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Abstract—Secure communication over a memoryless wiretap
channel in the presence of a passive eavesdropper is considered.
Traditional information-theoretic security methods require an
advantage for the main channel over the eavesdropper channel
to achieve a positive secrecy rate, which in general cannot be
guaranteed in wireless systems. Here, we exploit the non-linear
conversion operation in the eavesdropper’s receiver to obtain
the desired advantage - even when the eavesdropper has perfect
access to the transmitted signal at the input to their receiver.
The basic idea is to employ an ephemeral cryptographic key to
force the eavesdropper to conduct two operations, at least one of
which is non-linear, in a different order than the desired recipient.
Since non-linear operations are not necessarily commutative, the
desired advantage can be obtained and information-theoretic se-
crecy achieved even if the eavesdropper is given the cryptographic
key immediately upon transmission completion. In essence, the
lack of knowledge of the key during the short transmission
time inhibits the recording of the signal in such a way that the
secret information can never be extracted from it. The achievable
secrecy rates for different countermeasures that the eavesdropper
might employ are evaluated. It is shown that even in the case of
an eavesdropper with uniformly better conditions (channel and
receiver quality) than the intended recipient, a positive secrecy
rate can be achieved.

Index Terms—Everlasting secrecy, Secure wireless communi-
cation, random power modulation, non-idealities of receiver.

I. INTRODUCTION

W IRELESS networks, due to their broadcast nature, are
vulnerable to being overheard, and hence security is a

primary concern. The standard method of providing security
against eavesdroppers is to encrypt the information so that
it is beyond the eavesdropper’s computational capabilities to
decrypt the message [1]; however, the vulnerability shown
by many implemented cryptographic schemes, the lack of a
fundamental proof establishing the difficulty of the problem
presented to the adversary, and the potential for transforma-
tive changes in computing motivate forms of security that
are provably everlasting. In particular, when a cryptographic
scheme is employed, the adversary can record the clean cypher
and recover it later when the cryptographic algorithm is
broken [2], which is not acceptable in sensitive applications
requiring everlasting secrecy. The desire for such everlasting
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security motivates considering emerging information-theoretic
approaches, where the eavesdropper is unable to extract from
the received signal any information about the secret message.

In 1949, Shannon introduced information-theoretic, or per-
fect, secrecy [3]. If the uncertainty of the message after
seeing the cypher is equal to the uncertainty of the message
before seeing the cypher, we have perfect secrecy without
any condition on the eavesdropper’s capabilities. Wyner later
showed that if the eavesdropper’s channel is degraded with
respect to the main channel, adding some randomness to the
codebook allows the achievement of a positive secrecy rate [4].
Csiszár and Körner extended the idea to more general cases,
where the eavesdropper’s channel is not necessarily degraded
with respect to the main channel, but it must be “more noisy”
or “less capable” than the main channel [5]. When such an
advantage does not exist, one can turn to approaches based
on “public discussion” [6], [7], but these approaches, while
they could be used to generate an information-theoretically
secure one-time pad, are generally envisioned for secret key
agreement to support a cryptographic approach [8, Chapter
7.4] rather than one-way secret communication. We will show
later the relation between our proposed scheme and public
discussion, noting, in particular, that the proposed scheme
can be used in conjunction with public discussion when
appropriate.

Consequently, the desirable situation for achieving
information-theoretic secrecy is to have a better channel
from the transmitter to the intended receiver than that from
the transmitter to the eavesdropper. However, this is not
always guaranteed, particularly in wireless systems where the
eavesdropper can have a large advantage over the intended
receiver. In the case of a passive adversary, the eavesdropper
can be very close to the transmitter or it can use a directional
antenna to improve its received signal, while there is often
no way for the legitimate nodes to know the eavesdropper’s
location or its channel state information. Recent authors have
considered approaches that relax the need for assumptions
on Eve’s location or channel in one-way systems. For cases
when the eavesdropper location is unknown (which means
the case of a “near Eve” must be considered), approaches
largely based on the cooperative jamming approach of [9]
and [10] have been considered [11], [12]. However, all of
these approaches require either multiple antennas, helper
nodes, and/or fading (for example, [13]–[15]), and many are
susceptible to attacks such as pointing directive antennas at
one or both communicating parties.
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Fig. 1. The message X is observed at Bob and Eve through the transmitter, the
AWGN channels with different noise variances, and their respective receivers
with (possibly nonlinear) functions g(.), f(.), and fE(.). The sequence k is a
cryptographic key shared by Alice and Bob, which is assumed to be obtained
by Eve immediately after she has recorded Z .

For a one-way scenario with a single antenna where Bob’s
channel is worse than Eve’s, Cachin and Maurer [16] exploited
the realizability of hardware to consider the case of everlasting
security, as is our interest. In particular, they introduced the
“bounded storage model” in which the receiver cannot store
the information it would need to eventually break the cypher.
This novel approach suffers from two shortcomings: (1) by
Moore’s Law (see NAND scaling plot at [17]), the density
of memories increases at an exponential rate; (2) memories
can be stacked arbitrarily subject only to (very) large space
limitations. Hence, although the bounded storage model is a
viable approach to everlasting security, it is difficult to pick
a memory size beyond which it will be effective, making
its employment for secret wireless communication difficult.
Rather than attacking the memory in the receiver back-end,
our contention is that one should instead consider attacking
the receiver front-end and analog-to-digital (A/D) conversion
process, where technology progresses slowly and there exist
well-known techniques for severely handicapping the compo-
nent. And, unlike memory, A/D’s cannot be stacked arbitrarily,
as clock jitter prevents the timing required for bit detection;
in fact, high-quality A/D’s already employ parallelization to
the limit of the jitter. And, importantly from a long-term
perspective, there is a fundamental bound on the ability to
perform A/D conversion [18], [19]. Consider the channel
model shown in Figure 1, which reflects the understanding
that in an adversarial game in modern communication systems,
it is the interference effects on wideband receiver front-ends
rather than the baseband processing that is the significant
detriment [20]. In particular, the signal is subject to a variety
of distortions due to the RF front-end of the receiver and the
analog-to-digital conversion. A large interferer, even if it is
orthogonal to the signal of interest and thus (supposedly) eas-
ily rejected by baseband processing, can saturate the receiver
front-end, leading to nonlinearities, and, of particular interest
here, reducing the receiver’s dynamic range (i.e. resolution)
significantly.

The primary focus of this paper is to exploit the receiver
processing effects for security. In particular, based on a pre-
shared key between Alice and Bob that only needs to be
kept secret for the duration of the wireless transmission (i.e.
it can be given to Eve immediately afterward), we consider
how inserting intentional (but known to Bob) distortion on the
transmitted signal can provide information-theoretic security.

In particular, since Bob knows the distortion, he can undo its
effect before his A/D, whereas Eve must store the signal and
try to compensate for the distortion after her A/D. Since the
A/D is necessarily non-linear, the operations are not neces-
sarily commutative and there is the potential for information-
theoretic security. This paper introduces this idea and initiates
its investigation.

As a first example, we perform a rapid power modulation
between two vastly different power levels at the transmitter
and put the reciprocal of that power gain before Bob’s A/D.
In particular, cellular (and other) networks usually have sig-
nificantly more power available for users at many locations
than their lowest data rate requires for successful transmission.
For example, users near a base station in a cellular system
have the capability to transmit significantly more power than
the minimum required to convey a high-quality voice signal.
Hence, a secure communication system to cover a restricted
area (e.g. a company’s building) built on analogous link
budgets to cellular technology would have the capability to
transmit excess power to enable secure communication, as
follows. Suppose Alice employs an ephemeral cryptographic
key known only to her and Bob to rapidly modulate her
transmit power between the minimum required for successful
transmission and the maximum available from her radio.
This power modulation can be done quite rapidly, as modern
power amplifiers can easily have their power switched at high
bandwidths [21] [22, Chapter 7]. Bob, since he knows the key,
places a gain before his A/D that changes rapidly in concert
with the transmitted power to ensure that the received signal
is matched to the range of the A/D. Since the power can be
changed every symbol, Eve cannot use any type of automatic
gain control (AGC) loop and is left trying to select a gain
that trades off resolution and the probability of overflow of
her A/D. By exploiting the resulting distortion, information-
theoretic secrecy can be obtained, even if Eve is given the key
immediately after message transmission.

The rest of paper is as follows. Section II describes the
system model, metrics, and the proposed idea in detail. In
Section III, the proposed method is applied to settings with
noisy channels and noiseless channels, respectively, to find
achievable secrecy rates in each case, and an asymptotic
analysis of the proposed method is provided. In Section IV,
the results of numerical examples for various realizations of
the system are presented. Conclusions and ideas for future
work are discussed in Section V.

II. SYSTEM MODEL AND APPROACH

A. System Model and Metric

We consider a simple wiretap channel, which consists of
a transmitter, Alice, a receiver, Bob, and an eavesdropper,
Eve. Eve is a passive eavesdropper, i.e. she just tries to obtain
as much information as possible to recover the message that
Alice sends and she does not attempt to actively thwart (i.e. via
jamming, signal insertion) the legitimate nodes. Therefore, the
location and channel state information of Eve can be difficult
to obtain and thus is assumed unknown to the legitimate nodes.

We assume that Alice and Bob either pre-share a (very)
short initial key or that they employ a standard key agreement
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scheme (e.g. Diffie-Hellman [23], which is very efficient in
passive environments) to generate a shared key. This initial
key will be used to generate a very long key-sequence by
using a standard cryptographic method such as AES in counter
mode (CTR). Considering the fact that for each 238 bits of the
key-sequence, a 96-bit new initial vector (IV) or a 128-bit new
initial key must be sent from Alice to Bob [24, Chapter 5], the
secrecy rate overhead that this key (or IV) exchange imposes is
at most 128/238 = 2−29, which is negligible. Another method
is to use standard methods that are specifically designed for
generating stream-ciphers, such as Trivium (more methods can
be found in [25]), which can generate 264 bits of key-sequence
for a 80-bit key and a 80-bit IV. Thus, the rate overhead that
Trivium places on our scheme will be 80/264 < 2−55, which
is negligible.

By using these cryptographic algorithms to perform key-
expansion, we assume that Eve cannot recover the initial key
before the key renewal and during the transmission period, i.e.
we assume that the computational power of Eve during the
time of transmission is not unlimited. However, our system
design only employs the key ephemerally. In fact, we assume
(pessimistically) that Eve is handed the full key (and not
just the initial key) as soon as transmission is complete.
Hence, unlike cryptography, even if the encryption system is
broken later, the eavesdropper obtains access to an unlimited
computational power, or other forms of computation such
as quantum computers are implemented, Eve will not have
enough information to recover the secret message.

We consider a memoryless one-way communication system,
and assume that both Bob and Eve are at a unit distance from
the transmitter by including variations in the path-loss in the
noise variance. Thus, the channel gain of both channels is
unity and both channels experience additive white Gaussian
noise (AWGN). Let nB and nE denote the zero-mean noise
processes at Bob’s and Eve’s receivers with variances σ2

B and
σE

2, respectively. Let X̂ denote the input of both channels, Ŷ
denote the received signal at Bob’s receiver, and Ẑ denote the
received signal at Eve’s receiver. The signal at Bob’s receiver
is:

Ŷ = X̂ + nB,

and the signal at Eve’s receiver is:

Ẑ = X̂ + nE .

We assume that location of Alice is known to Eve. Also,
Alice knows either Eve’s location, or in the case that she does
not know Eve’s location, she sets a value that works over a
set of locations (for example, the minimum possible distance
between Alice and Eve). If the location of Eve is completely
unknown, Eve’s distance can assumed to be zero and, as will
be shown in Section IV, the legitimate nodes will still be able
to obtain a positive secrecy rate by using the proposed scheme.

Both Bob and Eve employ high precision uniform analog-
to-digital converters. The effect of the A/D on the received
signal (quantization error) is modeled by a quantization noise
due to the limitation in the size of each quantization level,
and a clipping function due to the quantizer’s overflow. The
quantization noise in this case is (approximately) uniformly
distributed [26], so we will assume it is uniformly distributed

throughout the paper. For an m-bit quantizer (b = 2m gray
levels) over the full dynamic range [−l, l], two adjacent
quantization levels are spaced by δ = 2l/b, and thus the
quantization noise is uniformly distributed over an interval
of length δ. Quantizer overflow happens when the amplitude
of the received signal is greater than the quantizer’s dynamic
range, which can be modeled by a clipping function. We
assume that Alice knows an upper bound on Eve’s current A/D
conversion ability (without any assumption on Eve’s future
A/D conversion capabilities).

Let X denote the current code symbol, which we assume
is taken from a standard Gaussian codebook where each entry
has variance P , i.e. X ∼ N (0, P ). Note that although the
Gaussian codebook is optimal to achieve the secrecy capacity
in the case of AWGN wiretap channels, because we consider
quantization errors in our model, the Gaussian codebook is no
longer optimum, implying that our results represent achievable
rates but not upper bounds.

From [27], for an arbitrary stationary memoryless wiretap
channel with arbitrary input and output alphabets, any secrecy
rate

R̂s < max
X→Y Z

[I(X ;Y )− I(X ;Z)]

is achievable.
Now, we define the following max-min criteria:

Rs = max
s∈S

min
s′∈S′

R̂s(s, s
′) (1)

where S ′ is the set of strategies that Eve can take during
transmission, and S is the set of strategies that Alice can
take. Eve’s problem is to find a strategy, s′ ∈ S ′, to modify
her channel to minimize the secrecy rate. On the other hand,
Alice’s problem is to find a strategy, s ∈ S, to modify the
transmit signal to maximize this worst-case secrecy rate.

When cryptographic key expansion schemes are employed,
the key-sequence is not quite memoryless. But, based on the
assumption that Eve cannot restrict the rest of the key sequence
based on the observed symbols, we assume independence.
Hence, although in general the strategy taken by Eve is not
memoryless, here considering strategies with memory does not
help her to increase the information-leakage; thus, we restrict
S ′ to memoryless strategies. Further, we give the key to Eve
after completion of the transmission and show she cannot
recover the lost information she would need to obtain the
secret message from the recorded symbols.

B. General Nonlinearity: Rough Analysis

Our goal is to consider how Alice and Bob can employ bits
of the shared key to modify their radios as shown in Figure 1
to gain (or maximize) an information-theoretic advantage. For
now, assume that they insert general memoryless nonlinearities
g(.) at the transmitter and f(.) = g−1(.) at the receiver based
on the key. Suppose that Eve is able to obtain the key just
after the transmission is finished; considering for the moment
that she applies g−1(.) to Z , one sees how the security is
(potentially) obtained: Bob sees g(X) through g−1(.) and
the A/D, whereas Eve sees those operations in reverse. Since
nonlinear operations are not (necessarily) commutative, the
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Fig. 2. Alice and Bob share a cryptographic key that determines the value
of A at each time instance. Eve puts a (possibly variable) gain before her
A/D to decrease the A/D erasures and/or overflows and hence increase the
information leakage.

signals are not the same and there is the potential for some
form of information-theoretic security.

Now, stepping back to allow Eve to use the long key
sequence, k, in whatever manner she wants after she has
recorded the transmission yields an illustrative information-
theoretic model. In particular, using the same random coding
arguments as for fading channels, consider a collection of
functions G, from which k selects a function g(.) for each
transmitted symbol; then, the secrecy rate is:

Rs = Eg(.)[I(X ;Y |g(.))− I(X ;Z|g(.))]

Let us be pessimistic and assume σ2
E = 0. Furthermore, to get

some insight, assume temporarily that σ2
B = 0, corresponding

to a short-range situation which is not power-limited. For
σ2
B = 0, Y does not depend on k and thus using the approach

for analyzing quantizers of [28, pg. 251], which is accurate at
high resolution:

Rs = Eg(.)[I(X ;Y )− I(X ;Z|g(.))]
= Eg(.)[H(Y )−H(Y |X)− (H(Z|g(.))−H(Z|X, g(.)))]

≈ Eg(.)[h(Ỹ )− log(δ)− (h(Z̃|g(.))− log(δ))]

= Eg(.)[h(Ỹ )− h(Z̃|g(.))]
= Eg(.)[h(X)− h(g(X))]

where Ỹ and Z̃ are the inputs to Bob and Eve’s A/D
converters, respectively. It then becomes apparent that the
gain observed here for high-resolution A/D’s at both Bob
and Eve is a shaping gain between X and g(X). Whereas
we think of shaping gains as tending to be relatively small
(1.53 dB on the Gaussian channel [29]), that is because the
generally considered gains are between the optimal (Gaussian)
shaping and a standard but reasonable (uniform) shaping. In
our design scenario, if we are able to severely distort the
signal, the gains can become enormous. We quickly caveat this
conclusion by noting that the assumption σ2

B = 0 is critical,
since those g(.) which are most distorting can also cause
significant “noise enhancement” on the channel from Alice
to Bob. Hence, unless the noise is truly negligible (i.e. very
short range communication), judgment should be reserved on
the applicability of the technique until σ2

B �= 0 is considered
in Section III.

C. Rapid power modulation for secrecy

For the rest of the paper, we simplify the operator g(.)
to a random gain to consider a practical architecture easily
implemented and discuss specific operating scenarios. Our
goal is to achieve a positive secrecy rate by confusing Eve’s
A/D. Throughout this paper we assume that Eve is able
to employ just one A/D, and Eve with multiple A/D’s is
briefly discussed in Section V. The random gain is from a
fixed probability distribution and is multiplied to the signal
amplitude of each symbol that Alice transmits. Suppose that
A denotes the random variable associated with this random
gain, and the probability density function (pdf) of this gain is
pA(a) where a ∈ A (see Figure 2). The pdf of A is known to
all nodes, but only legitimate nodes know the exact sequence
of values of A (i.e. a1, a2, a3, · · · ) that is applied to the symbol
sequence.

We want to find a probability distribution for A that
maximizes this secrecy rate such that it does not change the
average power of the transmitted signal, i.e. E[|A|2] = 1. To
control the number of key bits required, we consider that |A|
is drawn from one of two levels A1 and A2 with random
polarity (i.e. A = {A1,−A1, A2,−A2}):

Pr(A = a) =

{
p, a = A1

1− p, a = A2

and Pr{A > 0} = Pr{A < 0} = 1/2. Suppose that A1 is the
large gain and A2 is the small gain that the transmitter applies
and denote the ratio between them r = A1

A2
.

Since Bob shares the (long) key with Alice, he easily
“inverts” the gain A to operate his A/D properly, whereas Eve
will struggle with such. In essence, we are inducing a fading
channel at Bob that he is able to equalize before his A/D,
whereas Eve cannot. Bob applies the reciprocal of A before
his A/D and thus given A, the signal that Bob’s A/D sees is:

Ỹ = X +
nB

A
(2)

To cancel the effect of this gain, Eve also applies an arbitrary
(possibly random) gain, 1/G. So, the signal at Eve’s A/D given
A and G is:

Z̃ =
A

G
X +

nE

G
(3)

Suppose that Eve knows the pdf of A; hence, she tries to
find a probability density function pG(g) for G such that
it minimizes the secrecy rate Rs. On the other hand, Alice
sets the pdf parameters such that no matter what pG(g) Eve
chooses, some secrecy rate Rs is always guaranteed. Hence,
the maxi-min criteria in (1) turns into:

Rs = max
p,A1,A2

min
pG(.)

R̂s(pG(.), A1, A2, p) (4)

Obviously, larger r = A1

A2
leads to more eavesdropper confu-

sion. However, because E[|A|2] = 1, r � 1 leads to a small
A2, and Bob then suffers noise enhancement. We talk about
the choice of r in the next paragraph.

Recall the potential operating scenario from Section I, and
assume that system radios are operating in a scenario where
they have adequate power amplifier headroom, as in the “near”
situation in cellular systems [30], and the user’s noise is rela-
tively negligible. However, an Eve at the same range can also
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intercept the signal. By changing the power of the transmitters
between the power-controlled level (e.g. A2), where it meets
the receiver requirements and its maximum power (e.g. A1),
Bob, knowing the sequence, obtains a signal that is at least
equivalent to operating at its power controlled level and thus
sees little degradation in information transmission. The ratio
between the large gain and the small gain, r, can be chosen
such that in the case of A = A2 (small gain), the minimum
acceptable signal level at Bob’s receiver is satisfied. On the
other hand, Eve’s A/D struggles even to record a reasonable
form of the signal; hence, she sees significant degradation,
and information-theoretic security is obtained. Also, because
the power level is changed very fast (at every symbol), the
automatic gain control (AGC) at the eavesdropper’s receiver
cannot follow the deep fades that cause erasures and/or strong
signals that cause A/D saturation.

To choose optimum values for A1, A2, and p, note that the
following constraints must be met:

A1

A2
= r and pA2

1 + (1− p)A2
2 = 1 (5)

Hence, two of these values are constrained by the system
parameter r and conservation of transmission power, and the
transmitter is free to choose only one (e.g. p). Thus, equation
(4) reduces to:

Rs = max
p

min
pG(.)

R̂s(pG(.), p) (6)

Eve can employ a number of countermeasures to decrease
Rs. She can find an optimum probability density function that
minimizes Rs, or she can employ a better A/D to decrease
erasures and/or overflows of her A/D. In the sequel, we will
consider these scenarios and examine the secrecy rate Rs that
can be achieved by the proposed method in each case.

III. ACHIEVABLE SECRECY RATES

In this section the secrecy rates that can be achieved
considering the non-idealities of the A/D’s at the front-ends
of Bob and Eve’s receivers are studied. In the first part, the
channel between Alice and Bob and the channel between Alice
and Eve are considered to be AWGN channels. In the second
part, to get more insight into the problem, the noise is removed
from the channels and only the effect of A/D’s on the signals
will be considered.

A. Noisy channels

Consider the derivation of I(X ;Y |A = a) − I(X ;Z|A =
a,G = g). Clearly, each of h(Y |A = a), h(Y |X,A = a),
h(Z|A = a,G = g), and h(Z|X,A = a,G = g) are required.
Since for given gains at Alice and Eve, i.e. A = a and G = g,
by substituting Z with Y and g with a (Figure 2), the equations
for h(Y |A = a), h(Y |X,A = a) can be derived from the
equations for h(Z|A = a,G = g) and h(Z|X,A = a,G = g),
we just show the calculations for the latter here. In this section
all the mutual information, entropy, and probability density
functions are calculated given that A = a and G = g.

Recall that throughout this paper the non-idealities of the
A/D’s are modeled by an additive uniformly distributed quan-
tization noise and a clipping function; hence,the signal at the

output of Eve’s A/D is:

Z =

⎧⎨
⎩

Z̃ + nq, |Z̃| < l

+l, Z̃ > l

−l, Z̃ < −l

where Z̃ = aX
g + nE

g and l is determined by the range [−l, l]

of the A/D. Thus, Z̃ has a zero-mean Gaussian distribution
with variance a2P+σ2

E

g2 , i.e. Z̃ ∼ N (0,
a2P+σ2

E

g2 ). Let us define
the random variable E′ that takes the values E′

1, E′
2, and E′

3,
where E′

1 = {|Z̃| < l} is the event that the signal before Eve’s
A/D falls in its dynamic range, and the events E′

2 = {Z̃ > l}
and E′

3 = {Z̃ < −l} correspond to clipping (A/D overflow).
We have,

h(Z) = h(Z|E′) +H(E′)−H(E′|Z),

Since E is completely determined by Z , H(E|Z) = 0; thus,

h(Z) =

3∑
i=1

h(Z|E′
i)p(E

′
i)−

3∑
i=1

p(E′
i) log(p(E

′
i)).

In the case of clipping we have h(Z|E′
2) = h(Z|E′

3) = 0.
The probability that the A/D is not in overflow is:

p(E′
1) = 1− 2Q

(
gl√

a2P + σ2
E

)
,

and the probability that her A/D overflows is given by:

p(E′
2) = p(E′

3) = Q

(
gl√

a2P + σ2
E

)
,

Then, h(Z|E′
1) is calculated as:

fZ|E′
1
(z) = fZ̃|E′

1
(z) ∗ fnq (z)

=
1

δ

∫ l

−l

fZ̃(s)U[−δ/2,δ/2](z − s)ds

=
1

δ

∫ min(l,z+δ/2)

max(−l,z−δ/2)

fZ̃(s)ds

≈ 1

δ

∫ z+δ/2

z−δ/2

fZ̃(s)ds

=
1

δ

(
Q

(
g(z − δ/2))√
a2P + σ2

E

)
−Q

(
g(z + δ/2)√
a2P + σ2

E

))
, |z| < l

(7)

where U[−δ/2,δ/2](.) is the rectangle function on [−δ/2, δ/2],
i.e. the value of the function is 1 on the interval [−δ/2, δ/2]
and is zero elsewhere. The reason that the approximation is
valid is that we assume high precision A/Ds are applied and
thus δ � l. Hence,

h(Z) =

(
1− 2Q

(
gl√

a2P + σ2
E

))
∫ l

−l

−fZ|E′
1
(z) log(fZ|E′

1
(z))dz +H(E′). (8)

Similarly, for h(Z|X) we have,

h(Z|X) = h(Z|X,E′) +H(E′|X)−H(E′|X,Z)
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Since H(E′|X,Z) = 0,

h(Z|X) =
3∑

i=1

h(Z|E′
i, X)p(E′

i|X) +H(E′|X) (9)

where h(Z|E′
2, X = x) = h(Z|E′

3, X = x) = 0. The
probability that Eve’s A/D works in its dynamic range given
X is,

p(E′
1|X = x) = p(|Z̃| < l|X = x)

= p(|ax
g

+
nE

g
| < l)

= p(−(gl+Ax) < nE < gl −Ax))

= Q

(−(gl +Ax)

σE

)
−Q

(
gl−Ax

σE

)

and the probability that her A/D overflows,

p(E′
2|X = x) = p(Z̃ > l|X = x)

= p(
ax

g
+

nE

g
> l)

= Q

(
gl −Ax

σE

)
,

and,

p(E′
2|X = x) = p(Z̃ < −l|X = x)

= p(
ax

g
+

nE

g
< −l)

= Q

(
gl +Ax

σE

)
.

In order to calculate h(Z|E′
1, X), fZ|E′

1,X=x(z) is required.
The signal before Eve’s A/D Z̃ given X = x has a Gaussian
distribution with mean Ax/g and variance σ2

E/g
2 within

interval |ax/g + nE/g| < l and zero elsewhere. Hence,

fZ|E′
1,X=x(z) = fZ̃|E′

1,X=x(z) ∗ fnq (z)

≈ 1

δ

∫ z+δ/2

z−δ/2

fZ̃|X=x(z)ds

=
1

δ

(
Q

(
g(z − δ/2)−Ax

σE

)
−Q

(
g(z + δ/2)−Ax

σE

))
,

for |z| < l, and,

h(Z|X) =∫ ∞

−∞

[ ∫ l

−l

−fZ|E′
1,X=x(z) log(fZ|E′

1,X=x(z))dz p(E
′
1|X = x)

−
3∑

i=1

p(E′
i|X = x) log(p(E′

i|X = x))
]
fX(x)dx (10)

By substituting h(Z) from (8) and h(Z|X) from (10) in the
following equation,

I(X ;Z) = h(Z)− h(Z|X), (11)

the mutual information between Alice and Eve given A = a
and G = g, can be found. Also, by substituting Z with Y ,
σ2
E with σ2

B , and g with a in (8), (10), and (11), the mutual
information between Alice and Bob given A = a can be found,

I(X ;Y ) = h(Y )− h(Y |X) (12)

The achievable secrecy rate can be found by substituting these
mutual informations into the following equation:

Rs = EG,A [I(X ;Y )− I(X ;Z)] (13)

Alice is able to choose p to maximize the Rs that can
be achieved by this method; on the other side, Eve tries to
minimize Rs by choosing an appropriate pG(.). The following
lemma shows that for an arbitrary discrete alphabet for G,
choosing a single value (which depends on the value of p)
with probability one minimizes the secrecy rate, and thus is
the optimal strategy for Eve.

Lemma 1. The gain 1/G that Eve applies before her A/D
should take a single value with probability one to minimize
the secrecy rate.

Proof. Suppose G has the following probability mass func-
tion:

pG(g = Gi) = αi, i = 1, · · · , n
such that

∑n
i=1 αi = 1. Without loss of generality, assume

that for a specific p, the maximum information leakage occurs
at G = G1, i.e. for any gain Gi, i = 2, · · · , n we have
I(X ;Z|G = G1) ≥ I(X ;Z|G = Gi); hence,

I(X ;Z) =

n∑
i=1

αiI(X ;Z|G = Gi)

≤
n∑

i=1

αiI(X ;Z|G = G1) = I(X ;Z|G = G1)

The above lemma can easily be generalized to continuous
random variables. Numerical results are given in Sections IV
and IV-E.

B. Noiseless Channels

In the case that the channel between Alice and Eve is noise-
less, h(Z) can be found by setting σ2

E = 0 in (8). Using (10)
and the fact that h(Z|E′

2, X = x) = h(Z|E′
3, X = x) = 0

and H(E′|X) = 0 we have,

h(Z|X)

=

∫ ∞

−∞
h(Z|E′

1, X = x)p(E′
1|X = x)fX(x)dx

=

∫ ∞

−∞
h(

aX

g
+ nq|E′

1, X = x)p(E′
1|X = x)fX(x)dx

=

∫ gl/|A|

−Gl/|A|
h(nq)fX(x)dx

= log(δ)

(
1− 2Q

(
gl

a
√
P

))
(14)

Similarly, in the case that Bob has a noiseless channel,

h(Y |X) = log(δ)

(
1− 2Q

(
l√
P

))
(15)

In each case, the secrecy rate can be found by substituting
(14) and (15) in (11) and (12), respectively. Numerical results
for the noiseless channels are shown in Sections IV and IV-E.
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Fig. 3. Gaussian erasure wiretap channel: in the asymptotic case, the
erasures/overflows at Eve’s A/D due to the rapid power modulation at the
transmitter can be modeled by an erasure channel.

Clearly, considering noiseless channels makes the results
less complicated and thus more insightful. Hence, we continue
our investigation by studying the asymptotic behavior of the
proposed method (as r → ∞) in the noiseless regime, which
will help us to achieve some intuition regarding this scheme.
We assume that Bob and Eve use A/D’s of the same quality
for this analysis.

Since in the noiseless regime I(X ;Y ) does not depend on
A, it does not change with r and thus we need only evaluate
I(X ;Z) for our asymptotic analysis.

From (5) we have,

A1 =
r√

pr2 + (1 − p)
and A2 =

1√
pr2 + (1− p)

(16)

Let G(r) be the inverse of the gain that Eve employs as a
function of r. Recall from Lemma 1 that G(r) will take a
single value with probability one for a given r, but that value
can depend on r. Since A1 → 1/

√
p and A2 → 0, we claim

that in the limit (as r → ∞), the best strategy that Eve can
take is to choose either G(r) = Θ(1) or G(r) = Θ(r−1);
otherwise, she will get no information (see Appendix A).

First we study the secrecy rates that can be achieved when
G(r) = Θ(1) as r approaches ∞. The average secrecy rate
is:

Rs = E[I(X ;Y )− I(X ;Z)]

= p(I(X ;Y |A = A1)− I(X ;Z|A = A1))

+ (1− p)(I(X ;Y |A = A2)− I(X ;Z|A = A2)) (17)

Assuming that Bob chooses the optimum range for his A/D,
the maximum I(X ;Z|A = A1) that Eve can achieve is
I(X ;Y |A = A1) and hence the first term in (17) is zero.
To evaluate the second term, putting G(r) and A = A2 in (8)
and (14) yields:

h(Z) =

(
1− 2Q

(
G(r)l

A2

√
P

))
∫ a

−a

−fZ|E′
1
(z) log(fZ|E′

1
(z))dz +H(E′) (18)

where since G(r) = Θ(1),
(
1− 2Q

(
G(r)l

A2

√
P

))
→ 1 as r →

∞ and thus H(E′) → 0; and, for |z| < l,

fZ|E′
1
(z)

=
1

δ

(
Q

(
G(r)(z − δ/2)

A2

√
P

)
−Q

(
G(r)(z + δ/2)

A2

√
P

))

→
⎧⎨
⎩

1
δ , 0 < |z| < δ/2
1
2δ , |z| = δ/2
0, otherwise

Since the integrand in (18) is bounded for all r, from the
dominated convergence theorem, h(Z) → log δ as r → ∞.
Also since G(r) = Θ(1),

h(Z|X) = log(δ)

(
1− 2Q

(
G(r)l

A2

√
P

))
→ log(δ) (19)

as r approaches ∞. Thus, I(X ;Z|A = A2) = 0 and hence
the average secrecy rate given that G(r) = Θ(1) is Rs =
(1 − p)I(X ;Y ).

Now suppose G(r) = Θ(r−1) and consider the second
term in (17). In the limit, A2/G(r) = c where c > 0 is a
bounded constant. Since Bob chooses the optimum range for
his A/D, the maximum I(X ;Z|A = A2) that Eve can achieve
is I(X ;Y |A = A2) and thus given that G(r) = Θ(r−1), the
second term in (17) is zero. To evaluate the first term in (17)
as r gets large, by substituting G(r) = Θ(r−1) and A = A1

in (8) and (14), we have fZ|E′
1
(z) → 0 and,(

1− 2Q

(
G(r)l

A1

√
P

))
→ 0

as r approaches infinity and hence h(Z) → 0. Also by letting
G(r) = Θ(r−1) we have,

h(Z|X) = log(δ)

(
1− 2Q

(
G(r)l

A1

√
P

))
→ 0 as r → ∞

Hence, with probability p the mutual information between
Alice and Eve is zero and the average secrecy rate that can
be achieved given G(r) = Θ(r−1) as r approaches ∞ is
Rs = pI(X ;Y ).

We can interpret these results as follows; when A/G(r) =
A1/Θ(r−1), the total gain that Eve’s A/D sees approaches
infinity as r → ∞; hence, even if Eve uses an A/D with
larger range than Bob’s A/D, her quantizer overflows. When
A/G(r) = A2/Θ(1), the total gain goes to zero as r
approaches infinity and thus even if Eve uses an A/D with
better precision, the received signal amplitude is less than one
quantization level. In both cases, Eve receives no information
about the transmitted signal and thus Eve’s channel can
be modeled by an erasure channel (Figure 3), where for
G(r) = Θ(r−1), the probability of erasure ε = 1 − p and
for G(r) = Θ(1), ε = p.

Hence, the secrecy rate that can be achieved in the asymp-
totic case (as r → ∞) is:

Rs = (1− ε)I(X ;Y ) (20)

To maximize the achievable secrecy rate, it is reasonable
for Alice to choose p = 0.5. In Section IV-B it is shown
that for a 10-bit A/D and the transmitter power P = 1, the
optimum range of the A/D is obtained by setting l = 2.5, and
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Fig. 4. Achievable secrecy rate versus r (the ratio between the large and the
small gain); both Bob and Eve apply 10-bit A/D’s with the dynamic range
l = 2.5. The SNRs of both Bob’s channel and Eve’s channel are the same
and are denoted by α.

the corresponding mutual information between Alice and Bob
(when the channel between them is noiseless) is I(X ;Y ) =
6.597. Hence, using (20), Rs → 0.5×6.597 = 3.2985. Figure
4 (the upper curve) shows the achievable secrecy rate versus
r when both Bob’s channel and Eve’s channel are noiseless.
It can be seen that as r gets larger, the achievable secrecy
rate goes to a constant which is similar to what is anticipated.
Furthermore, for larger r’s (r ≥ 103) the optimum probability
that maximizes the worst case secrecy rate is p = 0.5. These
results show that our results are consistent to expectations in
the limit.

From another point of view, consider that for small values
of δ, the quantization noise can be modeled by a zero mean
Gaussian random variable with the variance δ2/12, where δ is
the size of each quantization level. Thus, this wiretap channel
can be modeled by a Gaussian erasure wiretap channel.

The secrecy capacity of the Gaussian wiretap channel is
[31]:

Cs =
1

2

(
log(1 + |hB|2γB)− log(1 + |hE |2γE)

)+
where hB and hE are channel gains, γB is the SNR at
Bob’s receiver, and γE is the SNR at Eve’s receiver. We can
use this secrecy capacity in our asymptotic model by setting
hB = 1 and modeling the erasure channel by an unusual
fading channel with the following fading distribution:

hE =

{
0, w.p. ε
1, w.p. 1− ε

Since we assumed that Eve’s A/D is identical to Bob’s A/D,
γE = γB = P

δ2/12
and thus the secrecy capacity is non-zero

only when an erasure at Eve’s channel occurs. Hence,

Cs =
(1− ε)

2
log(1 + γB) (21)

This equation shows that for a 10-bit A/D with l = 2.5,
transmitting power P = 1, and ε = p = 0.5, the secrecy
capacity is Cs = 3.2822 which is again very close to
what we expect from our asymptotic analysis. Furthermore,
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Fig. 5. Secrecy capacity of public discussion for various values of SNR at
Bob’s receiver when the SNR at Eve’s receiver changes from 50 dB to 100
dB and P = 1. When the SNR at Bob’s receiver is less than the SNR Eve’s
receiver, the secrecy rate drops rapidly.

on comparing equations (20) and (21), it is seen that in
the asymptotic case, the achievable secrecy rate meets this
approximate secrecy capacity.

IV. NUMERICAL RESULTS

A. Motivation

When the channel between Alice and Eve is less noisy than
the channel between Alice and Bob, if the legitimate users
are restricted to one-way and rate-limited communication, the
secrecy capacity of the wiretap channel is zero. However, if we
relax the restrictions placed on the schemes that the legitimate
users can apply by allowing two-way communication and the
presence of a noiseless, public, and authenticated channel,
public discussion strategies [6], [7] allow the legitimate nodes
to agree on a secret key by extracting information from
realizations of correlated random variables. This secret-key
can then be used in a one-time-pad for secret communication
between Alice and Bob. A closed form for the general secret-
key capacity is not available; however, in the case of a
Gaussian source model in which X ∼ N (0, P ) and a Gaussian
wiretap channel, i.e. when the channel between Alice and Bob
and the channel between Alice and Eve are AWGN channels,
the secrecy capacity has a simple form [8, Chapter 5]:

CSM
s =

1

2
log

(
1 +

Pσ2
E

(P + σ2
E)σ

2
B

)
(22)

and thus all secret-key rates less than CSM
s are achievable.

Achievable secrecy rates of public discussion for various
values of the signal-to-noise ratio at Bob’s receiver versus
signal-to-noise ratio at Eve’s receiver are shown in Figure
5. As can be seen, when the SNR of Eve’s receiver is
significantly larger than the SNR at Bob’s receiver, the secrecy
rate of public discussion drops rapidly. Our main goal here is
to see whether our scheme can improve the performance in
this regime.
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Fig. 6. Achievable secrecy rate vs. the probability p and the gain G at Eve’s
receiver. Both Bob’s and Eve’s channels are noiseless and they use identical
10-bit A/D’s. The ratio between the two power levels at the transmitter is
r = 103 (i.e. 30 dB) and the average transmitting power is P = 1. A
maxi-min rate of Rs = 3.1372 is achieved.

B. Noiseless Channels: Eve with the same A/D as Bob

We begin our investigation by considering only the effect
of A/D’s on the signals. Hence, we assume that Eve’s channel
is noiseless, i.e. nE = 0 (which benefits the eavesdropper).
However, we also assume the system nodes are working in a
very high SNR regime and thus the channel noise at Bob can
be neglected (nB = 0).

Now suppose that both Bob and Eve use 10-bit quantizers
(b = 210) and the transmitter power is P = 1. Since δ =
2a/b, for a fixed number of quantization bits, I(X ;Y ) is a
function of the of the A/D (a), and the optimal quantization
range that maximizes I(X ;Y ) can be found. Since I(X ;Y )
is an intricate function in terms of a, we find the optimum a
numerically. In this case, the optimum quantization range that
maximizes I(X ;Y ) is l = 2.5, and the corresponding mutual
information between Alice and Bob is I(X ;Y ) = 6.597. For
the remainder of the paper, we use l = 2.5 in our calculations.
Suppose that Eve has the same A/D as Bob. From Lemma
1, putting a random gain is undesirable for Eve; hence, she
chooses a fixed gain G that minimizes Rs. Because Alice is
not aware of Eve’s choice, she has to choose a probability p
that maximizes the worst case Rs.

As we discussed in Section II, a larger r leads to more
eavesdropper confusion and thus as r increases, the secrecy
rate would be expected to increase. However, in the case of
noisy channels, a large r also causes noise enhancement at
Bob’s receiver that decreases the secrecy rate. In order to
get some insight about the dependency of the secrecy rate
on r, curves of Rs versus r are shown in Figure 4. For each
curve, the SNR at both Eve’s receiver and Bob’s receiver are
the same and are denoted by α. Hence, in order to achieve
high secrecy rates by avoiding excessive noise enhancement
at Bob’s receiver, for the rest of the paper we set r = 103.
The plot of Rs versus p and G for P = 1 and r = 103

(i.e. 30 dB) where both Bob and Eve are each using a 10-bit
A/D is shown in Figure 6. This function is complicated and

Fig. 7. Achievable secrecy rate vs. the probability p and the gain at Eve’s
receiver, G for the case of noiseless channels. The ratio between the two
power levels at the transmitter is r = 103 (i.e. 30 dB) and the average
transmitting power is P = 1. In the upper curve, both Bob and Eve have the
same 10-bit A/D’s. In the lower curve, Bob uses a 10-bit A/D while Eve uses
a 14-bit A/D (Eve’s A/D is 24 dB better than Bob’s A/D) and a maxi-min
rate of Rs = 1.2478 is achieved (for p = 0.4).

hence the optimum value of p cannot be derived analytically.
Numerical analysis shows that p ≈ 0.45 maximizes the worst
case Rs, and the maxi-min value is Rs = 3.1366. Hence,
choosing p = 0.45 guarantees that at least the secrecy rate
Rs = 3.1366 can be achieved.

C. Noiseless Channels: Eve with a Better A/D than Bob

Now suppose that Eve has access to a better A/D than
Bob. Depending on the gain that Eve applies before her
A/D, a better A/D results in less erasures and/or less A/D
overflows. Hence, the mutual information between Alice and
Eve increases and consequently, the achievable secrecy rate
decreases. Figure 7 shows this effect versus p and G. It can
be seen that even if Eve uses an A/D which is 24 dB (4
bits) better than Bob’s A/D (Eve has a 14-bit A/D while Bob
has a 10-bit A/D), by choosing an appropriate value for p,
a positive secrecy rate can be achieved. In this example, by
choosing p = 0.4, a secrecy rate Rs = 1.2426 is achievable.
Even if we do not change the probability p from the previous
section (p = 0.45), assuming that Alice is not aware of Eve’s
better A/D, a secrecy rate Rs = 0.9225 is achievable. In spite
of having a better A/D, Eve will still lose some symbols and
hence a positive secrecy rate is available. This is because the
ratio between the large and the small gain, A1 and A2, is 103,
while Eve’s A/D has only 16 times better resolution; thus, she
still needs to compromise between resolution and overflow. To
cancel the effect of these gains completely, Eve has to use an
A/D that has an effective resolution after taking into account
jamming, interference, etc. on the order of 103 times (10 bits)
better than Bob’s A/D, which would be very difficult in an
adversarial environment.
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Fig. 8. Achievable secrecy rate vs. SNR at Bob’s receiver while the SNR
at Eve’s receiver is infinity (Eve has perfect access to the transmitted signal)
for r = 103, P = 1 and Bob and Eve applying 10-bit A/D’s. Note that the
assumption of Eve having a noiseless channel is the extreme case when Eve
has perfect access to the transmitter’s output (for instance, the eavesdropper
is able to pick up the transmitter’s radio) and hence other secrecy methods
are not effective. Using the proposed method, a positive secrecy rate can be
achieved over short range at reasonable power.

D. Noisy Main Channel, Noiseless Eavesdropper’s channel

Now we look at the extreme case that Eve is able to receive
exactly what Alice transmits and receives (e.g. the adversary
is able to pick up the transmitter’s radio and hook directly
to the antenna), but the channel between Alice and Bob is
noisy and hence no other technique is effective. In other words,
the channel between Alice and Bob experiences an additive
white Gaussian noise (nB ∼ N (0, σ2

B)), while Eve’s channel
is noiseless (nE = 0). Figure 8 shows the secrecy rate Rs

that can be achieved using the proposed scheme versus the
signal-to-noise ratio (SNR) at Bob’s receiver. In this case, the
transmitted power P = 1, the ratio between the large and
the small gain is 30 dB, and both Bob and Eve use 10-bit
A/D’s. It can be seen that, although Eve’s channel is much
better than Bob’s channel, when the SNR at Bob’s receiver is
greater than 60 dB, which could be made common in a short-
range application as described in Section I, a positive secrecy
rate is available. By comparing the noise-free result in Figure
4 for r = 103 and Figure 8, it can be seen that the secrecy
rate when SNR at Bob is 120 dB is still less than the secrecy
rate when Bob’s channel is noiseless.

E. Noisy Channels

When both channels are noisy, the achievable secrecy rate
of the proposed method versus the SNR at Eve’s receiver
for various values of the SNR at Bob’s receiver is shown in
Figures 9. The transmitted power P = 1, the ratio between
the large and the small gain is 30 dB, and both Bob and
Eve use 10-bit A/D’s. It can be seen that by applying the
proposed method for the case of Eve with a (significantly)
better channel than Bob, which is the regime of interest per
Figure 5, reasonable secrecy rates can be achieved. Note
that in our method we are generating an advantage for the
legitimate nodes to be used with wiretap coding, and thus,
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Fig. 9. Achievable secrecy rates for various values of the SNR at Bob’s
receiver when the SNR at Eve’s receiver changes from 50 dB to 100 dB. The
settings are r = 103, P = 1, and Bob and Eve are applying 10-bit A/D’s.
When the SNR of the channel between Alice and Eve is significantly better
than the SNR of the channel between Alice and Bob, reasonable secrecy rates
are still achievable.

because public discussion approaches assume the presence of
a public authenticated channel, public discussion should not
be viewed as a competitor to the proposed scheme. Rather, if
such a public authenticated channel exists and two-way com-
munication is possible, our method can be used in conjunction
with public discussion techniques to result in higher secrecy
rates. Nevertheless, per Figure 5, public discussion provides
motivation for the regime where advances are needed given
the current state of the art.

V. CONCLUSION

In this paper, we introduce a new approach that exploits
a short-term cryptographic key to force different orderings at
Bob and Eve of two operators, one of which is necessarily
non-linear, to obtain the desired advantage for information-
theoretic security in a wireless communication system regard-
less of the location of Eve. We then investigate a simple power
modulation instantiation of the approach. It is shown that when
Eve’s channel condition is significantly better than the Bob’s
channel, reasonable secrecy rates can still be achieved using
our proposed method in this challenging regime. In particular,
even in the case that the adversary is able to pick up the
transmitter’s radio (i.e. Eve has perfect access to the output of
the transmitter), a reasonable secrecy rate is achievable at high
SNRs which might apply to a short-range wireless system.
For example, one might use the transmission power of typical
cellular systems with the corresponding excess power at short
ranges to establish a secure radio system in a limited area.

Although we have considered the case of Eve with a better
A/D than Bob, the clear risk to the approach is still that of
asymmetric capabilities at the receivers. For example, if we
employ the simple power modulation approach studied exten-
sively here, Eve may employ multiple A/D’s with different
gain settings in front of each. Hence, Eve would be able to
record two signals independently and decode them later when
she gets the key or extracts the key based on the pattern of
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erasures and overflows at each A/D. A simple approach to
combat this attack is rather than applying just two power
levels, the transmitter can apply many power levels. More
promising, however, is to consider adding memory to the
signal warping process [32].

Broadly considering potential techniques for everlasting
security in wireless systems, including that proposed here,
yields that each approach still holds some risk. In the case
of cryptographic security, assumptions must be made on both
the hardness of the problem and the current/future computa-
tional capabilities of the adversary. In the case of standard
information-theoretic security, assumptions must be made on
the quality of the channel to Eve, generally corresponding
to limitations on her location. In the method proposed here,
assumptions must be made on Eve’s current conversion hard-
ware capabilities, but, as in standard information-theoretic
secrecy, there is no assumption on future capabilities. All three
approaches thus have different applicability.

APPENDIX A
In this section we show that as r → ∞ the only strategy

that Eve can take to obtain information from the signal she
receives is to choose either G(r) = Θ(1) or G(r) = Θ(r−1).
Instead of applying G(r) = Θ(1) or G(r) = Θ(r−1), the
two other possibilities for Eve are to choose G(r) such that
either limr→∞ r−1/G(r) → 0 or limr→∞ r−1/G(r) → ∞
(and obviously provided that G(r) �= Θ(1)).

First suppose limr→∞ r−1/G(r) → 0 and consider
I(X ;Z|A = A1) in (17). Since G(r) �= Θ(1) and from (16),
limr→∞ A1/G(r) → 0 and hence,

h(Z)=

(
1− 2Q

(
G(r)l

A1

√
P

))∫ a

−a

−fZ|E′
1
(z) log(fZ|E′

1
(z))dz

(23)

where, for |z| < l,

fZ|E′
1
(z)=

1

δ

(
Q

(
G(r)(z − δ/2)

A1

√
P

)
−Q

(
G(r)(z + δ/2)

A1

√
P

))

→
⎧⎨
⎩

1
δ , 0 < |z| < δ/2
1
2δ , |z| = δ/2
0, otherwise

and
(
1− 2Q

(
G(r)l

A1

√
P

))
→ 1 as r → ∞. Since the inte-

grand in (23) is bounded for all r and from the dominated
convergence theorem, h(Z) → log δ as r → ∞. Also, since
limr→∞ r−1/G(r) → 0,

h(Z|X) = log(δ)

(
1− 2Q

(
G(r)l

A1

√
P

))
→ log(δ) (24)

as r approaches ∞ and thus I(X ;Z|A = A1) = 0. Now
consider I(X ;Z|A = A2) in (17); by substituting A1 with
A2 in (23) and (24), and since limr→∞ A2/G(r) → 0,
we have I(X ;Z|A = A2) = 0. Consequently, given that
limr→∞ r−1/G(r) → 0, the average information that Eve
obtains is zero.

Now suppose limr→∞ r−1/G(r) → ∞ and consider
the first term I(X ;Z|A = A1) in (17). The fact that
limr→∞ r−1/G(r) → ∞ implies that in the limit as r → ∞,
A1/G(r) also goes to ∞ and thus from (8) and (14) we

have fZ|E′
1
(z) → 0. Also,

(
1− 2Q

(
G(r)l

A1

√
P

))
→ 0 as r

approaches infinity and hence h(Z) → 0. Furthermore,

h(Z|X) = log(δ)

(
1− 2Q

(
G(r)l

A1

√
P

))
→ 0 (25)

as r → ∞ and thus I(X ;Z|A = A1) = 0. Considering
I(X ;Z|A = A2) in (17) and by putting A2 instead of
A1 in (25), since A2/G(r) → ∞ in the limit as r →
∞, we have I(X ;Z|A = A2) = 0. Hence, by choosing
limr→∞ r−1/G(r) → ∞ Eve gets no information about the
transmitted signal.

REFERENCES

[1] D. Stinson, Cryptography: Theory and practice. CRC press, 2006.
[2] R. Benson, “The verona story,” National Security Agency Central

Security Service, Historical Publications (available via WWW).
[3] C. Shannon, “Communication theory of secrecy systems,” Bell System

Technical J., vol. 28, no. 4, pp. 656–715, 1949.
[4] A. Wyner, “The wire-tap channel,” Bell System Technical J., vol. 54,

no. 8, pp. 1355–1387, 1975.
[5] I. Csiszár and J. Körner, “Broadcast channels with confidential mes-

sages,” IEEE Trans. Inf. Theory, vol. 24, no. 3, pp. 339–348, 1978.
[6] U. Maurer, “Secret key agreement by public discussion from common

information,” IEEE Trans. Inf. Theory, vol. 39, no. 3, pp. 733–742, 1993.
[7] R. Ahlswede and I. Csiszár, “Common randomness in information

theory and cryptography. i. secret sharing,” IEEE Trans. Inf. Theory,
vol. 39, no. 4, pp. 1121–1132, 1993.

[8] M. Bloch and J. Barros, Physical-layer security: From information
theory to security engineering. Cambridge University Press, 2011.

[9] R. Negi and S. Goel, “Secret communication using artificial noise,” in
IEEE Vehicular Technology Conference, 2005, vol. 62, p. 1906.

[10] S. Goel and R. Negi, “Secret communication in presence of colluding
eavesdroppers,” in IEEE Military Communications Conference, 2005,
pp. 1501–1506.

[11] X. He and A. Yener, “Two-hop secure communication using an untrusted
relay: A case for cooperative jamming,” in IEEE GLOBECOM 2008,
pp. 1–5, 2008.

[12] L. Lai and H. El Gamal, “Cooperative secrecy: The relay-eavesdropper
channel,” in IEEE International Symposium on Information Theory,
pp. 931–935, 2007.

[13] P. Gopala, L. Lai, and H. El Gamal, “On the secrecy capacity of fading
channels,” IEEE Trans. Inf. Theory, vol. 54, no. 10, pp. 4687–4698,
2008.

[14] D. Goeckel, S. Vasudevan, D. Towsley, S. Adams, Z. Ding, and K. Le-
ung, “Artificial noise generation from cooperative relays for everlasting
secrecy in two-hop wireless networks,” IEEE J. Sel. Areas Commun.,
vol. 29, pp. 2067–2076, 2011.

[15] A. Sheikholeslami, D. Goeckel, H. Pishro-Nik, and D. Towsley, “Phys-
ical layer security from inter-session interference in large wireless
networks,” in IEEE INFOCOM Proceedings, pp. 1179–1187, 2012.

[16] C. Cachin and U. Maurer, “Unconditional security against memory-
bounded adversaries,” Advances in Cryptology, pp. 292–306, 1997.

[17] R. Kuchibhatla, “Imft 25-nm mlc nand: technology scaling barriers
broken,” EE Times News and Analysis, 2010.

[18] S. Krone and G. Fettweis, “Fundamental limits to communications with
analog-to-digital conversion at the receiver,” in IEEE 10th Workshop on
Signal Processing Advances in Wireless Communications, pp. 464–468,
2009.

[19] S. Krone and G. Fettweis, “A fundamental physical limit to data
transmission and processing,” IEEE Signal Process. Lett., vol. 17, no. 3,
pp. 305–307, 2010.

[20] R. Harjani, B. Sadler, H. Hashemi, and J. Rudell (Organizers), “Systems
and circuits for sensing, co-existence, and interference mitigation in sdr
and cognitive radios,” in IEEE RFIC Symposium, 2011.

[21] L. Kahn, “Single-sideband transmission by envelope elimination and
restoration,” Proc. IRE, vol. 40, no. 7, pp. 803–806, 1952.

[22] P. Kenington, High linearity RF amplifier design. Artech House, Inc.,
2000.

[23] W. Diffie and M. Hellman, “New directions in cryptography,” IEEE
Trans. Inf. Theory, vol. 22, no. 6, pp. 644–654, 1976.

[24] C. Paar and J. Pelzl, Understanding cryptography: a textbook for
students and practitioners. Springer, 2010.



SHEIKHOLESLAMI et al.: EVERLASTING SECRECY BY EXPLOITING NON-IDEALITIES OF THE EAVESDROPPER’S RECEIVER 1839

[25] M. Robshaw and O. Billet, New stream cipher designs: the eSTREAM
finalists, vol. 4986. Springer, 2008.

[26] B. Widrow and I. Kollár, Quantization noise. Cambridge University
Press, 2008.

[27] M. Bloch and J. Laneman, “On the secrecy capacity of arbitrary wiretap
channels,” in 46th Annual Allerton Conference, pp. 818–825, 2008.

[28] T. Cover, J. Thomas, J. Wiley, et al., Elements of information theory.
Wiley, 2006.

[29] A. Calderbank and L. Ozarow, “Non-equiprobable signaling on the
gaussian channel,” IEEE Trans. Inf. Theory, vol. 36, pp. 726–740, 1990.

[30] R. Kohno, R. Meidan, and L. Milstein, “Spread spectrum access methods
for wireless communications,” IEEE Commun. Mag., vol. 33, no. 1,
pp. 58–67, 1995.

[31] J. Barros and M. Rodrigues, “Secrecy capacity of wireless channels,”
in IEEE International Symposium on Information Theory, pp. 356–360,
2006.

[32] A. Sheikholeslami, D. Goeckel, and Pishro-Nik, “Artificial intersymbol
interference (ISI) to exploit receiver imperfections for secrecy,” to apear
in 2013 IEEE International Symposium on Information Theory Pro-
ceedings, (available online: www.ecs.umass.edu/∼goeckel/Artificial
Intersymbol Interference.pdf ).

Azadeh Sheikholeslami received the B.Sc. degree
in electrical engineering from the University of
Tehran, Tehran, Iran in 2004 and the M.Sc. degree in
communications engineering from Sharif University
of Technology, Tehran, Iran in 2006. She is cur-
rently working toward the Ph.D. degree in electri-
cal engineering at the University of Massachusetts,
Amherst.

Her current research interests include network
information theory and physical layer security.

Dennis Goeckel received his BS from Purdue Uni-
versity in 1992, and his MS and PhD from the Uni-
versity of Michigan in 1993 and 1996, respectively.
Since 1996, he has been with the Electrical and
Computer Engineering Department at the University
of Massachusetts at Amherst, where he is currently a
Professor. He received the NSF CAREER Award in
1999 for ”coded modulation for high-speed wireless
communications” and is an IEEE Fellow. He has
been a Lilly Teaching Fellow (2000-2001), and he
received the University of Massachusetts Distin-

guished Teaching Award in 2007. His research interests are in physical layer
communications and wireless network theory.

He has served on the Editorial Board of a number of journals: IEEE Trans.
Networking, IEEE Trans. Mobile Computing, IEEE Transaction on Wireless
Communications, and the IEEE Trans. Communications. He has been a co-
chair of the Technical Program Committee of the Wireless Communications
Theory Symposium of the IEEE Global Communications Conference (2008),
and the Communication Theory Symposium of the IEEE Global Communi-
cations Conference (2004).

Hossein Pishro-nik is an Associate Professor of
electrical and computer engineering at the Univer-
sity of Massachusetts, Amherst. He received a B.S.
degree from Sharif University of Technology, and
M.Sc. and Ph.D. degrees from the Georgia Institute
of Technology, all in electrical and computer engi-
neering. His research interests include the mathe-
matical analysis of communication systems, in par-
ticular, error control coding, wireless networks, and
vehicular ad hoc networks. His awards include an
NSF Faculty Early Career Development (CAREER)

Award, an Outstanding Junior Faculty Award from UMass, and an Outstanding
Graduate Research Award from the Georgia Institute of Technology.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket true
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage false
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Cadmus MediaWorks settings for Acrobat Distiller 8)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


