bold
 /LatinWide
 /Leelawadee
 /Leelawadee-Bold
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LevenimMT
 /LevenimMT-Bold
 /LilyUPC
 /LilyUPCBold
 /LilyUPCBoldItalic
 /LilyUPCItalic
 /LithosPro-Black
 /LithosPro-Regular
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Magneto-Bold
 /MaiandraGD-Regular
 /MalgunGothic
 /MalgunGothicBold
 /MalgunGothicRegular
 /Mangal
 /Mangal-Bold
 /Marlett
 /MaturaMTScriptCapitals
 /Meiryo
 /Meiryo-Bold
 /Meiryo-BoldItalic
 /Meiryo-Italic
 /MeiryoUI
 /MeiryoUI-Bold
 /MeiryoUI-BoldItalic
 /MeiryoUI-Italic
 /MesquiteStd
 /MicrosoftHimalaya
 /MicrosoftJhengHeiBold
 /MicrosoftJhengHeiRegular
 /MicrosoftNewTaiLue
 /MicrosoftNewTaiLue-Bold
 /MicrosoftPhagsPa
 /MicrosoftPhagsPa-Bold
 /MicrosoftSansSerif
 /MicrosoftTaiLe
 /MicrosoftTaiLe-Bold
 /MicrosoftUighur
 /MicrosoftYaHei
 /MicrosoftYaHei-Bold
 /Microsoft-Yi-Baiti
 /MingLiU
 /MingLiU-ExtB
 /Ming-Lt-HKSCS-ExtB
 /Ming-Lt-HKSCS-UNI-H
 /MinionPro-Bold
 /MinionPro-BoldCn
 /MinionPro-BoldCnIt
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Medium
 /MinionPro-MediumIt
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /Miriam
 /MiriamFixed
 /Mistral
 /Modern-Regular
 /MongolianBaiti
 /MonotypeCorsiva
 /MoolBoran
 /MS-Gothic
 /MS-Mincho
 /MSOutlook
 /MS-PGothic
 /MS-PMincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MS-UIGothic
 /MVBoli
 /MyriadPro-Bold
 /MyriadPro-BoldCond
 /MyriadPro-BoldCondIt
 /MyriadPro-BoldIt
 /MyriadPro-Cond
 /MyriadPro-CondIt
 /MyriadPro-It
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /Narkisim
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NSimSun
 /NuevaStd-BoldCond
 /NuevaStd-BoldCondItalic
 /NuevaStd-Cond
 /NuevaStd-CondItalic
 /Nyala-Regular
 /OCRAExtended
 /OCRAStd
 /OldEnglishTextMT
 /Onyx
 /OratorStd
 /OratorStd-Slanted
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /PlantagenetCherokee
 /Playbill
 /PMingLiU
 /PMingLiU-ExtB
 /PoorRichard-Regular
 /PoplarStd
 /PrestigeEliteStd-Bd
 /Pristina-Regular
 /Raavi
 /RageItalic
 /Ravie
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /Rod
 /RosewoodStd-Regular
 /SakkalMajalla
 /SakkalMajallaBold
 /ScriptMTBold
 /SegoePrint
 /SegoePrint-Bold
 /SegoeScript
 /SegoeScript-Bold
 /SegoeUI
 /SegoeUI-Bold
 /SegoeUI-BoldItalic
 /SegoeUI-Italic
 /SegoeUI-Light
 /SegoeUI-SemiBold
 /SegoeUISymbol
 /ShonarBangla
 /ShonarBangla-Bold
 /ShowcardGothic-Reg
 /Shruti
 /Shruti-Bold
 /SimHei
 /SimplifiedArabic
 /SimplifiedArabic-Bold
 /SimplifiedArabicFixed
 /SimSun
 /SimSun-ExtB
 /SnapITC-Regular
 /Stencil
 /StencilStd
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TektonPro-Bold
 /TektonPro-BoldCond
 /TektonPro-BoldExt
 /TektonPro-BoldObl
 /TempusSansITC
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /TraditionalArabic
 /TraditionalArabic-Bold
 /TrajanPro-Bold
 /TrajanPro-Regular
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga
 /Tunga-Bold
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Utsaah
 /Utsaah-Bold
 /Utsaah-BoldItalic
 /Utsaah-Italic
 /Vani
 /Vani-Bold
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vijaya
 /Vijaya-Bold
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Vrinda
 /Vrinda-Bold
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

